Establishing a Remedy for Phenylketonuria Disease from Indian Ayurvedic Herbs

Preenon Bagchi^{1*}, SophieVisvikis-Sieste¹, Ajit Kar²

¹UMR INSERM U1122, IGE-PCV "Interactions Gene- Environnement en Physiopathologie Cardio-Vasculaire", Faculté de Pharmacie, Université de Lorraine, Nancy, France; ²Satsang Herbal Research Laboratory, Satsang, Deoghar, Jharkhand, India

ABSTRACT

The phenylketonuria (PKU) disease is an inherited disorder that increases the levels of a substance called phenylalanine in the blood and if not treated, phenylalanine can build up to harmful levels in the body. People with this disorder can't break down the amino acid phenylalanine. This phenylalanine, then builds up in the blood and brain causing intellectual disability and other serious health problems. It is rare but a serious inherited disorder. The main objective of this study is to establish a remedy for the phenylketonuria disease (novel drug leads for phenylketonuria disease's receptors viz. ASCL1 gene (achaete-scute family bHLH transcription factor 1), GCH1 gene (GTP cyclohydrolase 1) and MAOB (Monoamine Oxidase B)) using phytocompounds from ayurvedic herbs. To achieve this objective we performed virtual screening with phytocompounds from ayurvedic herbs against the phenylketonuria disease's receptors followed by ADME studies on the phytocompounds selected by virtual screening. Based on the analysis of the results of virtual screening and subsequent ADME studies on the phytocompounds it is seen that curcumin can be successfully considered as novel drug lead for treating phenylketonuria disease.

Keywords: Phenylketonuria; ADME; ASCL 1 gene; GHC1 gene; MAOB gene; Modeling; Docking

INTRODUCTION

Phenylketonuria which is commonly known as PKU, is an inherited disorder that increases the levels of phenylalanine (which is a building block of proteins) in the blood that is obtained through the diet (it is found in all proteins and in some artificial sweeteners) [1-3]. If PKU is not timely treated, phenylalanine can build up to harmful levels of toxins in the body, causing brain damage. The U.S. Food and Drug Administration (FDA) has approved the drug sapropterin dihydrochloride (Kuvan®) for the treatment of PKU. Kuvan® is a form of BH4, which is a substance in the body that helps break down phenylalanine [4-6]. PKU is caused by mutations in the gene PAH, GCH1, MAOB, ALB, IGF1, ASCL1, among others Koch et al., Moyle et al., Naz and John. PKU's symptoms include seizures, tremors or trembling and shaking, stunted growth, hyperactivity, skin conditions such as eczema, a musty odor (bad smell) in their breath, skin or urine. Infants with classic PKU appear normal until they are a few months old and without treatment, these children develop permanent intellectual disability. Children with PKU usually have lighter skin and hair than unaffected family members and more prone to have skin disorders like eczema [1-9].

Genes considered in this work

Classical PKU is an autosomal recessive disorder caused by mutations in both alleles of the gene coding for phenylalanine hydroxylase found on chromosome 12.

ASCL1 gene (achaete-scute family bHLH transcription factor 1)

It encodes a member of the basic helix- loop-helix (BHLH) family of transcription factors, a protein that activates transcription by binding to the E box (5'- CANNTG-3'). Dimerization with other BHLH proteins is required for efficient DNA binding and this protein plays a role in the neuronal commitment and differentiation and in the generation of olfactory and autonomic neurons. Mutations in this gene cause the congenital central hypoventilation syndrome (CCHS) phenotype in rare cases [10].

