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Abstract
Recent studies demonstrate that mammalian cells can be artificially reprogrammed by ectopic expression of 

transcription factors in an unforeseen straightforward manner. Patient-derived reprogrammed cells hold great potential 
for biomedical applications such as cell replacement therapy, drug toxicity studies and disease modeling. Somatic 
cells such as fibroblasts can be dedifferentiated into so-called induced pluripotent stem cells (iPSCs) that are similar 
to embryonic stem cells (ESCs) by overexpression of Oct4, Sox2, Klf4 and cMyc. However, clinical applications using 
iPSCs carry the risk of tumor formation due to incomplete differentiation. More recently, it has been demonstrated 
that transcription factor-driven reprogramming enables direct conversion of fibroblasts into neurons, cardiomyocytes, 
hepatocytes as well as neural progenitors. Various groups elaborated protocols for the direct conversion of 
fibroblasts into multipotent induced neural stem cells (iNSCs) using different combinations of transcription factors 
and media conditions. These studies have shown that iNSCs exhibit morphology, gene expression and self-renewing 
capacity similar to NSCs derived from primary tissue. Moreover, these iNSCs differentiated into neurons, astrocytes 
and oligodendrocytes indicating multipotency of these cells. Here, we compare the gene expression profile of 
reprogrammed cells reported in these studies to determine the similarity in expression profile between the generated 
iNSCs using bioinformatics approaches. We provide a general workflow that can be applied to evaluate the status 
of reprogrammed cell populations. Using hierarchical clustering analysis and principal component analysis (PCA), 
we show that iNSCs reported by Thier et al. resemble more closely to those of Han et al. On the other hand, iNSCs 
generated by Ring et al. are relatively similar to 4F iNSC (late) of the study by Han et al. as judged by hierarchical 
clustering analysis. Our study demonstrates that bioinformatics approaches are particularly valuable to robustly 
assess the transcriptional status of reprogrammed cells and to anticipate their cellular functionality.

Keywords: iNSCs; Cellular reprogramming; Transcription factors;
Bioinformatics; Gene expression; Microarrays

Introduction
Cellular reprogramming describes a phenomenon of converting a 

somatic differentiated cell into a different cell type either somatic; or 
a multipotent and pluripotent, respectively, stem cell. A multipotent 
cell could be further differentiated into various but limited cell types, 
while a pluripotent cell could be differentiated into any desired cell 
type (Figure 1). This process holds great promise for biomedical 
applications to use it as a potential treatment for human diseases 
and study cellular pathology in the cell culture dish [1-8]. Studies 
demonstrated that differentiated cells can be reprogrammed to an 
embryonic-like pluripotent state [9] or a multipotent state [10-12] 
and by that generated a lot of interest in understanding the molecular 
basis of cell fate determination and developmental biology. Takahashi 
and Yamanaka [9] achieved a breakthrough by converting somatic 
fibroblasts into pluripotent induced pluripotent stem cells (iPSCs) by 
overexpression of four transcription factors, challenging the view that 
cell differentiation is an irreversible process. However, for successful 
therapeutic applications, iPSCs need to be efficiently differentiated 
into the desired cell type. Disease-related applications of iPSCs harbor 
the risk of tumor formation due to incomplete differentiation [13-
15]. Therefore, researchers have recently focused on reprogramming 
somatic cells into multipotent stem cells that have a more restricted 
developmental plasticity with less or no tumorigenic potential and are 
closer to the desired cell type that is required to be engineered [10-
12]. Therefore, direct reprogramming of somatic cells into lineage-

restricted multipotent stem cells should obviate iPSC generation and 
bypass the hurdle of unwanted iPSCs in differentiated cultures. 

To understand the cellular reprogramming process from a somatic 
state to a multipotent or pluripotent state, bioinformatics approaches 
have been utilized to extract meaningful information from vast amount 
of data [16-19]. Attempts have been made to use genomic high-
throughput technologies such as gene expression microarrays to assess 
genome-wide mRNA expression, chromatin immunoprecipitation with 
microarray technology (ChIP-on-ChIP) and ChIP with massive parallel 
DNA sequencing (ChIP-seq) to assess protein-DNA interactions to 
understand the cellular conversion process and provide us with new 
insights towards the reprogramming process [20,21]. Bioinformatics 
approaches have been used to explore and understand this complex 
and vast amount of biological data generated from high-throughput 
technologies. It integrates computational and statistical techniques 
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to explore and extract meaningful information from biological data 
(Figure 2A) [22].  By that, bioinformatics approaches could be used 
to identify novel transcription factors and help to understand the 
mechanisms of cell reprogramming during the cell conversion process 
(Figure 2B).

