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Introduction
Several domains of engineering, statistics or applied mathematics 

need the Cumulative Distribution Function (C.D.F.). In statistics, the 
Probability Density Function (P.D.F.) defined by:
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The Cumulative Distribution Function (C.D.F.) given by:

( ) ( )ZZ t dtφ ϕ−∞= ∫                        (2)

This C.D.F. does not have a closed form. Most books in probability 
and statistics insert tables of C.D.F. For each value of the variable 
Z non-in this tables, we need a computer for estimate Φ (Z) by 
elementary methods [1]. For this raison, in the literature we find many 
approximations to the C.D.F. with closed forms. In section two, we 
present Cadwell’s approximation with his original form and we improve 
the accuracy of this approximation with four decimal places. In section 
three, we introduce an approximation with four decimals places and 
we improve his accuracy until five decimals places. In section four, we 
conclude our paper.  

Improving Cadwell’s Formula
In 1951, Cadwell presents his new formula for approximate the 

cumulative normal distribution [2]. This formula given by:  
( )2 32 2

22 31(z) 1 1
2

Z
Z

cadwell e
π

π πφ
 −

+  
 −

  ≈ + − 
  

 (3)

The M.A.E. is:  

6 6max | (z) (z) | 0.00646cadwell Z cadwellE − ≤ ≤= Φ − Φ ≅    (4)

Our new formula defined by:
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6 6max | (z) (z) | 1.663503182035564 004Malki Z MalkiE e− ≤ ≤= Φ − Φ = −

We have then 38.87cadwell MalkiE E≅ ×                (6) (Figure 1).

The M.A.E. for Cadwell is about 40 times that Malki. 

Improving Bryc’s Formula
In, 2002, Bryc presents in his paper the following formula [3].
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The maximum absolute error is:   

0 max | (z) (z) | 7.062660715300151 004z BrycE eφ= −Φ = −             (8)

We can write formula (8) as 
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This formula has the form
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We improve the accuracy of this formula by our new formula 
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Abstract
We develop two news approximations to the cumulative distribution function. We begin by improving the 

accuracy of Cadwell’s approximation. We reduce the accuracy from 0.006466 to 1.6635e˗004. For the second 
approximation we reduce the accuracy of Bryc’s approximation from 7.062e-004 to 2.072e-005. As a performance, 
we use a Maximum Absolute Error (M.A.E.). We recommend these two new approximations for their high accuracy.
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Figure 1: Shows the curves of absolute error for Cadwell and our new formula 
Malki.
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Hence, we have a ratio

0 134.1E E≅ × (12) (Figure 2)

Conclusion
This paper presents two approximations to the cumulative 

normal distribution and their improving approximations. The 
first approximation is two decimals places; we improve it from 
two decimals places to four decimals places. In the second 
approximation, we improve the Bryc’s formula by our second new 
formula that reduce the accuracy is about 34 times. We recommend 
these two new approximations.
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Figure 2: Shows the comparison of maximum absolute error for Bryc2001 and 
our new formula.

The maximum absolute error is:

1 2017max | (z) (z) | 2.072294382748918 005z MalkiE eφ= −Φ = −   (11)
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