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Abstract
Age is a well-established risk factor for chronic diseases. However, the cellular and molecular changes associated 

with aging processes that are related to chronic disease initiation and progression are not well-understood. Thus, there 
is an increased need to identify new markers of cellular and molecular changes that occur during aging processes. 
In this study, we use genome-wide DNA methylation from 26,428 CpG sites in 13,877 genes to investigate the 
relationship between age and epigenetic variation in the peripheral blood cells of 972 African American adults from 
the Genetic Epidemiology Network of Arteriopathy (GENOA) study (mean age=66.3 years, range=39-95). Age was 
significantly associated with 7,601 (28.8%) CpG sites after Bonferroni correction for α=0.05 (p<1.89×10-6). Due to the 
extraordinarily strong associations between age and many of the CpG sites (>7,000 sites with p-values ranging from 
10-6 to 10-43), we investigated how well the DNA methylation markers predict age. We found that 2,095 (7.9%) CpG 
sites were significant predictors of age after Bonferroni correction. The top five principal components of the 2,095 
age-associated CpG sites accounted for 69.3% of the variability in these CpG sites, and they explained 26.8% of 
the variation in age. The associations between methylation markers and adult age are so ubiquitous and strong that 
we hypothesize that DNA methylation patterns may be an important measure of cellular aging processes. Given the 
highly correlated nature of the age-associated epigenome (as evidenced by the principal components analysis), whole 
pathways may be regulated as a consequence of aging.
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Introduction
Age is a well-established risk factor for chronic diseases [1,2]. 

However, the cellular and molecular changes associated with aging 
processes that are related to chronic disease initiation and progression 
are not well-understood. As the United States transitions into an 
unprecedented increase in the number of aging adults over the next 
few decades [3], there is an increased need to identify new markers 
of cellular and molecular changes that occur during aging processes. 
These new markers may lead to earlier identification and more effective 
treatments for chronic disease. 

Genetic biomarkers of age include telomere length, gene 
expression, and DNA methylation patterns. Telomere length decreases 
with age, and a recent review of 124 cross-sectional studies estimated 
a mean telomere loss of 24.7 base pairs per year in leukocytes [4]. 
Some [5,6], but not all [7], cross-sectional and longitudinal studies 
of telomere length in leukocytes have shown that African Americans 
have longer telomere lengths than European Americans, after adjusting 
for age. Telomere loss has also been shown to happen faster in African 
Americans [5,7]. Since telomere length has also been shown to be 
associated with chronic disease status, particularly cardiovascular 
disease [8] and mortality [9], it may serve as an important biomarker 
for human aging. Gene expression patterns have also recently shown 
promise as a physical marker of aging in humans. A study by Harries, 
et al. found that approximately 2% of transcripts genome-wide are 
robustly associated with age, and that six gene expression probes could 
be used to build an efficient model to distinguish between younger (<65 
years) and older (≥75 years) subjects [10]. To date, little work has been 
conducted on gene expression patterns and their association with age in 
African American populations.

Recently, differential DNA methylation patterns that affect gene 
expression have been shown to be associated with aging [11]. More 
specifically, age has been found to be associated with methylation 
status in pathways related to liver development and metabolism 
[5,12], inflammation, endothelial function, oxidation [13,14], and 
tumor suppression [15,16]. Since DNA methylation and other 
epigenetic mechanisms provide a potentially modifiable link between 
a gene’s expression and a resulting phenotype [17-20], unraveling 
the relationship between epigenetic mechanisms and cellular aging 
processes is crucial to understanding the origins of chronic diseases and 
target organ damage that accompanies aging. 

Many prior preliminary studies that have investigated the 
relationship between DNA methylation and aging processes have 
either focused on specific genomic regions, such as genes in a single 
biological pathway [13,14], or have investigated average whole-genome 
DNA methylation [11,21]. Studies of whole-genome methylation have 
consistently shown an overall decrease in methylation with increased 
age. Methylome-wide studies conducted in a variety of tissue types 
and across a wide range of age groups are now emerging [22-27]. 
These studies have shown significant age-associated changes in DNA 
methylation at many loci throughout the genome in pediatric (N=398 
[23]; N=15 [24]) and adult populations (N=68 [22]; N=63 [23]; N=93 
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[26]). A few of the age-associated methylation sites have been shown 
to have a significant overlap between pediatric and adult populations 
[23,24]; however, the rate of change of DNA methylation with age is 
estimated to be three- to four-fold faster in pediatric populations 
[23]. In accordance with the whole-genome methylation studies, the 
comparison of a newborn and a centenarian genome showed more 
hypomethylated DNA in the centenarian genome across promoters, 
exonic, intronic, and intergenic regions, though a greater level of 
methylation was observed in CpG island promoter regions [27]. 
Methylome-wide and gene-specific studies have also focused on 
developing predictive models for age [22,28]. For example, Bocklandt 
et al. showed that the methylation of three CpG sites is linear with age 
in adults 18 to 70 years of age, and can predict age with high accuracy 
(an average of 5.2 years) [22].

Despite the benefits of preliminary studies discussed above, the 
majority of methylome-wide studies have been conducted in European 
American samples and/or have consisted of relatively small sample 
sizes (N<400). In this study, we use genome-wide DNA methylation 
information from 26,428 individual CpG sites in 13,877 genes to 
investigate the relationship between age and epigenetic variation 
in the peripheral blood cells of 972 African American adults from 
the Genetic Epidemiology Network of Arteriopathy (GENOA) 
study. We also compare our findings across 4 studies that used the 
same method for measuring DNA methylation (Illumina Infinium 
HumanMethylation27 BeadChip) to identify those sites that replicate 
across studies. Building off of other studies, this work can help to begin 
identifying the chromosomal regions and pathways involved in the 
epigenetics of aging.

