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Abstract
Microbial degradation is considered as one of the environment friendly and cost-effective method for restoration 

of ecological niches contaminated with chemical pollutants. Thus before the application of microbial system for the 
degradation of any newly released pollutant in the environment, there is need to in silico study for predicting the 
possible degradation pathways by using various computational tools. There are large number of databases and 
computer programs available to perform the computational analysis for assisting the development and implementation 
of microbial bioremediation. The present review provides a comprehensive account of these databases, software, 
their respective work methodologies and potential application for the bioremediation. The information collected for 
the above study from different in silico resources for assisting the environmental degradation studies is discussed. 
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Introduction 
Studies pertaining to re-establishment of polluted ecological 

niches have led to a generalized acceptance of microbial potential 
as environment friendly and cost effective measure by their 
decontamination of pollutant [1-5]. The enrichment of cultures have 
been proposed as one of the most potent approaches to restore the sites 
contaminated with pollutants, however, it has been considered as one 
of the demanding challenge for a long time uses [6,7]. Even though, 
isolation of culturable microbial strains is also one of the most important 
bottle-neck for the successful biodegradation [5]. Subsequently, other 
limitations (chemical complexity of the target pollutant, transformation 
of pollutant substrate into more toxic intermediates) are known to 
inhibit the speedy progress of the microbial bioremediation projects 
[8]. In the recent past, the microbial degradation studies have been 
pursued with a system biology approach, wherein the degradation 
studies are devised on the past experiences and information obtained 
with earlier studies [9-12]. This has resulted in a very strong need for 
the maintenance and easy access to this information. Consequently, 
there is a need for computational programs that can utilize all the 
available information regarding bioremediation. Thus use of various 
computational programmes, software, tools and database, a lot of 
things can be subjected to prediction approaches with the eventual 
objective of developing an applicable bioremediation technology. 
Conventionally, bioremediation studies have depended upon isolation 
of degradative microbial strain from the contaminated habitat [5,6]. 
Further the application of isolated strain for bioremediation in the 
field principally depends upon the environmental limiting factor 
[13]. Hence, it is necessary to implement bioremediation process in 
natural environmental conditions where microorganism faces the 
different challenges impose by various abiotic and biotic factors [14-
16]. However, the efficiency of the degradation process under different 
mechanism affected by these factors [13]. Thus, to understand the 
mechanism of degradation several studies has been designed to 
investigate the effect of all environmental factor(s) [17,18]. To study 
the biodegradation from lab to field, there should be ecological 
sustainability of the degradative strain in the field study. Thus, before 
going to ex situ and in situ bioremediation of any pollutants there is 
need to develop in silico method for the study of degradation. The 
present review article describes the collection of all databases, tools and 
softwares which helps in the in silico analysis/prediction of toxicity of 

any chemical along with elucidation of feasible microbial degradation 
pathways.

In silico toxicity of the compounds

For environmental cleanup of the toxic compounds by 
microorganisms many technologies have been developed, but without 
the knowledge of the toxicity level of the compounds it cannot be fully 
successful as toxicity affects the survival of the degradative strains 
[19]. Thus before making many efforts in development of in silico 
bioremediation technology of any chemicals there is also need to 
predict its toxicity levels by in silico approaches. Predicting toxicity 
of a compound by in silico toxicological methods is a developing field 
with great potential. More than 70 million chemicals were identified 
till 29 May 2013 (CAS) [20]. Exposures of these toxic chemicals e.g., 
pesticides, products of chemical industries like cosmetics and drugs 
etc. leads to various health effects [21]. Several in silico procedures 
have been developed and rooted by pharmaceutical industry to 
understand the pharmacodynamic, pharmacokinetic and toxicological 
profile of a compound [22]. Tables 1 and 2 summarises various 
databases, methods, homology models, pharmacophores and several 
other molecular modelling approaches for determining the toxicity 
of any chemical. Although there are many data bases developed 
about toxicity of the compounds [23], toxicity value hierarchy from 
Environmental Protection Agency’s (EPA), and toxicity assay method 
[24-26]. However, various industries are synthesizing new chemicals 
more rapidly than academic research and the norms lay down by the 
regulatory agencies. The quantitative structure-activity relationships 
(QSARs) are the one such in silico method for determining the 
quantitative structure-activity relationship model, which is based on 
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experimental or calculated data [27] (Figure 1). The toxicity of allele-
chemical like pesticides can be also predicted by applying combination 
of methods such as 3D-QSAR, docking, Local Binding Energy (LBE) 
and GRID [28]. Further, OSIRIS property explorer is another in silico 
method for assessing the toxicity of any chemical compound. Discovery 
of newer drug may also bring health hazards. The information regarding 
toxicological profile of known toxins will make a basis to assign the 
toxicity of unknown compound. The Structural Bioinformatics Group, 
Institute of Molecular Biology and Bioinformatics, Charite (Cbf), 
Berlin, Germany created a SuperToxic database containing information 
of various toxic compounds (~60,000).