GCH1 gene (GTP cyclohydrolase 1)

It provides instructions for making an enzyme called GTP cyclohydrolase 1, which is involved in the first of three steps in the production of a molecule called tetrahydrobiopterin (BH4). Other

Correspondence to: Preenon Bagchi, UMR INSERM U1122, IGE-PCV "Interactions Gene-Environnement en Physiopathologie Cardio-Vasculaire", Faculté de Pharmacie, Université de Lorraine, Nancy, France, Tel: +33 751922837; E-mail: preenon.bagchi@inserm.fr

Received: March 27, 2019; Accepted: May 24, 2019; Published: May 31, 2019

Copyright: © 2019 Bagchi P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Bagchi P, Visvikis-Sieste S, Kar A (2019) Establishing a Remedy for Phenylketonuria Disease from Indian Ayurvedic Herbs. J Biomol Res Ther 8: 177. doi: 10.35248/2167-7956.19.8.177

enzymes help to carry out the second and third steps in this process. Tetrahydrobiopterin plays a significant role in processing several protein building blocks (amino acids) in the blood; specifically, tetrahydrobiopterin, which is involved in the production of two neurotransmitters called dopamine and serotonin. Among their many functions, dopamine spreads signals within the brain to produce smooth physical movements and serotonin regulates mood, emotion, sleep, and appetite. Since it helps enzymes carry out chemical reactions, tetrahydrobiopterin is known as a cofactor [11].

MAOB (Monoamine oxidase B)

The protein coded by this gene belongs to the flavin monoamine oxidase family and it is an enzyme located in the mitochondrial outer membrane. It catalyzes the oxidative deamination of biogenic and xenobiotic amines and plays an important role in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. This protein preferentially degrades benzylamine and phenylethylamine [12].

Ayurvedic herbs used and their active components

- Wood betony: The principal chemical components present in this plant are Tannins, Betulinic acid, oleonilic acid, rosamarinic acid, rutin, urosolic acid, stachydrine and glycosides.
- **Nettle:** The principal chemical components present in this plant are histamine, formic acid, acetylcholine, serotonin and vitamins.
- **Plantago ovate**: The principal chemical components present in this plant are xylose, arabinose, alanine, valine, glutamic acid, glycine, cysteine, lysine, leucine, tyrosine and xylose.
- **Turmeric:** The principal chemical components present in this plant are curcumin and camphene.
- **Dandelion:** The principal chemical components present in this plant are taraxacin, laevulin, resin and inulin.

The main objective of this study is to establish a novel ligand as drug for the PKU from the phytocompounds of the above mentioned ayurvedic herbs.

METHODOLOGY

The proteins corresponding to the genes for the PKU were downloaded from Genbank database and their 3d structures were modeled using modeller [1,13]. Modeller is used for homology or comparative modeling of protein three-dimensional structures wherein the user provides an alignment of a sequence to be modeled with known related structures and modeller automatically calculates a model containing all non-hydrogen atoms [13]. The modeller generated models were verified using Ramachandran Plot [1,14]. Ramachandran Plot is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure [14]. The 3d structures of the phytocompounds mentioned above were downloaded from pubchem database. These compounds were docked with the PKU receptors using PATCHDOCK server which is a server for molecular docking [1,15]. ADME studies were done with the phytocompounds which showed best docking results with the PKU receptors [1,16,17]. ADME is "absorption, distribution, metabolism, and excretion" which is the disposition of a

OPEN OACCESS Freely available online

pharmaceutical compound within an organism. This is based on Lipinski's rule of five to evaluate drug-likeness or determine if a chemical compound with a certain pharmacological or biological activity has chemical properties and physical properties that would make it a likely orally active drug in humans [17].

RESULT AND DISCUSSION

Homology modelling

PKU (phenylketonuria) gene receptors were retrieved from GENBANK database Table 1. The homologous templates of the receptors in Table 1 were selected using BLAST search against Protein Data Bank (PDB) and the selected templates were downloaded from PDB Table 2A-C. Using Modeller, the 3d structures of the receptors in Table 1 were modelled [13]. The models were verified using Rampage Ramachandran Plot server Table 3A-C and Figure 1A-C [14].

Docking

The selected models in Table 3 were docked with the phytocompounds from the Ayurvedic herbs using PATCHDOCK [15]. The docking scores were noted in Table 4A1-A5, B1-B5 and C1-C5. As per the virtual screening studies we find the phytocompounds betulinic acid, rutin, lecithin and curcumin docks with all the receptor genes. Hence we take these phycompounds into consideration (in comparison with the others used in this work) for further ADME studies to see which of these compounds show NO violations in the Lipinski rule of 5 (Figure 2A-C).

