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Introduction
Experimental and theoretical research in peristaltic flows has 

received increased attention during the past several decades. This is due 
to importance of this area in biomedical engineering and physiology. 
Several pertinent area of interest (where the peristaltic flows are 
functional) are urine transport from kidney to bladder, the movement 
of chyme in the gastrointestinal tract, fluids in the lymphatic vessels, 
biles from the gall bladder into the duodenum, the movement of 
spermatozoa in the ductus efferent of the male reproductive tract, the 
movement of the ovum in the fallopian tube, circulation of blood in 
small blood vessels, roller and finger pumps, heart lung machine, blood 
pump machine and dialysis machine etc. After the pioneering work 
done by Latham [1], various researchers have discussed the peristaltic 
flows with different geometries [2-10]. Recently, Subba Reddy et al. [11] 
have examined the flow of a viscous fluid due to symmetric peristaltic 
waves propagating on the horizontal sidewalls of a rectangular duct. 
They pointed out that the peristaltic flow of traditional asymmetric 
two dimensional channels may not better approximate the motion of 
intrauterine fluid in a sagittal cross section of the uterus. Therefore, they 
consider the rectangular duct instead of two dimensional channels. 
Later on Mandiwalla and Archer [12] extended the idea of Subba Reddy 
et al. [11] and discussed the influence of slip boundary condition on 
peristaltic pumping in a rectangular channel. Another area of focus in 
fluid mechanics is the study of non-Newtonian fluids. Some important 
examples of non-Newtonian fluids are blood, mustard, mayonnaise, 
tooth paste, asphalt, lava and ice, mud slides, snow avalanches, flow 
of plasma, nuclear fuel slurries, flow of nuclear fuel slurries flow of 
liquid metals and alloys, flow of mercury amalgams and lubrications 
with heavy oils and greases [13-17]. The flow characteristics of non-
Newtonian fluids are quite different from those of Newtonian fluids. 
There are many models of non-Newtonian fluids which exhibits 
different flow properties. However, Second and third order fluids are 
those which exhibits both shear thinning and shear thickening effects 
[18-22].

The main goal here is to present the peristaltic flow of a third grade 
fluid in a rectangular duct. The governing equations of third grade 
fluid are simplified under the assumptions of long wave length and 
low Reynolds number and then the resulting nonlinear equations with 
the corresponding boundary conditions of rectangular duct are solved 
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Abstract
In the present study we have discussed the influence of lateral walls on peristaltic flow of a third grade fluid in a 

rectangular duct. The mathematical equations of the third grade fluid for the rectangular duct are first modeled and 
then simplified under the assumptions of long wave length and low Reynolds number approximation. The reduced 
equations are solved analytically using Homotopy perturbation method and the Eigen function expansion method. 
The graphical results of the present problem are also discussed to see the effects of various emerging parameters. 
It is observed that with an increase in third grade parameter the pressure rise, pressure gradient and number of the 
trapping bolus decreases.

analytically with the help of Homotopy perturbation method and eigen 
function expansion method. The expressions of pressure rise, pressure 
gradient and stream functions are plotted and discussed for various 
physical parameters of interest.

Mathematical Modelling
Let us consider the peristaltic flow of an incompressible third grade 

fluid in a duct of rectangular cross section having the channel width 2d 
and height 2a. We are considering the Cartesian coordinates system in 
such a way that X-axis is taken along the axial direction, Y-axis is taken 
along the lateral direction and Z-axis is along the vertical direction of a 
rectangular duct as shown in Figure 1.

The peristaltic waves on the walls are represented as

2( , ) cos ( )π
λ

 = = ± ± −  
Z H X t a b X ct (1)

where a and b are the amplitudes of the waves, λ  is the wave length, t 
is the velocity of propagation, X is the time and   is the direction of wave 
propagation. The walls parallel to XZ plane remain undisturbed and are 
not subject to any peristaltic wave motion. We assume that the lateral 
velocity is zero as there is no change in lateral direction of the duct 
cross section. Let (U, 0, W)  be the velocity for a rectangular duct. The 
governing equations for the flow problem are

0∂ ∂
+ =

∂ ∂
U W
X Z

				   (2)

,ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
XX XY XZ

U U U PU W S S S
t X Z X X Y Z

(3)
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0 ,∂ ∂ ∂ ∂
= − + + +

∂ ∂ ∂ ∂YX YY YZ
P S S S
Y X Y Z                                             (4)

,ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
ZX ZY ZZ

W W W PU W S S S
t X Z Z X Y Z

           (5)

in which ρ is the density, P is the pressure, t is the time and S s is the 
stress tensor for third grade fluid. The stress tensor for third grade fluid 
is defined as [23]

( )2 2
1 1 2 2 1 3 1 1µ α α β= + + + ⋅tracS A A A A A                                  (6)

1 1,   += + = + +T Tn
n n n

dAL L A A L L A
dt

A 					      

Where grad ,=L V ( )grad ,= TTL V 1α , 2α  and 3β  are the material 

moduli.

