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ABSTRACT
The naked mole-rat, Heterocephalus glaber, is the longest-lived rodent known with a lifespan in captivity >30 years,

10 times longer than mice, a comparable size rodent. In addition to a particularly long life, it exhibits exceptional

resistance to many age-related diseases: cancer, cardiovascular, neurodegenerative, and metabolic diseases. It resists

many forms of stress: hypoxia, oxidative stress, and strikingly maintains adequate body composition, fertility, bone

quality, and mineral density throughout their long life. The naked mole-rat is a non-traditional animal model that

defies the law governing the processes of aging and mortality and provides a powerful tool for the discovery of

endogenous molecular anti-aging pathways. Over the past decades, much possible resistance and anti-aging

mechanisms have been discovered. These include exclusive physiological mechanisms involved in cellular senescence

and its clearance, telomere attrition, genome and proteome stability, stress resistance and metabolism flexibility…

This review aims to summarize the many identified anti-aging strategies of the naked mole-rat to better grasp some of

the main theories that have been generated. However, many of these theories remain to be fully investigated and

confirmed to further understand the complex biology of the naked mole-rat.
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INTRODUCTION
Aging is defined by a progressive, yet physiological decline of the
biological functions of an organism that leads to senescence and
ultimately death. Aging occurs in every cell, tissue, and organ of
nearly every living organism. Interestingly and unlike most, one
mammal does not seem to age: the naked mole-rat,
Heterocephalus glaber. Discovered in 1842 by the naturalist
Eduard Rüppell, and native of East Africa, the naked mole-rat is
a small poikilothermic rodent that lives strictly underground and
is one of the only mammals known to exhibit eusociality. The
naked mole-rat is the longest living rodent that can live up to 37
years in captivity, and more than 17 years in the wild [1,2],
without facing any increased age-related hazard of mortality,
challenging Gompertz’s mortality law [3]. Their subterranean
environment in extremely dry regions of Africa is a challenge:
food scarcity, low amount of oxygen, complete darkness, poor
gas exchanges, harmful chemicals and soil pollutants.

Despite an awfully hostile environment, naked mole-rat appears
remarkably resistant to a variety of age-related diseases, such as
cancers, neurodegenerative, cardiovascular, or metabolic
diseases. In addition, naked mole-rat, unlike most mammals, do
not show any typical aging signs such as changes in basal
metabolism, changes in body composition or bone density,
reduction of fertility, until very late in their life (>31 years),
suggesting a delay in the rate of aging [4]. This review aims to
summarize and classify the numerous studies on the different
endogenous anti-aging strategies of the naked mole-rat, as an
overview of the current research progress.

LITERATURE REVIEW

Simply avoid cellular senescence accumulation

Cellular senescence is generally defined as a permanent cell cycle
arrest accompanied by metabolic alterations. It is triggered by a
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variety of stresses, including oxidative stress, telomere
shortening, genotoxic stress, inflammation, DNA damages… By
stopping the proliferation of damaged cells, cellular senescence
is a powerful anti-cancer strategy, but on the other hand, the
excessive accumulation of senescent cells during aging can also
contribute to the alteration of tissue repair and regeneration
leading to many age-related diseases. Clearance of senescent cells
can reverse the age-related decline and increase lifespan in
transgenic mice [5]. Currently, research has been focused on
senolytics, drugs that can clear senescent cells from the organism
with a clear aim to prevent age-related phenotypes [6].

A study has shown that naked mole-rat cells have the potential
to become senescent and can undergo several types of
senescence, such as developmentally programmed senescence,
stress-induced premature senescence, and oncogene-induced
senescence [7]. However, naked mole-rat induction of
senescence required a higher dose of DNA damage compared
with the mouse.

Up until recently, it was still unclear whether senescent cells
accumulate in the naked mole-rat body during aging. Indeed, a
recent study suggests that naked mole-rat could be resistant to
senescent cell accumulation during aging due to activation of
Senescent Cell Death (SCD), causing spontaneous death of
senescent cells [8]. These results suggest that senescent naked
mole-rat cells are preferentially eliminated by apoptosis rather
than by the immune system. In addition, a recent study showed
that the naked mole-rat immune system lacks the canonical
natural killer cells, an important element in the recognition and
removal of senescent cells [9,10]. In addition, a recent study has
demonstrated that naked mole-rat skin fibroblasts were
protected from cellular senescence through an enriched β-
catenin activity inducing the accumulation of cholesterol-
enriched lipid droplets [11]. These observations were consistent
with previous results showing the role of cholesterol in delaying
senescence in mice [12].