Prediction of environmental destiny of toxic compounds

Biodegradation of toxic chemicals is most important parameter 
influencing whether compound will be biodegraded and, if so, will the 
biodegradation proceed slowly or quickly. To study the biodegradability 
in silico there are several softwares and databases available (Table 
3). Among softwares most important one is BESS (Biodegradability 
Evaluation and Simulation System) [29]. The prediction of 
biodegradation of a compound can be made possible by using BESS 
software based on structural description of the compound and the 
existing environmental condition. BESS uses promising enzymatic 

S.No Name of Programme URLCode Properties/Reference

1. Derek (Lhasa Ltd) http://www.lhasalimited.org/ Lhasa Limited specialises in the development of in silico prediction and database systems for 
use in metabolism, toxicology and related sciences.

2. HazardExpert (CompuDrug) http://www.compudrug.com/ CompuDrug is software tool to estimate toxicity of an organic compound in higher animals.

3. ACD/Tox Suite (ToxBoxes) http://www.acdlabs.com/products/
pcadmet/tox/tox/

ACD/Tox Suite is a collection of software modules that predict probabilities for basic toxicity 
endpoints.

4. ADMET Predictor http://www.simulations-plus.com/
Products.aspx?pID=13

ADMET acronym indicates all the parameters associated with absorption, metabolism, 
distribution, elimination, and toxicity of chemical in the human tissue.

5. OncoLogic (USEPA) http://www.epa.gov/oppt/sf/pubs/
oncologic.htm

OncoLogic™ is a computer program that evaluates the likelihood that a chemical may cause 
cancer.

6. Toxtree (JRC)
http://ihcp.jrc.ec.europa.eu/our_labs/
predictive_toxicology/qsar_tools/
toxtree

Toxtree open-source application that classifies toxic chemicals into various categories and 
predicts their toxic effect by using decision tree approaches.

7. MolCode Toolbox http://www.molcode.com
Molcode Toolboxe applies to simulate various experimentally unknown properties of 
compounds including physical, chemical, biological, ADME-Tox, ecological pathways/ eco-
toxicity and adverse drug effects. 

8. TerraQSAR™ http://www.terrabase-inc.com/ TerraQSAR™ computation programs are designed for the quick and reliable estimation of 
biological effects and physico-chemical properties of organic compounds.

9. Toxicity Estimation software 
tool (T.E.S.T)

http://www.epa.gov/nrmrl/std/qsar/
qsar.html

TEST will enable users to easily estimate acute toxicity using several different QSAR 
methodologies including a hierarchical method, FDA method, Single-model method, Group 
contribution method, Nearest neighbour method, Random forest method, multiple linear 
regressions, and Consensus method. 

10. ORCHESTRA http://www.orchestra-qsar.eu A project funded by EC to disseminate recent research on computer-based methods to 
evaluate the toxicity of hazardous chemicals [64].

11. VirtualToxLa http://www.biograf.ch
It is an in silico tool for predicting the toxicity of drugs, chemicals, and natural products. It 
simulates and quantifies their relations toward a series of proteins known to trigger adverse 
effects using automated, flexible docking combined with multidimensional QSAR [65].

Table 1: Software tools for toxicity prediction.

S.No. Name of Database URLCode Properties/Reference

1. Acutoxbase https://acubase.amwaw.edu.pl
Acutebase has been developed to manage all information relevant to the EU integrated 
project 'ACuteTox'. It provides in vitro testing approach for predicting human toxicity of a 
compound [66].

2. ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/
ChemIDplus is web-based search application which allows opening structure and 
nomenclature authority files of chemical substances cited in National Library of Medicine 
(NLM) databases including the TOXNET® system.

3. Chemical Effects in 
Biological Systems (CEBS)

http://www.niehs.nih.gov/research/
resources/databases/cebs/index.cfm

CEBS is applying to view data in the form of biology and study design and permit data 
integration across studies.

4. Terra-Base
http://www.terrabase
-inc.com/ TerraTox™ databases provide for the quick search of compounds with structure/

fragment-specific biological effects and properties.

5. GENE-TOX http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?GENETOX

Databank developed by the Environmental Protection Agency (EPA) through genetic 
toxicology.

