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Introduction
Metabolic syndrome is composed of a variety of diseases related to 

obesity, such as glucose intolerance, hyperinsulinemia, dyslipidemia, 
and hypertension [1-3]. The prevalence of metabolic syndrome is on the 
rise in many parts of the world, with the main causes of obesity being 
associated with overeating and lack of exercise [4]. In this context, the 
control of energy metabolism and regulation of food intake form key 
pillars in the treatment of metabolic syndrome.

 Many neuropeptides in the hypothalamus are involved in 
modulating feeding behavior and energy homeostasis. It has been 
reported that the lateral hypothalamus (LH) is a feeding center, the 
ventromedial hypothalamus (VMH) is a satiety center, and the arcuate 
nucleus (ARC) is an integrated center for feeding regulation [5,6]. A 
number of studies have demonstrated that appetite is regulated by many 
neuropeptides, and that takes place via a neural network linking these 
brain centers. Neuropeptide Y (NPY), melanin-concentrating hormone 
(MCH), orexin, galanin, and agouti gene-related protein (AgRP) are 
typical orexigenic peptides, while α-melanocyte stimulating hormone 
(α-MSH), corticotropin-releasing hormone (CRH), cocaine- and 
amphetamine-regulated transcript (CART), neuropeptide W (NPW) 
and galanin-like peptide (GALP) have been described as anorexigenic 
peptides [7-14]. Moreover, the levels of many neuropeptides are linked 
to the actions of leptin, in addition to which it has been shown that 
neurons containing feeding regulating neuropeptides interact with 
each other via synaptic inputs [15,16]. We previously reported on a 
number of functional analyses that clarified the actions of many feeding 
regulating peptides in the brain, among these being GALP [17-21].

 In 1999, GALP was isolated from the porcine hypothalamus on the 
basis of its ability to bind to and activate galanin receptors in vitro [22]. 
GALP is a 60 amino acid peptide, where amino acids 9-21 are identical 
to the biologically active N-terminal amino acids 1-13 of galanin 
(Figure 1). Recent studies demonstrated that GALP has physiological 
actions that are different from those of galanin. In addition to discussing 
the physiological actions of GALP, this review also summarizes results 
from studies in which GALP was administered intranasally (i.n.) to 
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obese mice, thereby providing insights into how GALP might be used 
clinically to treat obesity in humans.

Distribution of GALP and its Neuronal Network 
Some studies have demonstrated the localization and distribution 

of GALP neurons in the brains of rats and mice. In rodents, in situ 
hybridization histochemistry revealed that GALP mRNA is distributed 
in the periventricular regions of the ARC, in the median eminence, and 
in the pituitary gland [23-26]. Immunohistochemistry studies have 
shown that GALP-immunoreactive neuronal cell bodies are observed 
in the ARC and posterior pituitary gland [27]. Furthermore, GALP-
immunoreactive fibers were distributed in the ARC, paraventricular 
nucleus (PVN), bed nucleus of the stria terminalis (BST), medial 
preoptic area (MPA), and lateral septal nucleus (LSV) [27]. 

GALP-containing neurons receive afferent inputs from NPY-
containing neurons in the ARC and from orexin-containing neurons 
in the LH [17,18]. Additionally, GALP-containing neurons project 
to orexin- and MCH-containing neurons in the LH [19]. GALP-
containing neurons thus form neuronal networks with several feeding-
related peptide-containing neurons, and have also been shown to co-
express the leptin receptor, NPY Y1 receptor, orexin type 1 receptor and 
serotonin 5-HT2c receptor in rodents and monkey, which suggests that 
GALP neurons may be under the control of leptin, NPY, orexin and 
serotonin [17,27,28]. Leptin receptor immunoreactivity in particular 
was identified in more than 85% of GALP-containing neurons [27]. 
Further to this, we demonstrated that approximately 10% of GALP-
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containing neurons co-express α-MSH [18]. Taken together, these 
observations suggest that GALP-containing neurons are intimately 
connected to various feeding-related neuron types in the hypothalamus 
and are affected by leptin released from adipose tissues (Figure 2).

Receptor binding experiments suggested that the receptor for 
GALP is actually the galanin receptor (GALR), which has three known 
subtypes: GALR1, GALR2 and GALR3. In vitro studies showed that 
GALR3 has the highest affinity for GALP followed by GALR2 and then 
GALR1 [22,29]. Physiological studies in rats, however, demonstrated 
that the GALP receptor is not GALR. In this way, the central 
administration of a GALR2/3 agonist to rats had no effect on food 
intake and body weight [30]. In addition, the distribution of GALR and 
c-Fos expression in the brains of rats after the central administration of 
GALP is different [31]. Furthermore, the physiological effects of GALP 
did not disappear following the administration of GALP to GALR1 or 
GALR2 knock-out (KO) mice [32]. These results suggested that the 
GALP receptor may be GALR3, but the true identity of GALP receptors 
has not yet been established. Identification of GALP specific receptor 
is very important in order to understand the physiological functions 
of GALP.