The telomere length/telomerase system with its beneficial/
detrimental duality is intricately related to cellular senescence
and cancer. A recent study showed that, in naked mole-rat,
telomere length does not decrease with age suggesting evolution
toward increased telomere maintenance [13,14]. A study
comparing telomerase genes and their promoter regions between
naked mole-rat and different organisms showed specific
polymorphisms in the functional domains that could cause
increased telomerase expression, thus reducing telomere
attrition [15]. In addition, another study showed that the naked
mole-rat presented an extra copy of the gene TINF2, a protector
of telomere integrity [16]. Finally, another study showed that a
gain-of-function mutation of naked mole-rat TRF1 enhanced
telomeric and metabolic functions specifically under conditions
of hypoxia [17].

These results suggest that one powerful anti-aging mechanism of
the naked mole-rat is its ability to delay cellular senescence and
prevent its accumulation by triggering senescent cell death.
However, more research should address the exact mechanisms by
which the naked mole-rat prevents the accumulation of
senescent cells.

Natural mechanisms to resist stress and cancer

Naturally, the naked mole-rat seems resistant to many age-related
pathologies, and in particular cancer. Indeed, after almost 29
years in captivity, researchers have not observed any incidence of
cancer [18]. Only recently, a small number of cancerous lesions
have been reported in zoo-raised naked mole-rats [19-21].
Although these small numbers are probably underestimated, as
more cases could be unreported, these statistics support the idea
that the naked mole-rat show extremely high resistance to
cancer.

An important naked mole-rat anti-cancer mechanism is early
contact inhibition triggered by a very High-Molecular-Mass
Hyaluronan (vHMMH) produced by a unique Hyaluronan
Synthase 2 (HAS2), enzyme causing the increase in the size of
the naked mole-rat hyaluronan [22-24]. Degrading vHMMH
abrogated the early contact inhibition and renders naked mole-
rat cells susceptible to malignant transformation [23]. In
addition, naked mole-rat high-molecular-mass hyaluronan has
enhanced cytoprotective properties in a p53-dependent manner,
especially against oxidative stress [25]. However, vHMMH might
not be the only anti-cancer mechanism in the naked mole- rat
and the precise mechanisms remain elusive.

DNA damages occur on a daily basis as a result of intracellular
and extracellular stresses. If left unrepaired, these damages result
in genomic mutations that can contribute to the decline in
organ functions and multiply the risk of cancer [26]. Evidence
showed that naked mole-rat repair DNA damages more
efficiently than the short-lived mouse, with more efficient base
and nucleotide excision repair systems [27,28]. In addition, the
expression of genes encoding for DNA repair enzymes and most
DNA repair signaling pathways are significantly up-regulated in
the naked mole-rat as compared to the short-lived mouse [29].
PARylation activity, an early sensor and mediator of DNA
damage repair, is significantly higher in the naked mole-rat as
compared to mice [28]. Finally, a study showed that SIRT6 could
be responsible for a more efficient DNA repair in long-lived
species, including the naked mole-rat [30]. Overall, these results
suggest a more efficient DNA repair in naked mole-rats but yet
to confirm the exact mechanisms. As a result, several studies
suggest that naked mole-rats have a genome persistently stable
most of their life [16,31,32]. In addition, naked mole-rat exhibits
not only a stable genome but a stable epigenome as well [33].

Another view is that aging can result from a decline in protein
quality-control systems that lead to the accumulation of
damaged proteins and loss of proteostasis [34]. Indeed, the
accumulation of misfolded proteins is one of the root causes for
many age-related diseases such as degenerative and
neurodegenerative diseases [35]. In the naked mole-rats,
evidence suggests the existence of strong mechanisms preventing
proteostasis loss. Indeed, naked mole-rats are more resistant to
protein unfolding and more generally can maintain better
protein structure, integrity, and function during aging than mice
[36]. In addition, naked mole-rat translates protein more
accurately than the mouse [37]. Naked mole-rat shows high
levels of proteasome activity, possibly reflecting superior protein
turnover, in response to oxidative stress [38]. Indeed, naked
mole-rat exhibits high levels of oxidative stress, particularly
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protein carbonylation, DNA damages, and lipid peroxidation
even at a young age [39-41]. One probable link could be that two
cytoprotective proteins Nrf2 and NFκB, both triggered by
oxidative stress and highly expressed in the naked mole-rat,
could be key modulators of naked mole-rat proteasome activity.
In addition to the proteasome, autophagy also plays a crucial
role in proteostasis by eliminating potentially toxic damaged
proteins inside cells. A study suggests that, unlike mice,
autophagic responses are higher in naked mole-rat tissues
throughout their life, as a strategy to maintain proteostasis by
removing damaged proteins and lowering the overall metabolic
demand of the cells [42-45]. In addition, a recent proteomic
analysis showed that the detoxifying pathways were increased in
the naked mole-rat, suggesting that it might contribute to its
higher stress resistance [46,47].