6. Hazardous Substances 
Data Bank

http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?HSDB

Hazardous substance data Bank is toxicology database on National library of Medicine. 
It has information regarding exposure routes, industrial hygiene, emergency handling 
procedures, environmental fate and regulatory details.

7. SuperToxic http://bioinformatics.charite.de/
supertoxic/index.php?site=home

Recently, this database has information of approximately 60,000 compounds which are 
classified according to their toxicological profiles.

8. Aggregated Computational 
Toxicology Resource)

http://actor.epa.gov/actor/faces/
ACToRHome.jsp

ACToR is openly access chemical toxicity database and can be used to discover potential 
chemical hazards to human health and the environment.

9. Comparative 
Toxicogenomics Database

http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?CTD

CTD™-elucidates human toxicity of a compound and its molecular mechanisms by which 
environmental chemicals acts.

10. Carcinogenic Potency 
Database

http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?CPDB.htm

CPD provides standardized analyses of chronic, long-term animal cancer tests and 
reported in the general published literature or by the National Cancer Institute and the 
National Toxicology Program.

Table 2: Databases containing toxicity information.

http://www.lhasalimited.org/
http://sis.nlm.nih.gov/chemical.html
http://www.nlm.nih.gov
http://www.nlm.nih.gov/pubs/factsheets/toxnetfs.html
http://www.nlm.nih.gov/pubs/factsheets/genetxfs.html
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reactions that are hierarchically organised according to knowledge of 
microbial physiology and ecology. Such type of prediction reduces the 
potential large number of enzymatic conversion which is most likely to 
provide anabolic intermediates or energy to micro-organisms (Figure 
2a). Biochemical Network Integrated Computational explorer (BNICE) 
is also known for the prediction of possible microbial degradation 
pathways (14). It involves rules of enzyme classification system and 
predicts thermodynamically favoured reactions rather than using 
microbial physiological and ecological conditions (Figure 2b). The 
multi computer automated structure evaluation/ (MultiCASE/META) 
system combines a group-contribution model and an expert system to 
simulate aerobic biodegradation pathways [30]. MultiCASE approach 
has been also used to model anaerobic aquatic biodegradation rates 
[31]. Mineralization of organic compound is a significant factor when 

considering their fate in the environment. A model was developed and 
integrated into an expert software system named CATABOL which is 
a knowledge based expert system [32]. It can simulate the likelihood 
of biodegradation of organic compounds directly from their structure. 
However, this probabilistic model can also be useful in determining 
the probabilities for overall Biochemical Oxygen Demand (BOD) and 
extent of CO2 production in bioremediation process [32,33]. Fate of a 
specific chemical spilled in a given site and even show interventions 
aimed at accelerating the process can be described by MetaRouter 
system [34]. The MetaRouter allows visualization through a web 
interface of all probable pathways that a large number of intractable 
compounds can take through known steps of all the reactions taken 
from the UM-BBD. The system searches in the database for all possible 
combination of enzymes (and wherever available, their cognate 

Figure 1: QSAR model for bioremediation.

S.No. URL Code Properties References

1. http://www.labmed.umn.edu/umbbd/ index.
html Prediction of biodegradation pathway [67]

2. http://www.labmed.umn.edu/umbbd/ 
predictbt/

Predicting Biotransformation build on existing bio degradation information contained in the UM-
BBD. [68]

3. http://umbbd.ahc.umn.edu/index.html UM-BBD: University of Minnesota Biocatalysis/Biodegradation Database. [69]

4. http://umbbd.msi.umn.edu/predict/ UM-PPS: predicts microbial catabolic reactions using substructure searching, a rule-base and 
atom-to-atom mapping. [70]

5. http://www.genome.ad.jp/kegg/kegg2.html KEGG: Kyoto Encyclopaedia of Genes and Genomes. [71]

6. http://www.expasy.org/cgi-bin/search-
biochem-index Boehringer Mannheim Biochemical Pathways on the ExPASy server, Switzerland. [72]

7. http://emp.mcs.anl.gov/ Enzyme and Metabolic Pathway (EMP) Database at Argonne National Laboratories. [73]
8. http://www.issx.org/ International society for study of Xenobiotics.
9. http://biocyc.org/ Biocyc: Knowledge Library of Pathway/ Genome Databases. [74]
10. http://www.ncgr.org/pathdb/ Path DB: Metabolic Pathways Database at NCGR. [75]

11. http://www.tcd.ie/Biochemistry/IUBMB-
Nicholson/ Metabolic Pathway Minimaps at Trinity College, Dublin, Ireland. [76]

12. http://www.daylight.com/smiles/f_smiles.
html SMILES is a system for coding chemical compounds as linear strings of ASCII characters. [77]