 Table 1: PKU genes with Genbank accession number.

ete-scute family			
	ASC 11	P50553.2	
H transcription	ASCL1		
cyclohydrolase	GCH1	P30793.1	
amine oxidase B	MAOB	P27338.3	
	cyclohydrolase	cyclohydrolase GCH1	

Table 2(A): Homologous template of ASCL1.

Accession	Query cover	Identity
2QL2 B	22%	45%
4AYA A	22%	41%
2YPAB*	64%	33%

Homologous template search by https://toolkit.tuebingen.mpg.de/#/ tools/hhpred since BLAST generated two homologous templates [18]

Table 2(B): Homologous template of GCH 1.

Accession	Query cover	Identity
1IS7 A	92%	93%
1FB1 A	78%	100%
1WM9 A	74%	58%

Table 2(C): Homologous template of MAOB.

Accession	Query cover	Identity
1GOS A	100%	100%
2C73 A	100%	99%
2BK4 A	100%	99%

Table 3(A-C): Ramachandran Plot Analysis of modeler generated models.

ASCL1					
	Number of residues in favored region (~98.0% expected)	Number of residues in allowed region (~2.0% expected)	Number of residues in outlier region		
Model 1	184 (96.3%)	5 (2.6%)	2 (1.0%)		
Model 2	178 (93.2%)	7 (3.7%)	6 (3.1%)		
Model 3	177 (92.7%)	12 (6.3%)	2 (1.0%)		
Model 4	181 (94.8%)	8 (4.2%)	2 (1.0%)		
Model 5	185 (96.9%)	5 (2.6%)	1 (0.5%)	Selected	

Model 5 is selected as the best model since it has highest number of residues in the favored region and least number of residues in the outlier region.

Table 3(B)

		GCH1		
	Number of residues in favored region (~98.0% expected)	Number of residues in allowed region (~2.0% expected)	Number of residues in outlier region	
Model 1	235 (94.8%)	7 (2.8%)	6 (2.4%)	
Model 2	241 (97.2%)	5 (2.0%)	2 (0.8%)	Selected
Model 3	239 (96.4%)	7 (2.8%)	2 (0.8%)	
Model 4	237 (95.6%)	8 (3.2%)	3 (1.2%)	
Model 5	239 (96.4%)	9 (3.6%)	0 (0.0%)	

Model 2 is selected as the best model since it has highest number of residues in the favored region

Table 3 (C)

		MAOB	
	Number of residues in favored region (~98.0% expected)	Number of residues in allowed region (~2.0% expected)	Number of residues in outlier regior
Model 1	507(97.9%)	9(1.7%)	2(0.4%) Selected
Model 2	506(97.7%)	10(1.9%)	2(0.4%)
Model 3	506(97.7%)	10(1.9%)	2(0.4%)
Model 4	505(97.5%)	11(2.1%)	2(0.4%)
Model 5	506(97.7%)	10(1.9%)	2(0.4%)
	Model 1 is selected as the best mod	lel since it has highest number of residues i	n the favored region

Table 4 (A1): Docking results of ASCL1 receptor with compounds from Wood Betony.

		WOOD BETON	IY		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	ASCL1	Betulinic acid	5640	5	ASP-110
2	ASCL1	Delphinic acid	2190	1	SER-177 SER-144 GLU-182 TYR-193
3	ASCL1	Oleonilic acid	5524	1	PRO-143
4	ASCL1	Rosamarinic acid	4642	2	SER-148
5	ASCL1	Rutin	5540	6	GLU-180
					VAL-112 ALA-111 ASP-110 SER-156