Phylogenetic analysis from 65 different mammals reveals that
the naked mole-rat possesses 17 copies of the Phosphatase and
Tensin Pseudogene (PTENps), suggesting a unique regulation of
tumor suppressor genes in the naked mole-rat [48]. In addition,
p53, another major tumor suppressor, is also uniquely regulated.
p53 is highly stable in naked mole-rat with an extremely long
half-life and displays a high basal level of nuclear localization
[49]. The role of this nuclear p53 in the absence of DNA
damage and how naked mole-rat avoids the deleterious effect of
p53 constant activation is still enigmatic and future studies
investigating in detail the tumor suppressor regulation are
necessary.

Powerful metabolism adaptations

For many years, researchers have been investigating the
relationship between the endocrine system and the aging
processes. The endocrine system plays a major role in the
regulation of cellular interactions, cellular growth, and
metabolism and is an established player influencing aging.

The Growth Hormone (GH)/Insulin-Like Growth Factor-1
(IGF-1)/insulin system plays an important role in the control of
the lifespan and aging [50]. And many studies strongly suggest
that this signaling pathway plays a major role in the
pathogenesis of several age-related diseases including
neurodegeneration, many cancers, metabolic and cardiovascular
diseases [50-52]. Several studies suggest that GH/IGF-1/insulin
pathway might be down-regulated in the naked mole-rat. Indeed,
transcriptome analysis of the naked mole-rat liver showed
decreased expression of genes involved in the insulin/IGF-1
pathway compared to mice [31]. In addition, a previous study
showed an untraceable level of circulating IGF-1 (<12ng/ml) in
naked mole-rat blood [18]. Interestingly, in the African mole-rats
branch, IGF-1 was identified as a positively selected gene and its
expression is down-regulated during aging in the naked mole-rat
[53]. In addition, another study shows slight variations in the
IGF signaling pathway when comparing naked mole-rats,
humans, and mice, including the down-regulation of IGF-1
during naked mole-rat aging [54]. These results suggest that
small variation from a fine-tuned IGF-1 system could have a
major impact on longevity in the naked mole-rat, and more
studies are warranted.

Caloric Restriction (CR) is a highly conserved mechanism
delaying aging and age-related diseases resulting in lifespan
extension in numerous species [55]. In recent years, researchers
have demonstrated that many of the effects of caloric restriction
on aging and longevity have been linked to the reduced intake
of certain specific essential amino acids (EAAs). Among those,
two EAAs have been extensively investigated: low tryptophan
[56,57] and methionine [58-60] intake have been shown to
increase lifespan. Interestingly, both levels of tryptophan and
methionine were very low in the naked mole-rat plasma as
compared to mice [61,62]. The beneficial effects of CR or amino
acid restriction is mediated through modulation of specific
signaling pathways including GH/IGF-1, NRF2, mTOR, and
FOXO [63-65]. Many of these signaling pathways are known to
be modulated in the naked mole-rat and it could be interesting
to analyze in more detail the complex mechanisms involved. In
addition, a long-term reduction in dietary branched-chain
amino acids (valine, leucine, and isoleucine) can increase
lifespan in mice in a sex-dependent manner [66], while its
supplementation in old animals could be beneficial [67]. In
naked mole-rat, metabolites involved in the leucine, isoleucine,
and valine metabolism were strongly down-regulated when
compared to mice [62]. Interestingly, the small intestine is very
short in the naked mole-rat, compared to the mice [68]. As the
small intestine is the main organ responsible for the catabolism
of dietary amino acids, this phenotype could explain the low
levels of certain amino acids in the naked mole-rat. Conversely,
supplementation in certain amino acids increased lifespan, for
example, an increase in glutamate results in lifespan extension
in yeast and worm [69,70]. Levels of glutamate are significantly
higher in the naked mole-rat [62,71,72]. As an essential
component of glutathione synthesis, glutamate could be an
important mediator of oxidative stress occurring during aging.
All these results strongly suggest that the balance of nutrients in
the naked mole-rat diet might be an important factor for healthy
aging.