Let us define a wave frame (x,y) moving with the velocity c away 
from the fixed frame (X, Y) by the transformation

( ), ,      ,      ,       ,      ( , ) , ,= − = = = − = = ⋅x X ct y Y z Z u U c w W p x z P X Z t

Defining the following non-dimensional quantities
2

2
31 2

1 2 2

, , , , , , , , Re ,

, , , , , ,

, , , , .

ρ δ
λ δ λ µ λ µ

β δ
λ µ µ µ µ

βα αλ λ λ λ
µ µ µ µ µ

= = = = = = = = =

= = = = = =

= = = = Γ =

xx xy xz yz

zz yy

xx xy xz yz

zz yy

x y z u w ct H a p acx y z u w t h p
d a c c a c

a a a d a dS S S S S S S S
d c c c c

cc cS S S S
c c a a a

 (7)

Using the above non-dimensional quantities in Equations (2) to (6), 

the resulting equations after dropping the bars can be written as 

0∂ ∂
+ =

∂ ∂
u w
x z

					                    (8)

2Re ,δ β∂ ∂ ∂ ∂ ∂ ∂ + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ 
xx xy xz

u u pu w S S S
x z x x y z

	               (9)

2 20 ,δ δ δ∂ ∂ ∂ ∂
= − + + +

∂ ∂ ∂ ∂yx yy yz
p S S S
y x y z

                           (10)

2 2 2 2Re ,δ δ δβ δ∂ ∂ ∂ ∂ ∂ ∂ + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ 
zx zy zz

w w pu w S S S
x z x x y z

  (11)

Under the assumption of long eave length 1δ ≤  and Low Reynolds 
number. Equations. (8) to (11) take the form 

3 3 22 2
2 4 2

2 2

2
2

2 2 2

2

β β β

β

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + Γ + Γ + Γ        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
  ∂ ∂ ∂
 + Γ   ∂ ∂ ∂  

dp u u u u u u
dx y z y y z z y y z

u u
z z y

  (12)

The corresponding boundary conditions are 

 1 1,= − = ±u at y                                    		                 (13)

1 ( ) 1 cos 2 ,π= − = ± = ± ±u at z h x x                               (14)

Where 0 1,φ≤ ≤ 0φ =  for straight duct and 1φ =  corresponds 

to total occlusion.			                 

Solution of the problem

Homotopy perturbation method: The Homotopy Perturbation 
Method for Eq. (12) can be defined as 

3 3
4

0 22
2 2

( ) 2 2

( , ) (1 q)(L(v) ( )) 0,

2 2

β

β β

  ∂ ∂ ∂ ∂  + Γ + Γ   ∂ ∂ ∂ ∂   
= − − + − =     ∂ ∂ ∂ ∂ ∂ ∂    + Γ + Γ         ∂ ∂ ∂ ∂ ∂ ∂       

u uL v
y y z z dpH v q L u q

dxu u u u
y y z z z y

 

Or

3 3
4

0 0

22
2 2

(v,q) L(v) L(u ) L(u ) q 2 2

2 2 0

β

β β

  ∂ ∂ ∂ ∂  = − + + Γ + Γ    ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂ ∂   + Γ + Γ − =       ∂ ∂ ∂ ∂ ∂ ∂      

u uH q
y y z z

u u u u dp
y y z z z y dx

 (15)

For our convenience we have taken 
2 2

2
2 2β ∂ ∂

= +
∂ ∂

L
y x

 as the liner 

operator. We define the initial guess as 

2
2 2

0 2 2 2

11 1 (1 y )
β

 
= − − − − − 

 

zu h
h h

	                               (16)

Let us define 
2

0 1 2( , , ) ....= + + +v y z q v qv q v 		               (17)

Substituting Equation (17) into Equation (15) and then comparing 
the like powers of q one obtains the following problems with the 
corresponding boundary conditions. 