Regulation of gene expression comprises of a wide range of 
mechanisms that are used by cells to increase or decrease the production 
of specific gene products that could be either protein or RNA. To 
understand the function of a cell, as well as higher levels of biological 
organization, we need to know the components that constitute it. With 
the inventions of high throughput technology like microarrays, gene 
expression of thousands of mRNAs across different samples can be 
analyzed simultaneously and compared to each other [23]. In order to 
elucidate the properties of stem cells many researchers are comparing 
gene expression analysis of pluripotent cells with multipotent and/
or unipotent cells [24]. Transcriptional profiling of multipotent 
hematopoietic stem cells (HSCs) and neural stem cells (NSCs) with 
pluripotent embryonic stem cells (ESCs) resulted in identification of 
genes that were differentially expressed among these three stem cell 
groups [25]. This knowledge could provide information about gene 
signatures of different cell types that could be used to determine the 
identity of artificially generated novel cell types. To unravel the wealth 
of information from the complex datasets, bioinformatics approaches 
have been deployed to explore the gene expression data. Clustering 
algorithms aims to group the genes based on the similar pattern of 
gene expression [26] while Principal Component Analysis [PCA; [27]] 
converts the gene expression data sets into diagonalized  “eigengenes” 
and “eigenarrays” spaces in such a way that eigengenes are unique 
and orthogonal superpositions of the genes. Later the gene expression 
data is sorted based on eigengenes and eigenarrays reducing the 
features of the data to their principal components and determining the 
characteristic pattern of the dataset [24]. On the downside, existence 

of several microarray platforms including Illumina Bead Arrays, 
Affymetrix chips, Agilent, Nimblegen, and other platforms renders 
the comparison of data sets from different platforms complicated and 
error-prone. 

In this study, we analyzed gene expression datasets of recently 
reported induced neural stem cells (iNSCs) generated from fibroblasts 
by three different groups [10-12] using bioinformatics approaches. The 
datasets were generated from different platforms. Using hierarchical 
clustering analysis and principal component analysis (PCA) we 
demonstrate iNSCs generated by Thier et al. [12] resemble closely 
to those of Han et al. [10], whereas Ring et al. [11] iNSCs appear 
distinct from these cells. Thus, coupling gene expression data with 
bioinformatics approaches will provide us with information about the 
transcriptional status of the reprogrammed cells.

Materials and Methods
Three freely available microarray datasets, namely GSE30500 

[10], GSE37859 [11] and GSE36484 [12] were downloaded from 
Gene Expression Omnibus (GEO) [28]. All three datasets were 
recently reported in the context of direct conversion of fibroblasts 
into multipotent iNSCs using a slightly diverse combination of 
transcription factors (Figure 3) and specific media conditions. The 
details of microarray datasets downloaded from GEO are mentioned 
in table 1.

