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ABSTRACT

Heterogeneous chemical equilibrium for ion exchange process between divalent metal counter ions in the 
coordination biopolymer metal-alginate complexes and the H+ ions of HClO

4
 acid electrolyte at a constant ionic 

strength of 0.1 mol dm-3 have been investigated using complexometric and titrimetric techniques. The factors affected 
the ion exchange processes such as the nature of the complexes geometrical configuration, the ionic radii of chelated 
metal ions, the bonding strength between the metal ions and the functional groups of alginate macromolecule and 
the temperature have been examined. The thermodynamic parameters of the ion exchange equilibrium have been 
evaluated and discussed in terms of the coordination geometry, strength of chelation and complexes stabilities. The 
experimental results indicated that values of the equilibrium constants of exchange were decreased in the order 
Mn>Co>Zn>Ca>Ni>Pb>Sr>Cd>Sn>Hg>Cu>Ba metal- alginate gel complexes, whereas the stability was increased 
in the same order.
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INTRODUCTION 

Alginic acid is a naturally occurring carboxylated polysaccharide. 
It consists of a binary heteropolymer containing 1,4-linked-β-
D-mannuronic and α-L-guluronic acid residues in a linear block 
copolymer structure [1-4]. The monomers are arranged in a 
clockwise manner around the macromolecular chains. It has a high 
affinity for chelation with polyvalent metal ions in particularly 
the divalent metal ions forming its corresponding coordination 
biopolymer metal-alginate complexes in either colloidal hydrogel 
or granule gel forms [5-8]. The inter diffused metal ion chelate two 
carboxylate and one or more pairs of hydroxyl functional groups of 
alginate macromolecule depending on the coordination number 
of chelating metal ion via formation of partially ionic and partially 
coordinate bonds, respectively, of an egg-box like structure [9,10]. 

It is well known that alginate as anionic polyelectrolyte has wide 
applications in medicinal, pharmaceutical such as in drug delivery 
and tissues engineering especially in cell encapsulation for tissue 
organ replacement as well as in the food industry. Also, these 
corresponding coordination biopolymer metal-alginates complexes 

have received some attention as biocatalysts in immobilization 
systems and water-based drilling fluids in industrial technology [11-
15].

Although many physicochemical studies have been performed 
on coordination biopolymer of alginate polysaccharides such as 
the kinetics of oxidation [16-24], sol-gel transformation [23-25], 
thermal decomposition [26-29] as well as the electrical conductivity 
[30-34], a little attention has been focused to studies of the 
chemical equilibrium of ion exchange. Even though, Hassan et 
al. studied the chemical equilibrium for the ion exchange process 
of some metal-alginate complexes in the colloidal hydrogel forms 
[35,36]. They found that the ionic radii and nature of metal ion, 
as well as the strength of chelation between the chelated metal and 
functional groups of alginate macromolecule, are the determining 
factors for the exchange process. Unfortunately, the interpretation 
of such heterogeneous chemical equilibrium of ion exchange still 
remains not complete and poor understood.

In view of the above aspects and our interest in physicochemical 
studies on alginate polysaccharide [11-27], the present work seems 
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to be of great significance to shed highlights on the heterogeneous 
chemical equilibrium of ion exchange and to compare the results 
which obtained with that reported earlier for complexes of gel 
forms [26,27]. The calculated thermodynamic parameters of the 
equilibrium constants of exchange were interpreted in terms of the 
relationship of between the geometrical configuration, strength of 
chelation and the gel complexes stability. 

EXPERIMENTAL

Materials

Sodium alginate (Fluka) was used without further purification. The 
degree of substitution for alginate was found to be 3.84 mol/g (0.7 
mol/mol). Again, the inherent and reduced viscosities measured 
by using Ubbelhode viscometer was found to be 2.78 and 9.87 
dl/g, respectively, for a 4% alginate sol in doubly-distilled water 
(w/w) at 25°C. The degree of substitution of alginate was found to 
be 4.34 mol g-1 (0.95 mol-1).

All other materials used were of Analar (BDH) grade. Doubly 
distilled water was used in all preparations. The temperature was 
controlled within ± 0.1°C.

Preparation of coordination biopolymer metal-alginate gel 
complexes

Granule gels of coordination biopolymer metal-alginate gel 
complexes were prepared from sodium alginate powder by the 
replacement of its sodium counter ions, Na+, by the corresponding 
divalent metal ion. This process was performed by stepwise 
addition of sodium alginate powder to an aqueous solution of the 
corresponding metal ion electrolyte whilst rapidly and vigorously 
stirring the solution to avoid the formation of lumps which swell 
with difficulty. After completion of the exchange reaction, the 
metal alginate granules formed were washed several times with 
deionized water, then double distilled conductivity water until 
the resulting washing become free from the adhered non-chelated 
(free) metal ions. Then, the samples were dried at ~105°C under 
vacuum over anhydrous CaCl

2
 or P

2
O

5
.