Zeroth order system 

1 0( ) ( ) 0− =L v L u 				                (18)

0 1 1,= − = ±v at y 				                  (19)

0 1 ( ),= − = ±v at z h x 			                  (20)

First order system

( ) ( )
3 3

4 0 0
0

22
2 20 0 0 0

2 2

2 2 0

β

β β

  ∂ ∂∂ ∂   + + Γ + Γ    ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂∂ ∂   Γ + Γ − =       ∂ ∂ ∂ ∂ ∂ ∂      

v vL v L u
y y z z

v v v v dp
y y z z z y dx

  (21)
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Figure 1: Schematic diagram of peristaltic flow with waves propagating 
on horizontal walls in a rectangular duct.
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0

0

0 1,
0 ( ),

= = ±

= = ±

v at y
v at z h x

 				                   (22)

Solution of Zeroth order system

With the help of Equation (17) the closed form solution of Equation 
(19) satisfying the boundary conditions is written as 

( )
2

2 2
0 2 2 2

1( , ) 1 ( ) 1 1
( ) ( )β

 
= − − − − − 

 

zv y z h x y
h x h x

               (23)

Solution of first order system 

With the help of Equation. (23), Equation. (21) can be written as 

 
2 2

2 2 21 1
2 2 2

32 32β
β

∂ ∂ Γ
+ = + − Γ

∂ ∂
v v dp y z

y z dx
	                              (24)

The solution of the above non-homogeneous partial differential 
equation can be expressed as 

2
0 0 0

2

1
1

2 2
0 0 0

2

21 cos
( )cosh( , ) ( )

2 cos
( )

β λ λ α
λα

β

β λ λ α
λ

∞

=

 
    + +         =   

  
   + +

−   
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∑
n n n n n n

nn

n

n n n n n n

n

b a b z
h x

v y z h x

b a b y z
h x

  (25)

Where 

( )
2 2

0 3

0 2

2 1 2,

( 1) 64 ( )( 1) 128 ( )( 1)2 ,

64 ( 1) .

α π

α α α

β α

= −

− Γ − Γ −
= − +

Γ −
=

n

n n n

n
n n n
n

n
n

n

dp h x h xa
dx

b

                 (26)

By using the property of Homotopy perturbation method the 
original solution can be obtained by using 

( )0 11
( , ) lim .... ,

→
= + +

q
u y z v qv 		                

Which is equivalent to 

 0 1( , ) .....= + +u y z v v 			           (27)   

Finally, with the help of Equations (23) and (25), Equation (27) can be 

written as 

 

2
2 2

2 2 2

2
0 0 0

2
1

2 2
0 0 0

2

1( , ) 1 ( ) 1 (1 )
( ) ( )

21 cosh
( )cosh

( )

2 cos
( )

β

β λ λ α
λ βα

β

β λ λ α
λ

∞

=

 
= − − − − − 

 
 
    + + + −          

  
   + +
   

  

∑ n n n n n n

n nn

n n n n n n

n

zu y z h x y
h x h x

b a b y
h x

h x

b a b y z
h x

 (28)

Where constants appearing in Equations (28) are defined Equation (26)

The volumetric flow rate is given by 

 1 ( )

0 0
= ∫ ∫

h x
q udydz

( )

2
3

2 2
1

2 2 2 2
0 0

2 2 3
1

2
0

2

2 2 ( 1) ( ) ( )( ) ( ) ( ) 2 1 tanh
3 3 ( )

( 1 ( ) 2 64 ( 1) ( ) 128 ( 1) ( ) tanh
( )

2( 1) ( ) (

αβ
β α λ α β

β β λ α
α λ α λ α λ β

β
α λ

∞

=

∞

=

  −
= − − + + − +  

  

−    + Γ − Γ −
+ − +   

  

−
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∑

∑

n
n
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n n n
n n n n

n n n n n n n

n
n

n n

dp h x h xh x h x h x
dx h x

h x b b h x h x
h x

b h x 2 2
0

3

1) ( ) ( 1) ( ) 64 ( 1) ( ) 128 ( 1) ( )
3α λ α λ α λ α λ

 − − Γ − Γ −
− − + 

 

n n n n
n

n n n n n n n n

h x b h x h x h x

The instantaneous flux is defined as 

 
1 ( )

0 0
( 1) ( )= + = +∫ ∫

h x
Q u dydz q h x 			                  (29)

The average volume flow rate over one period ( λ
=T

c
) of the 

peristaltic wave is defines as 

0

1 1= = +∫
T

Q Qdt q
T

				                (30)

The pressure gradient is obtained from Equation (29) and (30) as 

( )

3
22

21

2 2 2 2
0 0

2 2 3
1

1 2 21 ( ) ( ) ( )
3 3( 1) ( ) ( )2 1 tanh

( )

1 ( ) 2 64 ( 1) ( ) 128 ( 1) ( ) tanh
( )

2( 1)

βαβ
α λ α β

β β λ α
α λ α λ α λ β

∞

=

∞

=

 
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  
 −    + Γ − Γ −

− − +        
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∑

n
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n n n
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dp Q h x h x h x
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h x b b h x h x
h x
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2
0 0

2

2 2

3

( ) ( 1) ( )
3

1 ( ) 64 ( 1) ( ) 128 ( 1) ( )

β
α λ α λ

α λ α λ α λ

−
−

−  Γ − Γ −
− + 

 

n
n n

n n n n
n n n

n n n n n n

b h x h x b

h x h x h x

  (31)

Integration of Equation (31) over one wavelength yields 

 1

0
∆ = ∫

dpp dx
dx

 				                   (32)

Where dp
dx  is defined in Equation (31) 

It is noticed here that the limit 0β →  (keeping a fixed and → ∞d ), 
the rectangular duct reduces to a two dimensional channel. It is also 
noticed that when 1β =  the rectangular duct becomes a square duct.