All the three microarray datasets were subjected to quality control, 
data transformation, integration, normalization and analysis as shown 
in Figure 4. Due to diversified nature of microarray platforms (Table 
1) and the formats of the raw data, the datasets were first examined 
to determine whether they are in the same comparable range. From 
our Box Plot analysis we observed that the heterogeneous datasets 
were not in the same comparable range (Figure S1), as the expression 
values submitted to GEO from [12] was measured on a linear scale, 
whereas the other two datasets, [10,11], were measured in log2 scale. 
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Figure 1: Harnessing cellular reprogramming for biomedical applications. 
Schematic representation of cell reprogramming of patient-derived fibroblasts 
into induced pluripotent stem cells (iPSCs) and induced neural stem cells 
(iNSCs) using a combination of transcription factors (TFs) and specific media 
conditions. iPSCs can be further differentiated to all three germ layers: 
mesoderm (exemplified here by cardiac cells), endoderm (thyroid cells) and 
ectoderm (neurons), whereas multipotent iNSCs can be differentiated into 
neurons, oligodendrocytes and astrocytes. Pre-differentiated cells can be 
either transplanted into patients to treat disease or study the pathology in the 
cell culture dish under standardized conditions.
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Figure 2: Interplay of biological and computational approaches in 
cellular reprogramming. A) Bioinformatics is an interdisciplinary field that 
comprises both, biological and computational sciences. Using bioinformatics 
approaches, meaningful information from biological samples could be 
extracted using computational techniques to unravel useful biological 
knowledge. B) Bioinformatics approaches could be effectively applied 
to identify key instructive transcription factors and explore molecular 
mechanisms involved in cellular reprogramming when a cell undergoes 
conversion from cell type A to cell type B.
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Figure 3: Transcription factor combinations used by three different 
groups to generate induced neural stem cells (iNSCs). Three different 
groups [10-12] recently converted fibroblasts into iNSCs using different 
transcription factor combinations. Han et al. used Brn4, Sox2, Klf4 and 
c-Myc while Ring et al. used Sox2 only for conversion into iNSCs. Thier et al. 
constitutively expressed Sox2, Klf4 and c-Myc, and Oct4 as a recombinant 
protein ( ) for the first 5 days to generate iNSCs. All three groups 
demonstrated in their respective studies that these iNSCs exhibit morphology, 
gene expression and the ability to self-renew similar to NSCs derived 
from primary tissue. Furthermore, these iNSCs differentiated into neurons, 
astrocytes and oligodendrocytes suggesting multipotency of these cells.
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Figure 4: Schematic representation showing steps undertaken for gene 
expression profiling. Experiment starts with biological question(s) followed 
by its design and hybridization. Hybridized chip is introduced into the scanner 
and the intensities of every sample are acquired as image files and later the 
data is extracted from these image files. The quality of each sample is verified 
by Box Plot analysis. After verification, the data is transformed to log2 scale 
and integrated using virtualArray package. The integrated “Expression Set” is 
normalized between arrays using quantile method. The normalized data are 
later subjected to hierarchical clustering and PCA to address the biological 
question(s). 

GEO datasets Number of 
Samples

Samples Types
(No. of replicates)

Platform
(Chip type)

GSE36484
[12] 21

Fibroblasts (4)
ESCs (3)
NSCs (3)
iNSCs (11) 

Illumina
(Mouse WG-6 v2)

GSE37859
[11] 12

Fibroblasts (3)
NSCs (3)
iNSCs (3)

Affymetrix
(Mouse Gene 1.0 

ST)

GSE30500
[10] 9

Fibroblasts (1)
NSCs (2)
4 Factor iNSCs (late) (2)
4 Factor iNSCs (early)  
(2)
5 Factor iNSCs (2) 

Illumina
(Mouse Ref-8 v2)

The table represents list of gene expression datasets, sample types and its count 
and the platform and Chip used for generating the datasets.

Table 1: GEO datasets information of three groups.

The expression values of the former were transformed into log2 scale 
using standard R functions and Bioconductor packages to bring 
all the datasets in the same comparable range for further analysis as 
performed in Heider et al. [Figure 5; [29]]. The microarray datasets 
were then integrated using a virtualArray, a Bioconductor package that 
can combine raw datasets based on the recently updated annotations 
from NCBI (National Centre Biotechnology Information) [29]. The 
redundant probes that represent the same gene were collapsed and 
only those gene symbols, which were common across all three datasets, 
were identified and a single combined “Expression Set” (comprising 
of 12,818 genes) was generated [29]. Quantile normalization between 
the arrays was performed on this expression set [30] and subjected to 
further analysis.

For hierarchical clustering analysis, the normalized “Expression 
Set” was clustered using agglomerative (using “virtualArrayHclust” 
function) hierarchical clustering on Euclidean distance matrix and 
average linkage method [29]. Many other distance measures other than 

Euclidean distance matrix are used but the Euclidean distance matrix 
with the commonly used average linkage method is more appropriate 
for normalized microarray data [31].

For Principal Component Analysis (PCA), the normalized 
“Expression Set” was also exported as tab-delimited text file from R and 
then imported into Partek Genomics Suite [32] for PCA with default 
parameters; correlation dispersion matrix and normalized eigen vector 
scaling and visualized in 3D scatterplot. The correlation method 
adjusts the data to be standardized to a mean of zero (mean centered) 
and a standard deviation of one. This adjustment is performed during 
the computation and does not modify the original data [32]. The 
eigenvectors are the direction cosines of the new axes (PCs) relative to 
the old (original variables), thus they define the rotations of the original 
axes [32].

The entire analysis was carried using Bioconductor packages, R, 
a statistical programming environment and Partek genomics Suite 
that runs in a 32-bit operating system comprising of 4GB RAM 
(Random Access Memory), a processor of Intel® Core (TM)2 Duo CPU 
T6500@2.10 GHz.