Chemical equilibrium measurement

Stoichiometric mixtures of the metal alginate complex and aqueous 
hydrogen ions (HClO

4
) of known concentrations were thermally 

equilibrated in a constant temperature water bath at the desired 
temperature within ± 0.1°C. The mixture was stirring continuously 
at constant rotation for about 24 hours using a magnetic stirrer.

After equilibrium had been attained, clear solutions containing 
both reactants were syringed out and the concentration of each 
metal ion and hydrogen ion was determined by complexometric 
and titrimetric techniques, respectively [37]. Every reading was 
an average of five experimental runs. The ionic strengths of the 
mixtures were maintained constant using NaClO

4
 as an inert 

electrolyte. In order to evaluate the thermodynamic parameters, 
these experiments were repeated at various temperatures.

RESULTS AND DISCUSSION 

Although a wide variation in anionic site density can be achieved 
with synthetic polyanions, no such systematic variation is possible 
with naturally occurring polyelectrolytes, the ion exchange is usually 
considered as an inherent process from the stoichiometric points 
of view [38]. Several empirical approaches have been reported to 
describe the ion exchange equilibria [39,40]. 

In view of these empirical approaches, the ion exchange between 

the studied divalent metal and hydrogen ions may be expressed by 
the following stoichiometric equation,

 (Alg
2
-M)

n
 + (2H+)

n
 K 2(Alg-H)

n
 + nM2+	                 (1)

 solid electrolyte solid electrolyte

Where M denotes the metal ion, Alg is the alginate polyelectrolyte 
matrix and Alg

2
-M is the metal-alginate complex. Since, the 

exchange process is inherently a stoichiometric process [31-41], on 
applying the mass action law, one concludes that:
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Where K is the equilibrium quotient and a`s are the activities of 
the constituents.

Eisenman et al. [42] postulated an approximate equation to 
calculate the equilibrium constant as follows, 
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Where K
a
 is the true thermodynamic equilibrium constant and 

varies with the composition of the solid phase, γ`s is the activity 
coefficients and R is the matrix of the exchanger (alginate matrix). 
Using the Gibbs-Duhem relationship for the ions in the solid phase 
and assuming that the activity of the solid phase remains constant, 
the thermodynamic equilibrium constant (K`) can be evaluated 
from the following relationship

1
0ln ln

A
K KdC +′ = ∫  				                      (4)

Where C is the concentration of the counterion A+ in appropriate 
units. When ln K`

 
is plotted against C

A+
 and extrapolated to C

A+
=0, 

gives ln K. However, it appears that no particular advantage in 
that alternative treatment of defined by Equation (4) since our 
experimental observations showed no appreciable variation in K

a
 

value within the variation of H+ ion concentration used [43-45].

Assuming that the mass action constant is not varied with the 
concentration of the interacting ions in order to avoid the 
complexity in the selection of a suitable procedure for evaluating 
the thermodynamic equilibrium constant, and considering that 
the activities of the solid phases are unity [43], Equation (2) can be 
rewritten in the form,
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Unfortunately, the thermodynamic equilibrium constants could not 
be evaluated due to the non-availability of the activity coefficients 
of most metal ions used at various temperatures. Therefore, 
assuming that the activity coefficients are nearly unity under our 
experimental conditions of lower electrolyte concentrations used 
[35], Equation (5) may reduce to the form 

2

2

[ ]
[ ]a c
MK K
H

+

+= ≈  				                  (6)

The values of K
c
 were calculated by using the least-squares method 

and are summarized in Table 1 along with that obtained earlier 
[31-41]. 

The thermodynamic equilibrium constants were determined 
from the temperature dependence of the equilibrium constants. 
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These parameters were calculated by the least-squares method and 
summarized in Table 1. The decrease of K values with increasing 
the temperature along with the observed negative values of ∆H° 
indicated that the exchange processes are of exothermic nature.

In these cross-linked metal alginate complexes, the interdiffused 
metal ions are chelated to the functional groups of the alginate 
macromolecular chains. This chelate is not just simple, but a sort 
of bridges is formed between the metal ion and two carboxylate 
groups and one or two pairs of hydroxyl groups depending on the 
coordination number of the chelated metal ion. 

Two geometrical models were suggested for chelation [45]. The first 
geometry corresponds to an intramolecular association in which 
the functional groups involved in chelation belong to the same 
chain (planar geometry). The second type of geometry corresponds 
to an intermolecular association in which the functional groups 
are related to different chains (non-planar geometry). The two 
configurations are shown in Scheme I.

