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Introduction
Influenza is an important health issue due to the emergence of 

several pandemic strains during the past century: 1918 H1N1, 1957 
H2N2, 1968 H3N2 and 2009 H1N1 [1]. Current licensed vaccines 
protect health by eliciting antibody responses against the viral surface 
glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, 
influenza viruses evade host memory against HA and NA via antigenic 
drift and shift. Thus, vaccines are prepared annually containing three 
influenza strains predicted to be prevalent in the upcoming season 
[2]. Upon identification of a possible pandemic strain, it may take six 
months to develop a new vaccine [3]. The current licensed approach is 
insufficient.

New candidate vaccines attempt to address these issues by targeting 
conserved epitopes including influenza matrix protein 1 (M1), matrix 
protein 2 (M2), and nucleoprotein (NP) to elicit long-term protection. 
Humoral immunity prevents the spread of virus, while T-cell immunity 
mediates viral clearance. T-cell immunity against conserved proteins 
is heterosubtypic [4], reacting with multiple strains of influenza 
virus. M1, M2, and NP-specific T-cell epitopes have all been shown 
to be cross-strain reactive [5-8]. Furthermore, T-cell responses to M1 
and NP are not only cross-reactive, but also immunodominant [7]. 
Therefore, influenza vaccines should be tested for their ability to elicit 
T-cell immunity.

The CD4+ T-cell is of interest to our study. While heterosubtypic
immunity to influenza is mostly mediated by CD8+ cytotoxic T-cells 
[9], CD4+ T-cell help is critical in generating functional CD8+ T-cell 
memory [10], in influencing B-cells to differentiate into antibody-
secreting plasma cells [11], and in regulating the innate inflammatory 
response [12]. Furthermore, CD4+ T-cells dictate CD8+ responses via 
secretion of IFN-γ, IL-2, and TNF-α [13].

CD4+ T-cells can be classified based on polarization. T helper 1 
(Th1) cells will elicit a strong IFN-γ response; Th2 cells are characterized 
by IL-4 secretion; Th17 secrete IL-17, which enhances the inflammatory 
response; and regulatory T-cells (Treg) produce IL-10 and TGF-β to 
maintain peripheral tolerance and dampen immune responses [14]. 

In humans, stimulation of memory T-cells leads to increased IFN-γ 
[15,16] secretion by CD4+ cells.

Primary literature describing human memory CD4+ T-cell 
responses to influenza are relatively scarce. In our study, we utilized 
a complex multiparametric 14-color flow cytometry analysis to detect 
human influenza-specific memory T-cell responses. The scope of our 
study encompassed many aspects of CD4+ T-cell responses, testing for 
activated Th1, Th2, Th17, and T-regulatory cell subsets. 

Materials and Methods
Peripheral blood mononuclear cell isolation and antigenic 
stimulation

Healthy human volunteers between the ages of 25 to 58 were 
enrolled for a single visit study after approval by the institutional 
ethics committee. Each volunteer provided written, informed consent 
in accordance with the principles of the Helsinki Declaration of 
1975. Patient information on age, gender, and influenza vaccination 
status was collected (Table 1). 30 ml of blood was collected in 10 U/
ml heparin from each of seven donors. Peripheral blood mononuclear 
cells (PBMCs) were isolated using lymphocyte separation medium 
(Invitrogen, Carlsbad, CA) as per protocol and cryopreserved in liquid 
nitrogen. Isolated cells were thawed and washed twice in RPMI medium 
(Invitrogen) supplemented with 8% fetal bovine serum (Invitrogen), 2 
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Abstract
Seasonal influenza vaccine efficacy is measured by the vaccine’s ability to elicit strain-specific antibody 