13. http://biorad.igib.res.in BioRad Base is a database for bioremediation of radioactive waste. [78]
14. http://bsd.cme.msu.edu Biodegradative Strain Database [47]

15. http://www.epa.gov/opptintr/exposure/pubs/
episuite.htm

A Windows®-based, EPI (Estimation Programs Interface) Suite™ provides physical/ chemical 
properties and environmental fate. [79]

Table 3: Programme, databases and web resources containing biodegradability information.

http://umbbd.ahc.umn.edu/index.html
http://www.genome.ad.jp/kegg/kegg2.html
http://www.expasy.org/cgi-bin/search-biochem-index
http://www.expasy.org/cgi-bin/search-biochem-index
http://emp.mcs.anl.gov/
http://www.issx.org/
http://biocyc.org/
http://www.ncgr.org/pathdb/
http://www.tcd.ie/Biochemistry/IUBMB-Nicholson/
http://www.tcd.ie/Biochemistry/IUBMB-Nicholson/
http://www.daylight.com/smiles/f_smiles.html
http://www.daylight.com/smiles/f_smiles.html
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genes) required to convert a certain substrate into their metabolic 
intermediates or into any other products. Through MetaRouter 
system a virtual pathways having meshwork of genes/enzymes can be 
predicted which come from different bacteria, sometimes having very 
different lifestyles (for instance, aerobic and anaerobic). Nevertheless, 
such combinations may not exist or may have not been exposed yet in 
nature, these cross pathways reflect probable processes that can occur 
at different stages and locations by divergent microorganisms. The 
MetaRouter system does not give information regarding kinetics or 
thermodynamics of the proposed pathways, although it can certainly 
guide metabolic engineering attempts. Although MetaRouter describes 
only biodegradation information for a compound and gives a picture of 
how given chemicals could be degraded if passed through the complex 
metabolism of a complex community rather than how they could be 
metabolized by one specialist strain [34]. Metabolic Knowledgebase 
(MKB) uses ontology to formalize metabolic data and apply large 
flexible and scalable metabolic knowledgebase to capture several levels 
of chemical or biological information. It develops inference tools to 
support complex metabolic queries to semantically integrate data from 
chemical structures to complete pathways; incorporate data from public 
domain sources. Biocatalysis Classification Scheme (BCS) uses MKB to 
identify subset of biocatalytic function based on pathway of interest 
and to find relevant compounds and infer their sub structural features. 
Biocatalysis Assignment Tool (BAT) uses MKB to identify relevant sets 
of proteins and their biocatalytic functions. It also identifies conserved 
features among proteins and establishes correlation between function 
and conserved features. Metabolic Pathway Synthesis (MPS) provides 
information regarding predicting enzymatic activity from the cellular 
environment and helps to classify pathways with respect to cellular 
parameters and to obtain information about metabolic pathway and 
its regulation. It uses BCS/MKB to find out the possible transformation 
from native compound to intermediates. In case of database KEGG 
(Kyoto Encyclopedia of Genes and Genomes), commonly used resource 
provides information on genes and metabolic pathways in a wide 
range of species [35]. KEGG consists of three databases: PATHWAY 
provides network of interacting molecules, GENES contains catalogs 
of all full and partial genome sequence and LIGAND for the collection 

of chemical compounds in the cell, enzyme molecules and enzymatic 
reactions [36].

Influence of environmental factors on biodegradation

Earlier studies of bioremediation trials were not performed 
under natural environmental conditions. Therefore, the impact of 
environmental factors on the bioremediation process was never 
expected. However, after the investigation of in situ bioremediation 
approaches now it is feasible to understand the bioremediation 
process is influenced significantly by environmental factors such 
as the physiological and chemical ambience of the contaminated 
environment, bioavailability of nutrients, concentration and properties 
of cocontaminants, level of contamination, community organization of 
the indigenous microbial communities [13,37-40]. Various abiotic and 
biotic factors play important role in bioremediation. Their dynamic 
interactions occur in concrete abiotic conditions which are defined by 
physico-chemical conditions like O2 supply, electron transport, water, 
temperature, pH, salt concentration, many of which [41-43]. The above 
environmental factors determine the dynamic of endogenous microbial 
community structures along with the availability of given chemical and 
energy source [41].