Results and Discussion
Bioinformatics approaches are increasingly embraced by the 

stem cell research community because of its potential to uncover the 
molecular fingerprint of a stem cell state in a short period of time. These 
approaches are also valuable to reveal critical information about the 
data obtained from different laboratories and experimental conditions. 
In this study, we have compared the gene expression profiling data 

mailto:T6500@2.10
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Figure 5: Box Plot analysis of the three datasets after transformation, 
integration and normalization. The three heterogeneous datasets (Han et 
al., Ring et al., and Thier et al. [10-12]) generated from different platforms 
were log2 transformed, integrated and quantile normalized using standard R 
functions and Bioconductor packages. The X-axis shows the list of samples 
used to transform for each datasets and the Y-axis shows the expression 
values in log2 scale.
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Figure 6: Dendrogram of hierarchical cluster analysis of samples 
from the three iNSC gene expression datasets. Hierarchical clustering 
(agglomerative) of the normalized virtualArray “Expression Set” for all the 
three gene expression datasets was done using Euclidean distance matrix 
and average linkage method through “virtualArrayHclust”, a function for 
hierarchical clustering in virtualArray package. The “Expression Set” contains 
probes that are common across all the three gene expression datasets. 
Abbreviations: MEF, Mouse Embryonic Fibroblasts; ESC, Embryonic Stem 
Cell; NSC, Neural Stem Cell; iNSC, induced Neural Stem Cell; 4F, 4 factors; 
5F, 5 factors; rep, replicate.  

of three different studies that report direct conversion of fibroblasts 
into multipotent iNSCs using different combination of transcription 
factors and media conditions [10-12] (Figure 3). Han et al. used a 
cocktail of 4 factors (4F), Brn4, Sox2, Klf4 and c-Myc, and 5 factors 
(5F) that included the listed 4 factors plus E47/Tcf3 [10]. They analyzed 
the whole genome profile of 4F early- and a late-passage (in short 4F 
(early) and 4F (late)) as well as 5F to evaluate the reprogramming level 
of the entire transcriptome [10].  Sox2 only was employed by Ring et 
al. to convert fibroblasts into iNSCs [11]. Finally, Thier et al. [12] used 
Oct4 recombinant protein for the first 5 days alongwith constitutive 
expression of Sox2, Klf4 and c-Myc to accomplish a similar cell 
conversion process.

In this study, we have outlined cross platform comparison of three 

different microarray datasets generated by these groups on different 
platforms. The microarray datasets of the three studies were integrated 
using virtualArray and then compared using hierarchical clustering 
analysis and PCA to determine the similarity in gene expression 
profiling of iNSCs. First, the quality of the samples in all the three 
datasets before and after transformation was verified using Box plots 
(Figure S1; 5). Each box represents individual samples in the datasets 
and all the boxes were in the same range indicating that all the samples 
were of good quality (Figure 5). Hierarchical clustering analysis (Figure 
6) of the combined expression data revealed that fibroblasts from Han 
et al., Ring et al. and Thier et al. cluster together while ESCs cluster 
separately. The control NSCs of Thier et al and Han et al, as well as 
iNSCs clones of [12], 4F iNSCs (early) replicates and 5F iNSC replicates 
cluster in between NSCs and iNSC replicates of [11]. Thier et al. NSCs 
and iNSCs resemble closely 5F iNSCs of Han et al. Notably, the iNSCs 
of Ring et al. cluster closely with replicates of 4F iNSCs (late) of Han et 
al. and by that are quite far away from control NSCs of Ring et al. 

For PCA analysis, the combined expression datasets generated from 
virtualArray package were exported to Partek Genomics suite [32]. The 
high dimensionalities of three datasets were reduced and their patterns 
were identified using Principal Components (PCs) [33]. PCs are the set 
of new variables, created by linear transformation of original variables 
(gene expression). Rather looking into gene expression levels, PCA 
plot shows set of principal components calculated based upon actual 
gene expression values. Through this approach, the high dimensional 
complex data can be simplified and visualized, by retaining as much 
variance possible. The PCA plot explained in this study shows only first 
three PCs, as they contain the most information. The first 3 PCs were 
able to retain a total of 40.6% of variation among the data. Each PC 
explains the variance in the data and they are stacked in a decreasing 
order i.e. PC#1=20.18 %, PC#2=13.23%, PC#3=7.14% and so on (Figure 
S2). The list of total PCs and the cumulative % of variance proportion 
accumulating to 100% is shown in Figure S2. 3D scatterplot (Figure 7) 
generated from Partek illustrates that fibroblasts from Han et al. (Red), 
Ring et al. (Violet) and Thier et al. (Pink) have been projected along the 
PC#2. Control NSCs (Blue), iNSCs (Dark green) of Han et al, control 
NSCs (Grey), iNSCs (Light green) of Thier et al and control NSCs 
(Orange), iNSCs (Cyan) have been projected along PC#3. The figure 
also clearly visualizes that Ring iNSCs (Cyan) were distant from iNSCs 
of Han et al. and Thier et al. iNSCs of Han et al. and Thier et al. were 
grouped closer among each other suggesting that iNSCs reported by 
Han et al. and Thier et al. were more similar in their expression levels 
when compared to those of Ring et al.