responses. Every year, resources are allocated into formulating new influenza vaccines. Candidate vaccines utilizing 
memory T-cells may afford long-term protection. Our study characterizes the human CD4+ memory T-cell response 
to influenza virus. Intracellular cytokine staining assay was used to assess T-cell production of several cytokines 
(IFN-γ, IL-2, TNF-α, IL-4, IL-5, and IL-17) found in human peripheral blood mononuclear cells after stimulation 
with influenza antigens. Production of Th1 cytokines (IFN-γ, TNF-α, and IL-2) was significant in activated CD4+ 
T-cells after stimulation, whereas Th2 cytokine secretion remained unchanged. In addition, a significant increase in
multifunctional CD4+ T-cells that simultaneously secreted combinations of IL-2, IFN-γ, and TNF-α was observed.
Our studies have revealed that CD4+ T-cell responses against influenza are Th1-biased, raising the possibility of
identifying these populations as targets for successful influenza vaccination.
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mM glutamine (Invitrogen), 1% penicillin/streptomycin (Invitrogen), 
and 10 µg/ml DNase (Invitrogen). Cells were then cultured in a 25 cm2 
flask at 2×106 cells/mL (same medium) at 37°C and 5% CO2 overnight. 
Cell number and viability were assessed using Trypan Blue (Sigma, 
St. Louis, MO) exclusion. PBMCs were then transferred to a 96-well 
U-bottom culture plate, exposed to 0.1 µg of influenza antigens, and 
incubated at 37°C and 5% CO2 for 2 hours. The 2008-2009 FluZone 
pediatric influenza vaccine is a split-virion vaccine composed of A/
Brisbane/59/2007 (H1N1), A/Uruguay/716/2007 (H3N2), and B/
Florida/04/2006 influenza viral strains and was used as the source of 
influenza antigens. Each 0.25 ml dose of FluZone pediatric vaccine 
contains a combined total of 22.5 µg of HA. Cells were also stimulated 
in parallel and for the same duration with 1 µg/mL staphylococcal 
enterotoxin B (SEB) (Sigma) as a positive control and with medium 
alone as a negative control. Cells were then treated with 2 µM 
Monensine and 10 µg/ml Brefeldine A and incubated at 37°C and 5% 
CO2 for 8 hours. The preparations were refrigerated at 4°C overnight.

Immunofluorescence staining 

Cell samples were washed twice with PBS supplemented with 
2% human serum (staining buffer) and stained for 30 min at 4°C for 
surface antigens. Monoclonal antibodies against human CD4-APC-
Alexa 750 (eBioscience, San Diego, CA), CD8-QDot 565 (Invitrogen), 
CD14-QDot 800 (Invitrogen), CD25-APC (BD Biosciences, San 
Jose, CA), CD45RA- QDot 655 (Invitrogen), and CD56- PE-Cy5-5 
(Invitrogen) were used. For intracellular staining, the cells were fixed 
and permeablized for 20 minutes at 4°C using BD Cytofix/Cytoperm 
(BD Biosciences) and stained for 30 minutes at 4°C with monoclonal 
antibodies purchased from Invitrogen or BD Biosciences: QDot 605 
labeled CD3, PE-Cy5 labeled CD69, PerCp-Cy5-5 labeled TNF-α, PE-
Cy7 labeled IFN-γ, Alexa 700 labeled IL-2, PE labeled IL-4/IL-5, Pacific 
Blue labeled IL-17A, and Alexa 488 labeled FoxP3. Finally, the cells 
were washed twice and resuspended in 300 µl staining buffer.

Flow cytometry and analyses

14-color flow cytometric data were collected on a BD LSRII® 
instrument (BD Biosciences) and analyzed using FlowJo software 
(TreeStar, Ashland, OR). Dead cells were excluded by forward and side 
scatter gating. A quadrant gating method was used (Figure 1); analyses 
were standardized. Samples were acquired consecutively. CD4+ 
T-cell populations were separated based on the following attributes: 
CD3+ (T-cell co-receptor), CD4+ (expressed on Th cells, Treg cells, 
monocytes, macrophages, natural killer cells, and dendritic cells), CD8- 
(expressed mainly on cytotoxic T-cells and natural killer cells), CD14- 
(expressed on monocytes, macrophages, neutrophils, and dendritic 
cells), CD45RA- (expressed on naïve T-cells), CD56- (expressed on 
natural killer cells), and CD69+ (expressed in activated T-cells). This 
population was analyzed for the expression of additional parameters: 
IFN-γ, IL-2, TNF-α, IL-17A, CD25, FoxP3, IL-4, and IL-5. Percentages 

were based on the ratio of cytokine secreting cells (CD3+/CD4+/CD8-/
CD14-/CD45RA-/CD56-/CD69+/cytokine) to total CD4+ T-cell 
(CD3+/CD56-/CD14-/CD8-/CD4+) populations.