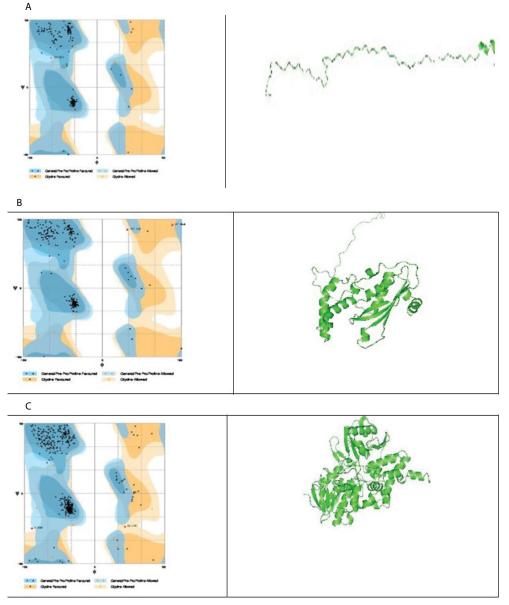


Figure 1A: Ramachandran plot analysis of the best model (5) of ASCL1 receptor.

Figure 1B: Ramachandran plot analysis of the best model (2) of GCH1 receptor.

Figure 1C: Ramachandran plot analysis of the best model (1) of MAOB receptor.

 Table 4 (A2): Docking results of ASCL1 receptor with compounds from NETTLE.

Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	ASCL1	Histamine	2130	1	TYR-193
2	ASCL1	Formic acid	1190	2	ARG-100 GLY-132
3	ASCL1	Acetylcholine	2778	1	ARG-131
4	ASCL1	Serotonin	3202	3	LYS-85 GLN-71 ARG-74

Table 4 (A3): Docking results of ASCL1 receptor with compounds from PLANTAGO OVATO.

		PLANTAGO O'	VATO		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	ASCL1	Arabinose	2182	3	ARG-74
					LEU-86
2	ASCL1	Xylose	2360	4	LYS-88
					LEU-86
					ARG-74
2		3.7.1.	2102	1	LYS-84
3	ASCL1	Valine	2192	1	LYS-88
					ASN-67
4	ASCL1	Alanine	1876	2	GLY-132
5	ASCL1	Character 1	2200	4	ARG-100
5	ASCLI	Glutamic acid	2280	4	LYS-88
					GLN-71
(01	1502	2	ASN-67
6	ASCL1	Glycine	1582	3	ARG-74
					ARG-100
					GLY-132
7	ASCL1	Cysteine	1996	1	GLU-90
					ARG-131
0	ASCL1	Later	2704	2	ALA-179
8	ASCLI	Lysine	2704	2	ASP-110
0		т.	2250	2	ARG-74
9	ASCL1	Leucine	2370	2	ASN-67
10		т. ·	2070	2	SER-148
10	ASCL1	Tyrosine	2970	2	ASP-110
					ASN-67
11	ASCL1	Rhamnose	2418	3	LYS-88
					ARG-74

Table 4 (A4): Docking results of ASCL1 receptor with compounds from TURMERIC.

		TURMER	RIC		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
					VAL-125
					ARG-126
1	ASCL1	Curcumin	5016	5	SER-128
					ALA-129
					PRO-127
2	ASCL1	Camphene	2862	0	

Table 4 (A5): Docking results of ASCL1 receptor with compounds from DANDELION.

		DANDELI	ION		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	ASCL1	Taraxacin	3922	2	SER-148 GLU-180
2	ASCL1	Laevulinic acid	2098	2	GLY-81 ARG-131
3	ASCL1	Choline	2160	2	ARG-131 ARG-100
4	ASCL1	Lecithin	6648	9	GLY-119 ARG-121 ALA-117 LEU-116 ASP-110 ALA-111 GLU-180 ALA-179
Biomol Res T	her, Vol. 8 Iss. 1 No. 17'	7			SER-144