Therefore, using both hierarchical clustering analysis and PCA we 
demonstrate that iNSCs reported by Thier et al. are similar to iNSCs 
from Han et al. Notably, hierarchical clustering analysis also revealed 
that iNSCs generated by Ring et al. are relatively similar to 4F iNSC 
(late) of the study by Han et al and NSCs and iNSCs from Thier et 
al. resemble more closely to 5F iNSCs of Han et al. Therefore, this 
study clearly demonstrates that cross platform comparison is feasible 
and could be used to investigate the transcriptional state of newly 
generated multipotent cells from different groups. Recently, several 
data handling/organizational tools are presented that might serve as 
meta tools for integrating cell profiling data [34-37]. Muller et al. [38] 
designed a new computational strategy for classifying the stem cells 
by designing a database, “stem cell matrix” of global gene expression 
profiles of pluripotent, multipotent and other differentiated cells. 
Using unsupervised clustering method, they were able to classify the 
pluripotent stem cells from the other cell lines based on their gene 
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expression. They constructed a pluripotency network called PluriNet 
based on MATISSE (Module Analysis via Topology of interactions and 
similarity sets). With visualization and data analysis tools embedded 
within IntNetDB [39], it provides the researchers a good framework 
to analyze, visualize and interpret the results. Recently, PluriTest [16], 
a robust bioinformatics assay for assessing pluripotency, has been 
developed which can be used to upload and analyze gene expression 
data of human pluripotent cells based on Illumina platform. This tool 
compares the known pluripotent gene expression signature with a 
newly generated reprogrammed cell line to determine the pluripotency 
status of the candidate cell line and by that avoid teratoma assay in 
mice. However, this bioinformatics assay has a limitation in assessing 
pluripotency of human cells from Illumina platform only. More 
recently, a similar web portal Stemformatics has been generated to 
assist stem cell biologists to identify and assess relevant datasets, 
gene sets and pathways for easy visualization and comparison of gene 
expression generated across platforms, laboratories and cell models 
[18]. Similar advances using novel stem cell specific bioinformatics 
tools could replace cumbersome and time-consuming approaches like 
teratoma assays or in vitro differentiation assays to characterize cell 
lines to determine their identity [40].

Our study involving cross platform comparison could further 
help us in identifying biomarkers from various data handling/
organizational tools, which then can be used to compare published 
cell types with novel cell types.  A web interface for iNSCs should be 
established to easily upload gene expression data for different species 
and platforms to determine the transcriptional status of newly derived 
iNSCs and other multipotent stem cell lines. The analysis can be 
extended in identifying the differentially expressed genes between cell 
lines, which could further shed light on the key genes involved in the 
cell conversion process. Therefore, with already existing algorithms 
and development of new tools and databases, the new experimental 
datasets can be applied to accessible databases and will infer new 

results based on known biological processes to understand more about 
stem cell fate and cellular reprogramming. Hence, combination of 
both, experimental and computational approaches will help biologists 
to understand cell fate determination. In conclusion, our study 
substantiates that bioinformatics approaches are essential to robustly 
determine the transcriptional state of reprogrammed cells and envisage 
their functionality.

Future Perspectives
The availability of different platforms for microarray experiments 

impedes comparison of expression data from the different platforms. 
This limitation also restricts the extraction of valuable information 
hidden in the datasets uploaded online in multiple data handling/
organizational tools. Therefore, a tool capable of performing cross 
platform comparison without losing much information is required 
and will provide infinite opportunities for researchers to carry out the 
comparative analysis. The mouse and human stem cells at the system 
level remain poorly explored; hence, more bioinformatics approaches 
have to be deployed. As the application of bioinformatics in cellular 
reprogramming is at an infant stage, therefore integrating the 
experimental data along with the other “OMICS” data will definitely 
provide more details of biological properties of the reprogrammome at 
a broader spectrum.    
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