Statistical analyses

Mann-Whitney tests were used to compare antigen-stimulated 
samples to medium-only stimulated (negative) samples using Prism 
5.04 software (GraphPad, La Jolla, CA). P < 0.05 (*) was considered 
significant.

Results

Influenza specific memory CD4+ T-cell response is Th1-
biased 

Influenza-specific CD4+ memory T-cells in PBMC culture were 
characterized by IFN-γ, TNF-α, and IL-2 secretion upon activation 
(CD45RA-CD69+, Figure 2). Representative dot plots are shown for 
samples that were stimulated with medium-only (NEG), FluZone 
(FLU), or SEB as a positive control (Figure 2A). These influenza-
specific, memory CD4+ T cells significantly expressed IFN-γ, TNF-α, 
and IL-2 (8.40%, p = 0.006; 13.63%, p = 0.0104; and 4.76%. p = 0.0021, 
respectively, Figure 2B) as compared to PBMC stimulated with 
medium-only (NEG). Additional analyses compared the frequency 
of these cytokine secreting cells from vaccinated (n = 4) versus 
unvaccinated donors (n = 3) and detected no significant differences.

Detection of influenza-specific multifunctional CD4+ T-cells 

Simultaneous production of IFN-γ and IL-2; TNF-α and IL-
2; IFN-γ and TNF-α; and IFN-γ, TNF-α, and IL-2 (Figure 2C) in 
influenza-stimulated and activated CD4+ T-cells was evaluated. 
Significant and distinct populations of influenza-specific IFN-γ+/IL-
2+ (6.64%, p = 0.0021), TNF-α+/ IL-2+ (8.25%, p = 0.0006), IFN-+/
TNF-α+ (8.84%, p = 0.0006), and IFN-γ+/TNF-α+/IL-2 (5.63%, p = 
0.0021) were detected in PBMC.

Donation Date Age Gender Vaccinated (Y/N) Vaccination date
1/12/2009 25 F no n/a
1/13/2009 37 M no n/a
1/13/2009 28 M yes 10/2008
1/14/2009 28 M no n/a
1/19/2009 58 M yes Fall 2008
1/20/2009 42 F yes 10/2008
1/21/2009 34 M yes 11/2008

Vaccination in 2008 was with the seasonal trivalent vaccine containing 15 µg HA  
n/a = not applicable

Table 1:  Age, Gender, and Vaccination Status of Healthy Donors.

Figure 1: Quadrant gating method. Representative dot plots are shown for 
the gating strategy used. A: Live cells were selected by a square gate in the 
forward and side scatter plot as to exclude anomalous cell particles. B: CD3+ 
and CD8- populations were selected. C: CD4+ populations were selected. D: 
Then, CD56- and CD14- populations were selected. This population number 
(CD3+/CD8-/CD4+/CD56-/CD14-) was used as the total CD4+ T-cell count. 
E: CD45RA- and CD69+ populations were selected. F: Various cytokines and 
other markers (such as IFNγ) were plotted against CD4+ and cell population 
percentages were used for data analyses.
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Th2, Th17, and T-regulatory CD4+ T-cell subsets did not 
respond to antigen stimulation

Stimulation with influenza antigens did not induce Th2 cytokines 
IL-4 and IL-5 (not shown, antigen stimulated cells did not exceed 
medium-only stimulated cells), and IL-17 production was not 
significantly increased after stimulation (not shown, p=1.0000). Also, 
stimulation did not increase the percentage of T-regulatory as defined 
by CD25+/FoxP3+ expression (not shown, p=0.5224).

Discussion
In this study, we characterized the small subset of activated 

memory CD4+ T-cells upon stimulation with the pediatric trivalent 
FluZone vaccine. Previously, it has been difficult to study memory 
CD4+ T-cells due to low numbers that persist after influenza infection 
[13]. Our method is sensitive enough to reveal a robust induction of 
Th1 cytokines (IFN-γ, TNF-α, and IL-2) in memory CD4+ T-cells. 
IFN-γ promotes suppression of Th2 cell activity, Th1 differentiation 
via T-bet and increased expression of class I MHC molecules [17]. 
TNF-α is a pleiotropic cytokine with functions in the inflammatory 
response, apoptosis, and survival [18,19]. IL-2 is responsible for T-cell 
proliferation [20]. Thus, not only is it possible that memory CD4+ 

T-cells may play a role in inflammatory and antiviral responses to 
influenza, but they may also function in modulating the responses of 
other immune cells [13].