Regulation of GALP mRNA Expression
In rats, the process of fasting reduces GALP mRNA expression 

and the number of neurons expressing GALP [27]. Further to this, the 
relationship between GALP and leptin levels has attracted attention 
due to the fact that the plasma leptin concentration is reduced in 
response to fasting. Leptin administration increased the number of 
GALP expressing cells in the brains of fasted rats compared to control 
fasted rats that were injected with saline [27]. Conversely, GALP 
mRNA levels are reduced in leptin-deficient ob/ob mice, in leptin 
receptor-deficient db/db mice, and in Zucker obese rats compared to 
their wild type counterparts [16,33]. Interestingly, it was shown that 
GALP mRNA expression in ob/ob mice can be restored by leptin 
administration, which suggests that GALP-expressing neurons are a 
directly regulated target of leptin.

A previous study also reported that GALP expression is regulated 
by insulin [34]. While GALP mRNA expression in streptozotocin-
induced diabetic rats was lower than that of vehicle-treated rats, levels 
could be restored to normal by administering leptin or insulin. These 
results suggest that GALP expression is regulated by leptin and insulin.

Anti-obesity Effect of GALP
GALP was initially described as an orexigenic neuropeptide given 

that administration of GALP into the brain induces food intake for the 
first hour thereafter in rats [35-38]. We previously reported that c-Fos 

immunoreactivity is increased in orexin-immunoreactive neurons in 
the LH after the central administration of GALP [39]. Furthermore, anti-
orexin IgG markedly inhibits GALP-induced food intake. Kuramochi 
et al. [37] reported that the intracerebroventricular (i.c.v.) injection 
of GALP increases c-Fos expression in NPY-containing neurons in 
the dorsomedial hypothalamic nucleus (DMH) [37]. Food intake is 
similarly increased by GALP administered in this way. In addition, 
the hyperphagic effect of GALP can be suppressed by inhibiting the 
action of NPY. However, this orexigenic action of GALP in rats is only 
a short-term effect. In the 24 hours following the i.c.v. administration 
of 1.6 or 5 nmol GALP, body weight significantly decreased about 5 or 
25 g compared with the vehicle treatment [38,40].

In contrast with that seen in rats, an orexigenic action of GALP 
is not seen following its administration to mice, where a decreased 
food intake is seen after two hours and both food intake and body 
weight are suppressed in the 24 hours following GALP administration 
[30,32,41,42]. Specifically, in 1.2nmol GALP i.c.v administration, it is 
the minimum dose in previous reports, body weight was significantly 
decreased [42]. In ob/ob mice, body weight and food intake decreased 
continuously following chronic GALP administration for 14 days [43].

 It has also been reported that GALP regulates energy 
metabolism (Table 1). The central administration of GALP produces 
a dose-dependent increase in core body temperature which lasts 
for 6-8 h after treatment [38]. We found increases in heart rate, 
oxygen consumption and core body temperature but not skin 
temperature. GALP-induced thermogenesis is perfectly inhibited by 
administration of the cyclooxygenase (COX) inhibitor in both our 
and Lawrence’s experiments [38,44]. These studies suggesting that 
this effect could be dependent on the action of prostaglandin [38,44]. 
Intracerebroventriclar injection of GALP induced c-Fos expression in 
astrocytes in the periventricular zone of the third ventricle. In addition, 
we examined COX1, COX2 and prostaglandin E2 synthetases (PGESs) 
mRNA expression after the in primary cultured astrocytes treated with 
GALP. Both COX2 and cytosolic PGES expression was found to be 
significantly increased by this treatment, which suggests that GALP 
evokes thermogenesis via a prostaglandin E(2)-mediated pathway 
in astrocytes of the central nervous system [44]. The hyperthermia 
response due to GALP administration is similar to that achieved 
by the i.c.v. administration of interleukin (IL)-1 [45]. To this end, 
GALP administration increases IL-1α/β production in microglia and 
macrophages. As a consequence of this, in IL-1α/β, IL-1β, or IL-1 
type1 receptor-deficient mice, food intake reduction, weight loss and 
thermogenesis are suppressed in response to the i.c.v. administration 
of GALP. Thus, it is considered that the thermogenesis and food 
intake reduction effects of GALP are mediated by IL-1 production and 
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The gray area indicates amino acids sequences of galanin that are identical between species. 
Figure 1: Sequence comparison of galanin-like peptide (GALP) from five different species.
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the IL-1 type1 receptor [45]. In addition, chronic administration of 
GALP to ob/ob mice increases the uncoupling protein (UCP)1 gene 
and protein expression in brown adipose tissue (BAT). As BAT is a 
thermogenic organ innervated by the sympathetic nervous system, it 
is suggested that the enhanced energy metabolism induced by GALP 
takes place via sympathetic activation [43]. 