Table 4 (B1): Docking results of GCH1 receptor with compounds from WOOD BETONY

		WOOD BETON	ΝY		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	GCH1	Betulinic acid	4608	5	TRP-53
1	бспі	Detunnic acid	4000	5	GLU-56
					LYS-54
					GLY-55
2	GCH1	Delphinic acid	2142	2	ARG-57
					ALA-120
					ILE-121
3	GCH1	Oleonilic acid	4708	1	HIS-210
					ILE-113
4	GCH1	Rosamarinic acid	4260	1	TYR-175
4	ОСПІ	Rosamarinic acid	4200	4	TYR-109
					GLU-56
					GLY-55
					GLU-56
5	GCH1	Rutin	5020	6	ILE-113
J	осп	Ruum	5020	0	TYR-175
					ARG-178
					TYR-109
					ARG-178
					PRO-58
6	GCH1	Urosolic acid	4992	5	ARG-57
					GLY-55
					GLU-56
					LEU-117
7	GCH1	Stachydrine	2524	3	ILE-121
					ALA-120

Table 4(B2): Docking results of GCH1 receptor with compounds from NETTLE.

		NETTLE			
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	GCH1	Histamine	2208	3	ASN-118 ALA-120 ILE-121
2	GCH1	Formic acid	1042	1	LEU-163
3	GCH1	Acetylcholine	2578	1	THR-112
4	GCH1	Serotonin	2806	0	

Table 4(B3): Docking results of GCH1 receptor with compounds from PLANTAGO OVATO.

		PLANT OVAG	ATO		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	GCH1	Arabinose	2158	1	ALA-196
2	GCH1	Xylose	2182	1	HIS-210
3	GCH1	Valine	2164	1	GLN-161
4	GCH1	Alanine	1772	1	ILE-121
5	GCH1	Glutamic acid	2152	3	ILE-121 ALA-196 GLN-161
6	GCH1	Glycine	1462	1	GLU-124
7	GCH1	Cysteine	1930	1	GLN-161
8	GCH1	Lysine	2490	1	TYR-109

OPEN OACCESS Freely available online

2					LEU-117 ASN-118
9	GCH1	Leucine	2410	4	ALA-120
					ILE-121
		Tyrosine		4	ASP-119
10	GCH1		2794		ASN-118
10	ОСПІ				ALA-196
					ILE-121
					LEU-117
11	CCUI	Dhammaaa	2202	4	ASN-118
11	GCH1	Rhamnose	2282	4	ALA-120
					ILE-121

 Table 4(B4): Docking results of GCH1 receptor with compounds from TURMERIC.

TURMERIC

			renderide		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
					GLY-55
					GLU-56
1	1 GCH1	CH1 Curcumin	4332	6	SER-60
					PRO-58
					ARG-57
					ARG-178
2	GCH1	Camphene	2696	0	

Table 4(B5): Docking results of GCH1 receptor with compounds from DANDELION.

		DAND			
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No.of interactions	Interacting amino acids
1	GCH1	Taraxacin	3368	2	GLU-183 HIS-144
2	GCH1	Laevulinic acid	2026	3	GLN-161 ALA-196 LEU-117
3	GCH1	Choline	2128	0	
4	GCH1	Lecithin	6712	6	LEU-165 LEU-163 TYR-156 GLU-124 HIS-126 SER-250

Table 4(C1): Docking results of MAOB receptor with compounds from WOOD BETONY.

		WOOD BETON	ΝY		
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	МАОВ	Betulinic acid	5148	4	TYR-112 THR-479 GLU-483 ASP-123
2	MAOB	Delphinic acid	2608	1	GLY-13
3	МАОВ	Oleonilic acid	5508	2	THR-478 GLU-483
4	МАОВ	Rosamarinic acid	5362	2	TYR-393 ARG-36

OPEN OACCESS Freely available online

				THR-478
				ILE-477
				ARG-120
MAOB	Rutin	5034	7	ARG-127
				ARG-484
				ASN-116
				THR-480
				GLU-483
MAOB	Urosolic acid	5442	3	ILE-477
				TYR-112
МАОВ	Stachydrine	2936	1	GLN-206
	МАОВ	MAOB Urosolic acid	MAOB Urosolic acid 5442	MAOB Urosolic acid 5442 3

Table 4(C2): Docking results of MAOB receptor with compounds from NETTLE.

Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	MAOB	Histamine	2674	0	
2	MAOB	Formic acid	1360	2	TYR-326 ILE-199
3	MAOB	Acetylcholine	3552	0	
4	MAOB	Serotonin	3786	2	TYR-60 SER-59

Table 4(C3): Docking results of MAOB receptor with compounds from PLANTAGO OVATO.