It is well known that proteins involved in zinc metabolism are
altered during aging, leading to alteration in zinc homeostasis
and causing multiple human diseases such as neurodegenerative
diseases [73-75]. Interestingly, the naked mole-rat has very high
levels of aging-related Alpha2-Macroglobulin (A2M) in blood
and liver compared to humans and mice [76,77]. A2M is found
both in the blood and tissues and is the main transporter of
zinc. A recent study has demonstrated the anti-cancer properties
of A2M, through interferences with PTEN and its upstream
modulator miR-21 and AKT signaling pathways [78]. In the
naked mole-rat, the high expression of A2M could help
maintain zinc homeostasis through life and have a role in their
extreme resistance to cancer.

The naked mole-rat lives in an extremely challenging
environment and as a result, has developed an extreme
metabolic plasticity allowing it to quickly respond to specific
needs. As an example, the naturally hypoxia-tolerant naked
mole-rat is capable of metabolic reprogramming under hypoxic
insult. Indeed, naked mole-rat is able to switch from glucose to
fructose-driven glycolysis in the brain [79] and to use glycogen as
a source of ATP in the heart [72].
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DISCUSSION

Stay young and cool

Pedomorphy or neoteny is the ability to maintain juvenile
characteristics well into adulthood [80]. The maintenance of
processes essential for the early development of life could be
linked to both prolonged healthspan and prolonged lifespan.
Indeed, these juvenile traits could provide more efficient
biological functions while also facilitating better tolerance of
stressors and metabolic flexibility. Pedomorphy has been
observed in many different species including insects [81], birds
[82,83], amphibians [84-87], reptiles [88], humans [89-92], mice
and naked mole-rats [90,92,93] and may contribute to
prolonged longevity. Many organs and cellular systems, in the
naked mole-rat, display pedomorphic traits including the heart,
the lung, the brain, the reproductive organs, the immune
system, that theoretically could lead to its extreme longevity.

Another interesting example is the influence of body
temperature on aging and longevity. Temperature is a key
environmental factor that dramatically affects the lifespan of
many organisms. A century ago, a study showed that longevity in
Drosophila was temperature dependent [94]. More recently,
several studies showed, in fish models, that a 3-5°C decrease in
water temperature prolongs lifespan, delayed the onset of
cognitive deficits and senescence [95-97]. Similarly, lowering the
temperature increases longevity of the rotifer [98]. The effect of
lowering temperature on longevity, while more difficult to study,
are also observed in homeotherms. Indeed, using a transgenic
mouse model, a study demonstrated that a modest reduction in
core body temperature increases lifespan [99].

Another way to lower body temperature in homeotherms is
calorie restriction. Numerous studies show that calorie
restriction leads to a drop in body temperature by 1 to 2°C, in
part due to a slower metabolism [95,100,101]. Calorie restriction
leads to an extended lifespan in many species including humans,
and this prolongation of life may be in part due to lower body
temperature [102]. In men, a 25% calorie restriction for 6
months significantly decreased body temperature and is
associated with less DNA damage, a known marker of aging
[103].

Naked mole rats are also unique among mammals as they are
imperfect homeotherms and as such have naturally a much
lower body temperature than most other mammals at 32-33°C
(compared to 37-38°C for most other mammals) [104,105]. One
study suggests the important role of temperature in the
exceptional longevity of the naked mole rat [105].

CONCLUSION
In the past decade, scientific advances have suggested that aging
could be a reversible and flexible process. Undoubtedly, the
naked mole-rat represents a model of successful aging in
mammals and holds the keys to reverse aging. In the recent
years, studies have unraveled several anti-aging mechanisms in
the naked mole-rat, but more research is greatly needed to gain
further insights into these mechanisms or a combination of

these mechanisms on the naked mole-rat longevity, and to better
clarify their applicability to humans. Finding the molecular or
metabolic pathways capable of manipulating human aging
would bring unprecedented benefits to human health and create
new opportunities for anti-aging therapy. The naked mole-rat, an
exceptional animal whose aging is negligible, appears to be the
ideal model for understanding how to slow down human aging.
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