Upon further analysis, the data revealed significant (p<0.05) 
multifunctional populations (IFN-γ+/IL-2+, TNF-α+/IL-2+, IFN-γ+/
TNF-α +, and IFN-γ+/TNF-α+/ IL-2+) in the activated, memory CD4+ 
compartment, in accordance with other studies [21]. The frequency 
of multifunctional IFN-γ+/TNF-α+/ IL-2+ T-cells has been shown 
to correlate with immunogenicity and protection rendered against 
Mycobacterium tuberculosis [22], Chlamydia muridarum [23], and 
HIV-1 [11] by their respective vaccine candidates. In agreement, our 
results show that these populations can be strong clinical indicators of 
immunological memory. Thus, understanding of these multifunctional 
T-cell populations may provide insights into both the design and 
assessment of future influenza vaccines.

We did not detect influenza-specific Th2 (IL-4/IL-5) or Th17 
(IL-17) cytokines in this study. While our stimulation time may be 
viewed as short, it has been shown that accessory-cell stimulation of 
IL-4 secretion by human T-cells in the presence of Brefeldin A peaks 
between 0-6 hours [24,25]. Moreover, in choosing an appropriate 
stimulation time, we took into account that multifunctional subsets 

Figure 2: Th1 response by influenza-specific memory CD4+ cells. Activated human CD4+ memory cells (CD3+CD4+CD8-CD14-CD45RA-CD56-CD69+) were 
analyzed for expression of IFN-γ, TNF-α, and IL-2. Cells were stimulated with medium-only (NEG), FluZone vaccine (three influenza strains at equivalent concentrations 
based on viral HA), or SEB. A: Representative density plots with histograms are shown for activated memory CD4+ cells expressing IFN-γ (increasing from left to 
right), TNF-α (left column, increasing from bottom to top), and IL-2 (right column, increasing from bottom to top). Percentages are based on total CD4+ T-cells in 
each sample and results are shown as the mean ± standard error (SE) (n = 7). B: Single cytokine populations IFN-γ, TNF-α, and IL-2 are shown. C: Double and 
triple cytokine expressing (IFN-γ/IL-2, TNF-α/IL-2, IFN-γ/TNF-α, IFN-γ/TNF-α/IL-2) CD4+ T-cell populations are shown. Stimulated samples were compared to their 
unstimulated counterparts using Mann-Whitney statistical tests.
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are short-lived, with expression at a maximum between 0-6 hours, and 
disappear by 18-22 hours of stimulation [24]. We also did not detect 
influenza-specific T-regulatory cells (CD25+/FoxP3+ phenotype). 
However, as this initial study was modest (n = 7), we cannot definitively 
rule out the contribution to influenza memory immunity by these cell 
subsets. 

In our donor pool, there were 4 donors who had received the 
seasonal influenza vaccine (2008-2009), and 3 donors that had not. We 
investigated if influenza-specific memory CD4+ responses differed. 
Statistically, there were no differences, which may be attributed to 1) 
sample size and 2) exposure to similar influenza strains, or 3) inability 
of the seasonal vaccine to significantly influence the cellular immune 
response. Recently, it has been shown that even live attenuated influenza 
vaccines fail to boost the cellular immune response in healthy adult 
subjects [26]. However, due to the small sample sizes, no meaningful 
conclusions can be derived.

Herein, we describe influenza specific CD4+ T-cells in the memory 
compartment. The response by these CD4+ T-cells derived from 
PBMCs was Th1-driven, producing IFN-γ, TNF-α, and IL-2 cytokines, 
but was, more importantly, multifunctional. Multifunctional, 
influenza-specific Th1 cells have previously been described in mice 
in the context of vaccine evaluations [27,28] and in resident memory 
T-cells from human lungs [29], and thus our study identifies additional 
subsets of multifunctional, human Th1 memory cells found in human 
peripheral blood that may function in host defense against influenza in 
healthy adults.
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