PLANTAGO OVATO

Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids
1	МАОВ	Arabinose	2508	3	SER-394 GLY-13 ARG-36
2	МАОВ	Xylose	2740	2	GLN-206 TYR-435
3	МАОВ	Valine	2682	2	GLU-34 TYR-393
4	MAOB	Alanine	2188	1	VAL-235
5	МАОВ	Glutamic acid	2850	2	GLU-34 ALA-263
6	МАОВ	Glycine	1798	3	ALA-429 THR-428 ARG-415
7	MAOB	Cysteine	2364	1	VAL-235
8	МАОВ	Lysine	3284	0	
9	МАОВ	Leucine	2822	2	TYR-393 GLU-34
10	MAOB	Tyrosine	3624	2	ARG-42 TYR-393
11	МАОВ	Rhamnose	2748	2	TYR-393 ARG-36

 Table 4(C4): Docking results of MAOB receptor with compounds from TURMERIC.

	TURMERIC							
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids			
1	МАОВ	Curcumin	5900	4	ARG-42 Ala-439 Glu-34 Ile-264			
2	МАОВ	Camphene	3148	1	TYR-398			
2	MAOB	Camphene	3148	1	TYR			

Bagchi P, et al.

Table 4(C5): Docking results of MAOB receptor with compounds from DANDELION.

DANDELION										
Sl.no	Receptor	Ligand	Docking score (kcal/mol)	No. of interactions	Interacting amino acids					
1	МАОВ	Taraxacin	4340	2	GLN-206 CYS-172					
2	МАОВ	Laevulinic acid	2646	3	CYS-172 TYR-435 TYR-188					
3	MAOB	Choline	2640	0						
4	МАОВ	Lecithin	6636	5	ASP-132 GLN-464 SER-465 PRO-467 GLU-466					

Table 5: ADME screening.

ADME Screening								
Ligands	miLogP	TPSA	Natoms	MW	volume	n violations		
Acetylcholine	-3.56	26.3	10	146.21	156.67	0		
Alanine	-2.69	63.32	6	89.09	84.31	0		
Arabinose (Oxane-2,3,4,5-tetrol)	-2.22	90.15	10	150.13	126.96	0		
Betulinic acid (Lup-20(29)-en-28-oic acid, 3beta-hydroxy-)	7.04	57.53	33	456.71	472.04	1		
Camphene	3.33	0	10	136.24	152.37	0		
Choline	-4.24	20.23	7	104.17	120.16	0		
Curcumin	2.3	93.07	27	368.38	332.18	0		
Cysteine	-2.71	63.32	7	121.16	102.22	0		
Delphinic acid (Isovaleric acid)	1.21	37.3	7	102.13	106.39	0		
Formic acid	-0.51	37.3	3	46.02	39.64	0		
Glutamic acid	-3.25	100.62	10	147.13	128.36	0		
Glycine	-2.55	63.32	5	75.07	67.73	0		
Histamine	-0.85	54.71	8	111.15	109.77	0		
Lecithin	2.69	101.97	44	643.89	668.3	1		
Leucine	-1.38	63.32	9	131.18	134.5	0		
Levulinic acid	-0.35	54.37	8	116.12	108.78	0		
Lysine	-3.18	89.34	10	146.19	146.25	0		
Oleanoic acid	6.72	57.53	33	456.71	471.14	1		
Rhamnose (6- Methyloxane-2,3,4,5- tetro)l	-1.64	90.15	11	164.16	143.55	0		
Rosmarinic acid (Rosmarinsaure)	1.63	144.52	26	360.32	303.54	0		
Rutin (Vitamin P	-1.06	269.43	43	610.52	496.07	3		
Serotonin	0.57	62.04	13	176.22	165.93	0		
Stachydrine	-5.31	40.13	10	143.19	142.62	0		
Taraxacin	2.56	43.38	18	242.27	220.04	0		
Tyrosine	-1.71	83.55	13	181.19	163.98	0		
Urosolic acid (Carissic acid)	6.79	57.53	33	456.71	471.49	1		
Valine	-1.91	63.32	8	117.15	117.7	0		
Xylose (Ribose, D)	-2.22	97.98	10	150.13	130.97	0		

OPEN OACCESS Freely available online

Figure 2A: ASCL1 docking images.Figure 2B: GCH1 docking images.Figure 2C: MAOB docking images.