Numerical Result and Discussion
This section deals with the graphical and numerical results of the 
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present problem under discussion. The expression for pressure rise 
and pressure gradient is calculated numerically using a mathematics 
software Mathematica. Figures 2-4 show the variation of pressure rise 
with volume flow rate Q for different values of aspect ratio β , amplitude 
ratio φ , and third grade parameter Γ . It is observed from Figure 2 
that in the retrograde pumping ( 0, 0)∆ > <p Q  region the pressure rise 
increases with an increase in aspect ratio β , while in the peristaltic 
pumping ( 0, 0)∆ > >p Q , (free pumping 0∆ =P ) and copumping 
( 0, 0)∆ < <p Q  regions the behavior is quite opposite. Here pressure 
rise decreases with an increase in aspect ratio β . Figure 3 shows the 
variation of pressure rise with volume flow rate Q for different values 
of amplitude ratio φ . It is observed that the pressure rise increases 
with an increase in the retrograde pumping and free regions, while 
in the copumping region the pressure rise decreases with an increase 
in amplitude ratio φ . It is observed from Figure 4 that the pressure 
rise decreases with an increase in third grade parameter Γ in all the 
regions. Figures 5-8 show the variation of the pressure gradient with the 
space variable x for different values of aspect ratio β , amplitude ratio φ , 
volume flow rate Q and third grade parameter Γ . It is depicted that for 

[ ]0, 0.2∈x  and [ ]0.8,1∈x , the pressure gradient is small i.e., the flow 
can easily pass without imposition of a large pressure gradient, while in 
the region [ ]0.2, 0.8∈x , pressure gradient increases with an increase in 
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in the retrograde pumping region, while in the peristaltic pumping, 
(free pumping 0∆ =p ) and copumping regions the behavior is quite 
opposite.

• The pressure rise increases with an increase in amplitude ratio 
in the retrograde pumping and free pumping regions, while in the 
copumping region the pressure rise decreases with an increase in 
amplitude ratio.

• The pressure rise decreases with an increase in third grade 
parameter Γ  in all the regions.

• The pressure gradient increases with an increase in aspect ratio β
and amplitude ratio φ  and decreases with an increase in volume flow 
rate Q and third grade parameter Γ .

• The size of the trapped bolus decreases with an increase in φ , β   
and Q, while in the middle of the channel the size of the stream lines 
increases with an increase in φ , β  and Q.

•The number of the trapping bolus decreases with an increase in Γ .
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aspect ratio φ  and amplitude ratio φ  and decreases with an increase 
in volume flow rate Q and third grade parameter Γ . Figures 9-11 
show the streamlines for different values of amplitude ratio φ , aspect 
ratio β , Volume flow rate Q and third grade parameter Γ. It is observed 
from Figures 9 and 10 that the size of the trapped bolus decreases with 
an increase in φ , β  and Q, while in the middle of the channel the size 
of the stream lines increases with an increase in φ , β  and Q. 

It is observed from Figure 11 that the number of the trapping bolus 
decreases with an increase in Γ , while in the middle of the channel the 
stream lines increases with an increase in Γ . 

Concluding Remarks
In this paper effect of lateral walls on peristaltic flow of a third 

grade fluid in a rectangular duct is discussed. Assumptions of long wave 
length and low Reynolds number approximation is used to develop 
the simplified mathematical equations of third grade fluid for the 
rectangular duct. The reduced equations are solved analytically using 
Homotopy perturbation method and the eigen function expansion 
method. The results are discussed through graphs. The main findingcan 
be summarized as follows:

• The pressure rise increases with an increase in aspect ratio β  
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Figure 8: Variation of dp
dx  with x for different values of Γ at β=0.2, Q=1 

and φ =0.4.
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Figure 9: Streamlines for different values of φ. Figure (a) for φ=0.5, Figure (b) for 
φ=0.8. for fixed β=0.3, Q=2, Γ=0.02 and y=1.  
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Figure 10: Streamlines for different values of β and Q. Figure (a) for β=0.1 and 
Q=1.5. Figure (b) for β=0.2 and Q=2.5 for fixed y=1, Γ=0.02 and φ=0.3.
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Figure 11: Streamlines for different values of Γ. Figure (a) for Γ=0.0, Figure (b) 
for Γ=0.05, fixed β=0.2, Q=1.5, y=1 and φ=0.3.
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