Ecological consequences on the biodegradative strains

Knowledge of indigenous microflora is required which may or may 
not affect the degradation of toxic compounds by test microorganism 
[13]. In situ bioremediation is directly or indirectly affected by the 
indigenous micro flora, thus it is most important to evaluate the 
ecological consequences on the biodegradative strains [13,41]. There 
are several non related phenomenons to study these ecological 
consequences. However, for the development of bioremediation 
technology, it is required to analyze the effect on indigenous 
microbial community structure by the bioremediation process in a 
particular ecological conditions [41,42,44-46]. Biodegradative Strain 
Database (BSD) provides information of degradative bacteria and 
hazardous chemicals degraded by these bacteria [47]. It also includes 
corresponding literature citation, relevant patents and link to additional 
web based biological and chemical data. The BSD is being developed 
within the phylogenetic framework of the Ribosomal Database Project 

Figure 2: Comparison between pathway prediction rules between BNICE (2a) and BESS (2b).
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II to provide a biological complement to the chemical and degradative 
pathway [47]. Ecological Structure Activity Relationships (ECOSAR) 
is a foretelling system providing information for aquatic toxicity of a 
compound [48]. The program estimates a chemicals acute toxicity and 
chronic toxicity to aquatic organisms by using computerized Structure 
Activity Relationships (SARs).

Discussion
As a result of worldwide extensive application of pesticides, 

it may get released into different environmental compartment 
(e.g. soil, sediment and water bodies) through waste streams and 
causing threat to the various life forms [3]. Thus public concern has 
been prompted to develop robust technology for the eradication of 
pesticides and restoration of environmental health. There are two ways 
for the decontamination of pesticides from the environment; one is 
nonbiological (e.g. incineration, land filling, hydrolysis, photolysis, 
chemical lysis and thermal decomposition) and the second is biological 
means [2,3,49,50]. Mostly the microbial transformation/degradation of 
the pesticides/ or chemical is considered as one of the most effective, 
ecofriendly and technologically challenging approaches for the 
bioremediation of toxic pollutants from the different environmental 
compartment [3,4,51,52]. The bioremediation database provides by 
University of Minnesota provides most comprehensive platform for 
nearly all the bioremediation pathway and helps in developing various 
prediction programmes using these databases [53]. Pathway prediction 
system (PPS) predicts possible bioremediation pathway for xenobiotics 
using biotransformation parameters provided by UM-BBD database 
as well as scientific literature [54]. Other programmes similar to PPS 
are METEOR, MetabolExpert, DEREK, StAR, CATABOL system, 
MetaRouter and MultiCASE/META [32,34,55-58]. To establish strain 
designation in prediction of bioremediation within phylogenetic 
perspective, Biodegradative Strain Database (BSD) was developed 
by integrating metabolic data of UM-BBD and phylogenetic data 

of Ribosome Database project (RPD-II) [47]. Till now dogma of the 
biodegradation is one strain degrades one pollutant, but information 
available in literature of bioremediation lack essential aspect of 
natural scenarios, like interchange of gene between bacteria or their 
metabolic network co-operation [51,59,60]. It has also been known 
a single microbe exhibit metabolically versatile in nature due to the 
presence of large size of genome and plasmid containing large number 
of metabolic genes, resulting in expansion of the multiple metabolic 
pathways [43]. However, insufficient biological information regarding 
the regulation of growth and metabolism in various microbial 
communities restricts development in the site-specific mineralization 
process. Similarly, the bioremediation of xenobiotic compounds either 
ex situ or in situ by pure isolates does not represent an actual behaviour 
of the microorganisms; however, it depends on cooperative metabolic 
activities of mixed microbial population [61-63]. Under these 
conditions biodegradative potential of all microbes can be crossed with 
the all known compounds and in silico bioremediation helps to predict 
the destiny of a compound whether partially or fully degraded to non 
toxic compounds. Bioinformatics based search will facilitate and speed 
up the analysis of microbial degradation of hazardous compounds. 
In situ bioremediation can be applied in a number of action modes 
including aerobic, anaerobic, anoxic (nitrate respiration) and co-
metabolic. Bioinformatics have huge amount of data collected from 
various resources such as chemical structure and reactivity properties 
of compounds; protein sequence, structure and function; comparative 
genome analysis; phylogenetic analysis; environmental biotechnology. 
These informations will collectively provide a bigger picture regarding 
degradation of a compound in the environment (Figure 3). The above 
summarized computational database, software and tools and their 
collective integration will help to determine the environmental fate 
of any compounds more precisely and accurately. After predicting 
the more accurate the environmental fate of any compound by 
computational approaches, future work will be carried out to validate 

Figure 3: Schematic representations of prediction softwares and databases involve in destiny of a toxic compounds.
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the complete fate of the compound by single isolate as well as by mixed 
microbial consortium. The pathway predicting software will also help in 
minimizing the number of possible combination for the development 
of microbial consortia.
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