The magnitude of M-O bond energies, the orientation of 
macromolecular chains of alginate and the coordinated water 
molecules toward the chelated metal ions as well as the nature of 
metal ion will largely affect the physical, chemical and mechanical 
properties of these metal alginate complexes to a large extent. As 
shown in Table 1, the magnitude of K

a
 decreases in the order 

Mn>Co>Zn>Ca>Ni>Pb>Sr>Cd>Sn>Hg>Cu>Ba-metal-alginate 

complexes. This means that the stability of the metal complexes 
increases in the same order [8-11]. Again, such a trend of the stability 
was found to agree with that reported in metal-oxygen strength [46-
48]. The observed differences between the K values obtained with 
respect to the metal-alginate complexes in the gel forms (values 
between parenthesis in Table 1) and that of the complexes in the 
granules form can be interpreted by the presence of capillaries in 
the alginate gels in the gel forms but not in granule forms. These 
capillaries will enhance the exchange process between the chelated 
metal ions in the metal-alginate complex and the H+ counter ions 
of the electrolyte. Thus, in turn, will increase the corresponding K 
values as was experimentally observed [35,36]. 

Moreover, the reactivity of the metal ions and the strength of 
chelation play very important roles in the stability of these metal-
alginate complexes. The reactivity may be influenced by the 
orientation of the macromolecular chains toward the chelated metal 
ions. Barium (II) and copper (II) are more oriented in their alginate 
complexes, and, hence, having more stability [47,48], whereas 
cobalt (II) and manganese (II) having lower orientation and, hence, 
showed lesser stability. In fact, the strength of chelation depends on 
the metal-oxygen bond energies. The bond energies of metal-oxygen 
were found to be in good consistent with the proposed order of 
stability which increases in the same direction [49].

There are several factors such as ionic radii, mobility, and 
polarizability of metal ions which affect the exchange process 
between the exchanging counter ions and, hence, the chemical 
equilibria of exchange. The mobility of the metal ion tends to 
increase with decreasing its ionic radius, which in turn causes 
an acceleration of the exchange process. As the exchange process 
increases, the equilibria tend to shift toward the forward direction 
and vice versa. The experimental observation of K

c
 values for these 

metal alginate complexes are consistent with the variation of the 
corresponding ionic radii [50]. A plot of ln K vs the ionic radii 
was fairly linear as shown in Figure 1, indicating the reactivity 
correlation between these metal complexes. Again, Ba(II) ion 
is less polarizable and, hence, possesses the smaller value of the 
equilibrium constant of exchange and has more stability in its 
metal-alginate complex [51]. On the other hand, Mn(II) ion has 
higher polarizability and, hence, a larger value of the equilibrium 
constant. It means that Mn(II)-alginate complex is the less stable 
[41-51].

The values of ∆G° may reflect the stability of these alginate 
complexes which agree with the suggested order of stability (Table 
1). Despite the variation of the chelated metal ions, the values of 
∆G° seemed to be the same indicating the similarity of the exchange 
process in these metal complexes [50,51].
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Scheme I: Chelation in divalent metal ion complexes.

Metal-
alginate

K298 - DG°
298 - DH° - DS°

298 Reference
dm3 mol-1 kJ mol-1 kJ mol-1 J mol-1 K-1

Mn2+ 52.71 9.82 20.25 35 This work

Co2+ 46.51 (193)* 9.51 16.99 25.1 This work

Ni2+ 31.39 (159)* 8.54 16.94 28.19 This work

Cu2+ 13.75 (72)* 6.49 14.72 27.62 This work

Sn2+ 18.15 7.18 17.35 34.13 This work

Hg2+ 17.06 7.03 15.88 29.7 This work

Zn2+ 46 9.49 18.81 31.27 32

Ca2+ 34 8.73 17.32 28.83 32

Sr2+ 26 8.07 15.89 26.24 32

Ba2+ 17 7.02 14.89 26.41 32

Cd2+ 27 8.17 16.37 27.52 32

Pb2+ 30 8.42 18.05 32.32 32
*Values between brackets were calculated for metal-alginate complexes in 
gel forms using conductimetric technique at 20°C [26,27].
 Experimental error ± 4%

Table 1: The thermodynamic parameters for exchange equilibria of some 
divalent metal-alginate ionotropic gel complexes at I=0.1 mol dm-3. 
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CONCLUSION

Stepwise addition of sodium alginate powder to an electrolyte 
solution of polyvalent metal ions with vigorous and contentious 
stirring leads to the formation of coordination biopolymer metal-
alginate complexes of granule shapes. The chelated metal counter 
ions in these formed complexes can be replaced by other ions in 
particularly by hydrogen ions of HCl electrolyte solutions. Several 
factors will affect the physicochemical properties of the ion 
exchange processes such as the nature of the complexes geometrical 
configuration, the ionic radii of chelated metal ions, the bonding 
strength between the metal ions and the functional groups of 
alginate macromolecule and the temperature. The equilibrium 
constants were determined from the well-known chemical 
equilibrium equations. The experimental results indicated that 
values of the equilibrium constants of ion exchange were increased 
in the order Mn<Co<Zn<Ca<Ni<Pb<Sr<Cd<Sn<Hg<Cu<Ba 
coordination metal-alginate complexes, where the stability was 
decreased in the same order.
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