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DESCRIPTION

IgA nephropathy (IgAN) is a common primary 
glomerulonephritis with its characteristic IgA1-containing 
glomerular immunodeposits. Patients with IgAN have a high rate 
of progression to kidney failure; up to 40% of patients reach that 
stage within 20-30 years since the diagnosis, despite receiving 
optimized standard care.

A suspected connection between IgAN and the mucosal immune 
system is highlighted by the fact that the main production sites of 
IgA1 reside in the mucosal tissues, and that a common clinical 
feature at the onset of IgAN is macroscopic hematuria with a 
concurrent upper respiratory-tract infection, i.e., synpharyngitic 
hematuria [1,2].

The "multi-hit hypothesis" has been proposed to explain the 
pathobiology of IgAN [3], wherein Galactose-deficient IgA1 (Gd-
IgA1) glycoforms are recognized by Gd-IgA1-specific IgG 
autoantibodies to form immune complexes. These complexes 
bind other proteins, such as complement C3, and some of the 
resultant complexes may deposit in the glomeruli and induce 
kidney injury. Notably, serum levels of Gd-IgA1 and IgG 
autoantibodies are predictive of disease progression [4-7]. 
Although the precise location of the cells producing Gd-IgA1 in 
vivo is still under investigation, tonsillar B cells have been 
proposed to be significant producers of Gd-IgA1, potentially 
explaining why tonsillectomy improves clinical symptoms of 
some IgAN patients [8,9].

We previously demonstrated that Interleukin-6 (IL-6), a pro-
inflammatory cytokine with multiple roles in immune responses, 
selectively increases the production of Gd-IgA1 in IgA1-
producing cell lines from IgAN patients; this process is mediated 
by an abnormal activation of STAT3 [10]. Although serum Gd-
IgA1 levels are  genetically  co-determined,  this  IL-6-mediated 

process can further elevate serum Gd-IgA1 levels in patients with 
IgAN [11-13].

Genome-Wide Association Studies (GWAS) of multi-ethnic 
cohorts uncovered multiple candidate genes involved in mucosal 
immunity that are associated with the development of IgAN 
[14-16]. Some of these genes, such as ITGAM and TNFSF13, 
encode proteins regulating mucosal lymphoid tissues involved in 
IgA production. A subset of patients with IgAN have elevated 
serum levels of A Proliferation-Inducing Ligand (APRIL), a 
cytokine from Tumor-Necrosis Factor (TNF) ligand superfamily 
member 13 encoded by the TNFSF13 gene. Furthermore, Toll-
like Receptor 9 (TLR9) may be involved in the pathogenesis of 
IgAN via APRIL pathway that affect maturation of plasma cells 
[17]. Recent clinical trials have reported that administration of 
an inhibitor of APRIL, TACI-IgG Fc fusion protein (Atacicept), 
to IgAN patients decreased serum levels of Gd-IgA1 and 
improved proteinuria [18]. Similarly, a humanized IgG2 
monoclonal antibody (Sibeprenlimab), a neutralizing antibody 
for APRIL, has been also reported to decrease serum levels of 
Gd-IgA1 and improve proteinuria [19].

Another IgAN-associated locus is the HORMAD2 locus that contains 
several genes, including LIF and OSM that encode cytokines called 
Leukemia Inhibitory Factor (LIF) and Oncostatin M (OSM), 
respectively. Furthermore, this GWAS locus is associated with IgAN 
as well as serum IgA levels and tonsillectomy [20-22]. A recent study 
postulated that this locus is likely involved in the development of 
IgAN in association with TLR9 pathways [23]. LIF is an IL-6-related 
cytokine that uses gp130 for signal transduction and has been 
previously implicated in mucosal immunity and was identified as a 
potential drug target [20,24]. Prior studies of LIF/OSM cytokines 
revealed that LIF stimulation of immortalized IgA1-producing cell 
lines derived from peripheral blood of IgAN patients increased Gd-
IgA1 production [25]. Follow-up analyses of the signaling mechanisms 
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implicated STAT1-mediated abnormal activation of Src-family 
kinases, including Lyn [26]. Lyn, identified  in  LIF-mediated  
signaling abnormalities in peripheral blood-derived IgA1-
secreting cell lines from IgAN patients, is a non-receptor kinase 
with a key signaling role in inflammation. The corresponding 
gene, LYN, was recently identified as one of the 16 new IgAN-
associated GWAS loci [20].

In summary, we identified that the signaling via the LIF/JAK2/
STAT1 pathway is involved in LIF-mediated Gd-IgA1 
overproduction by immortalized IgA1-producing cell lines 
derived from tonsils of patients with IgAN [27]. Notably, studies 
of peripheral-blood mononuclear cells and kidney tissues 
indicated that enhanced activation of STAT1 in IgAN patients 
may affect the kidney function [28].

JAK/STAT is a major pathway that responds to and transduces 
inflammatory signals from extracellular ligands, such as cytokines 
and chemokines [29]. GWAS revealed a strong association of the 
genomic locus that contains LIF with the risk of IgAN [15,30]. 
Furthermore, other GWAS publications revealed that the same 
locus was associated with acute tonsilitis and chronic 
inflammation of tonsils leading to tonsillectomy as well as with 
IgA serum levels [21,22].

CONCLUSION
The abnormal LIF/JAK2/STAT1 signaling and the elevated 
production of Gd-IgA1 in tonsillar cells in IgAN patients may 
play a significant role in disease development and progression. 
Understanding the mechanisms involved in production of Gd-
IgA1 in IgAN will be useful in development of future disease-
specific therapies.
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