Further to the above, we reported that a change occurs in 
the respiratory exchange ratio (RER) in response to the i.c.v. 
administration of GALP. The RER indicates the amount of oxygen 
an organism consumes compared to the amount of carbohydrate 
dioxide it produces, and forms an essential part of the evaluation of 
metabolic status. The oxidation of carbohydrate results in an RER of 
1.0, compared with 0.7 for fat and 0.8 for protein. In non-exercising 
mice, the RER was reduced 2 hours after GALP administration and 
increased thereafter, suggesting that the GALP enhances glucose and 
lipid metabolism under these conditions [46]. We also examined the 
effect of GALP on gene expression in the liver and in skeletal muscle 

in relation to glucose and lipid metabolism. The gene expression of 
hepatic SREBP-1c, which regulates fatty acid synthesis, was reduced by 
GALP administration, whereas that of GLUT4, which mediates glucose 
uptake by muscle, was increased. These findings suggest that GALP 
improves lipid metabolism in the liver and increases glucose uptake 
by muscle.

Taken together, these findings could explain the anti-obesity effect 
of GALP.

Possible Clinical Applications of GALP
The use of physiologically active peptides as therapeutic agents may 

reduce patient compliance and quality of life when these agents are 
administered parenterally. The intranasal (i.n.) route of administration, 
however, offers distinct advantages as the nasal mucosa has a rich 
vascular supply (facilitating drug uptake), and the administration can 
be performed easily by the patient. 

We have considered the i.n. route of administration as a method 
for the clinical delivery of GALP [47]. In this way, the rate of uptake 
of intravenous (i.v.-) or i.n.-administered radioactively iodinated 
GALP (I-GALP) into the brains of mice was measured. I-GALP uptake 
into the olfactory bulb was very high, and was also elevated in the 
hypothalamus and hippocampus compared with other brain areas. In 
this way, the incorporation efficiency of I-GALP via the i.n. route was 
more than five times that of the i.v. route. Next, we observed the uptake 
of I-GALP into peripheral tissues, where the i.v. route resulted in much 
higher I-GALP levels in the spleen than were found for the i.n. route. 

Uptake of I-GALP into the brain after i.n. administration was 
inhibited by unlabeled GALP, which suggests that this route of drug 
delivery results in the efficient transfer of GALP to the brain without 
concomitant distribution to the peripheral tissues. Many peptide-
based drugs are often administered via the i.n. route in conjunction 
with the absorption enhancer, cyclodextrin [48-50]. Cyclodextrin is a 
cyclic glucan that can form inclusion complexes with many substances. 
I-GALP uptake into the brain was increased threefold by the combined 
administration of cyclodextrin and I-GALP, a finding that was 
confirmed autoradiographically and morphologically. We also studied 
the effect of GALP on feeding behavior in ob/ob mice following its 
administration via the i.n. route and found that food intake and body 
weight were both decreased. The same effect of GALP on body weight 
was found for diet-induced obesity (DIO) mice treated i.n with GALP 
(unpublished findings). As no change in the locomotor activity of these 
animals was observed, these findings suggest that the weight decrease 
induced by GALP occurred as a result of increased energy metabolism. 
The i.n. delivery method may as such be potentially useful to treat life-
style-related diseases and obesity in humans.

Conclusion
We have summarized here many of the feeding- and energy 

metabolism-related functions of GALP. While the physiological 
mechanisms of GALP’s actions are gradually being elucidated, 
the nature of its receptor is yet to be clarified and remains a key to 
discovering the widespread actions of this neuropeptide. Recent studies 
have shown that GALP enhances energy metabolism, and we have 
demonstrated its capacity to reduce obesity following its administration 
via the i.n. route. Further studies to reveal GALP’s actions may result in 
it becoming a key player in the fight against obesity.

 
3V

NPY

ARC

MCH
Orexin

LH

GALP

α-MSH

Leptin

Adiposetissue
GALP neurons send outputs to orexin- or melanin-concentrating hormone- 
(MCH) containing neurons in the lateral hypothalamus (LH) and receive inputs 
from orexin neurons in the LH and neuropeptide Y neurons in arcuate nucleus 
(ARC). GALP-containing neurons also co-localize with alpha-melanin stimulating 
hormone (alpha-MSH)-immunopositivity. 3V=third ventricle. 
Figure 2: Schematic diagram of possible neuronal network involving GALP and 
other feeding-related peptide-containing neurons in the hypothalamus.

Effect Reference
Increase of food intake (rat, short-term) Matsumoto et al. [36]

Lawrence et al. [38]
Lawrence et al. [35]
Kuramochi et al. [37]

Decrease of food intake (rat, long-term) Lawrence et al. [38]
Krasnow et al. [41]

Decrease of food intake and body weight (mouse) Hansen et al. [43]
Krasnow et al. [41]
Krasnow et al. [32]
Kauffman et al. [42]
Man et al. [45]

Increase in heat population Lawrence et al. [38]
Hansen et al. [43]
Man et al. [45]

Increase in oxygen consumption Rich et al. [40]

Enhancement of glucose and lipid metabolism Ito et al. [46]

Table 1: Effect of GALP for energy metabolism.
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