Bagchi P, et al.

ADME

The phytocompounds used in this work are subjected to ADME screening using molinspiration server [16-18]. The results are noted in Table 5 [1]. From the above table it is seen that the compounds betulinic acid, rutin and lecithin have 1, 3 and 1 violations respectively. Compound curcumin successfully clears ADME studies as it shows NO violations in the Lipinski rule of 5.

CONCLUSION

As per the virtual screening studies we find the phytocompounds betulinic acid, rutin, lecithin and curcumin docks with all the receptor genes. As per ADME studies compounds betulinic acid, rutin and lecithin cannot be considered as drug lead as they show 1, 3 and 1 violation respectively in ADME studies (as per Table 5). Compound curcumin successfully clears ADME studies (as per Table 5, there are no violations in the ADME properties of curcumin and hence the compound curcumin can be successfully considered as novel drug for phenylketonuria disease.

REFERENCES

- Hegde G, Anuradha M, Bagchi P. Establishing a Remedy for Phenylketonuria Disease from Medicinal Herbs. Intern J Public Mental Health & NeuroSci. 2018;5:20-26.
- 2. Antshel KM. ADHD, Learning and Academic performance in phenylketonuria. Mol GenetMetab. 2010; S1:S52-58.
- Burton BK, Leviton L, Vespa H, Coon H, Longo N, Lundy BD, et al. A diversified approach for PKU treatment: Routine screening yields high incidence of psychiatric distress in phenylketonuria clinics. Mol Genet Metab. 2013;108:8-12.
- Huijbregts SC, de Sonneville LM, Licht R, van Spronsen FJ, Sergeant JA. Short-term dietary interventions in children and adolescents with treated phenylketonuria: effects on neuropsychological outcome of a well-controlled population. J Inherit Metab Dis. 2002;25:419-30.
- Jahja R, van Spronsen FJ, de Sonneville LM, van der Meere JJ, Bosch AM, Hollak CE, et al. Social-cognitive functioning and social skills in patients with early treated phenylketonuria: a PKU-COBESO study. J Inherit Metab Dis. 2016;39:355-362.
- 6. Khalid MS, Ahmed HM. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis and therapeutic strategies. Int J Health Sci. 2017;11: 63-70.
- 7. Koch R, Burton B, Hoganson G, Peterson R, Rhead W, Rouse

B, et al. Phenylketonuria in adulthood: a collaborative study. J Inherit Metab Dis. 2002;25:333-46.

- 8. Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR. Metaanalysis of Neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev. 2007;17:91-101.
- 9. Naz AH, John C. Phenylketonuria: a review of current and future treatments. Transl Pediatr. 2015;4:304-317.
- Donakonda S, Sinha S, Dighe SN, Rao MRS. System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer. Mol Biosyst. 2017;13:1481-1494.
- Garavaglia B, Invernizzi F, Carbone ML, Viscardi V, Saracino F, Ghezzi D, et al. GTP-cyclohydrolase I gene mutations in patients with autosomal dominant and recessive GTP-CH1 deficiency: identification and functional characterization of four novel mutations. J Inherit Metab Dis. 2004;27: 455-463.
- 12. Schedin WS, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with I-secretase and regulates neuronal amyloid I- peptide levels. Alzheimers Res Ther. 2017;9:57.
- 13. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779-815.
- Laskoswki RA, MacArthur MW, Moss DS, Thorton JM. Procheck: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283-291.
- 15. Schneidman DD, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res. 2005;33:W363-367.
- 16. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43:3714-3717.
- 17. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and Computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev. 1997;23:4-25.
- Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol. 2018;S0022-2836(17)30587-9.