Methods
Sample 

The Genetic Epidemiology Network of Arteriopathy (GENOA) 
study is a community-based study of hypertensive sibships that was 
designed to investigate the genetics of hypertension and target organ 
damage in African Americans from Jackson, MS [29]. In the initial 
phase of the GENOA study (Phase I: 1996-2001), all members of 
sibships containing ≥2 individuals with essential hypertension clinically 
diagnosed before age 60 were invited to participate, including both 
hypertensive and normotensive siblings (N=1,854). In the second phase 
of the GENOA study (Phase II: 2000-2004), 1,482 participants were 
successfully re-recruited for a second examination. DNA methylation 
was measured on 1,008 African American participants using stored 
blood samples collected during the second (Phase II) examination. The 
Phase I and II examinations included questionnaires to assess health 
status, health behaviors, and medical history; physical examination 
for blood pressure, height, and weight; and fasting blood samples 
for creatinine, cholesterol, glucose, insulin, and other biochemical 
measures [30]. 

Measurement of DNA methylation

Sample preparation and methylation assay: DNA was isolated 
from peripheral blood leukocytes obtained from stored blood samples, 
and was bisulfite-converted with the EZ DNA Methylation Gold Kit 
(Zymo Research, Orange CA). Bisulfite-converted DNA samples were 
whole-genome amplified, enzymatically fragmented, and purified, then 
hybridized to Illumina Infinium HumanMethylation27BeadChips, 
which contain locus-specific DNA oligomers and a set of 56 control 
probes. The array was then fluorescently stained, scanned using the 
Illumina BeadXpress reader, and assessed for fluorescence intensities 
across the methylated and unmethylated bead types at 27,578 CpG sites 
[31-33]. This work was performed at the Genotyping Core in the Mayo 

Clinic Advanced Genomics Technology Center (Rochester, MN).

Data processing and methylation quantification: At each CpG 
site, fluorescent signals were measured from the site-specific M 
(methlyated) and U (unmethylated) bead types. The raw fluorescence 
data was processed using Illumina BeadStudio. To reduce batch and 
chip effects, the correlation structure among all 56 control probes was 
evaluated within channel to identify the most parsimonious subset of 
probes that explained the maximum amount of batch and chip variation 
across samples (5 probes in the red channel and 8 probes in the green 
channel). We adjusted for batch and chip effects by linearly regressing 
the 13 selected probes onto the intensity signals from the methylated 
and unmethylated bead types separately across each CpG site. 

Before statistical analysis, samples were checked for data quality. 
Seven samples were excluded from analysis due to poor bisulfite 
conversion efficiency (intensity <4,000), and an additional 29 samples 
were excluded due to extreme control probe values (i.e., at least one 
control probe greater than four standard deviations from its mean 
value). This resulted in a total sample size of 972. 

In this study, we analyzed only autosomal CpG sites. Since our 
modeling strategy assumes that the error terms for the regression on 
CpG sites are normally distributed [34], we removed 58 CpG sites from 
the analysis because they were found to be multimodal based on the 
Dip Test of unimodality proposed by Hartigan and Hartigan [35] using 
a cut-off of p<0.001 on the signal intensities of the methylated and/or 
unmethylated bead types. This resulted in 26,428 CpG sites included in 
our analysis. We next identified the 2,984 CpG sites with non-specific 
binding probes and 908 CpG sites with polymorphic probes that overlap 
with single nucleotide polymorphisms (SNPs) reported by Chen et 
al. [36]. Although these sites were not removed from the analysis, we 
have interpreted the results from these sites with caution. That is, we 
acknowledge that the relationship between DNA methylation and age 
at these sites may be in part influenced by probe characteristics.

Finally, an M-value for each individual i at a single CpG site, k, was 
calculated as: M-valueik=log2[(max(Mik,0)+1) / (max(Uik,0)+1)] [37]. 
Relatively unmethylated M-values were considered to be <-2, methylated 
M-values were >2, and semi-methylated M-values were between -2 and 
2. These M-value cut-offs correspond to β values of 0.2 and 0.8 [37], 
where β is the ratio of the signal from the methylated probe to the sum 
of the methylated and unmethylated probes, as follows: βik=max(Mik,0) 
/ (max(Mik,0)+ max(Uik,0)+100). M-values greater than four standard 
deviations from the mean of each CpG site were removed because these 
values are discontinuous with the distribution and extend beyond the 
point where 99.9% of the values are predicted to lie, according to the 
Empirical Rule [38]. A total of 28,278 outliers were removed from 
the 26,428 CpG sites included in the analysis. The number of outliers 
removed ranged from 0 to 34 across all sites (mean=1.07, sd=1.74).

Statistical analyses

Linear mixed effects modeling: We used a linear mixed effects 
modeling approach to evaluate the cross-sectional associations 
between DNA methylation and age while accounting for the familial 
relationships among study participants using the nlme package in 
R [39]. In order to examine the effects of age on DNA methylation, 
we considered each of the 26,428 individual CpG sites separately as 
outcomes, with participant age as a covariate in the following model: 
Eijk=β0 + β1Ageij + Wjk + εijk, for participant i in sibship j at CpG site 
k. Ageij represents participant age at Phase II exam, Eijk is the M-value 
of CpG site k, and Wjk is the random effect for each sibship. Thus, in 
each model, sibship was modeled as a random intercept, and the rest of 
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the effects were modeled as fixed effects. In performing this modeling, 
four CpG sites exhibited convergence issues and were subsequently 
removed from the analysis. The Bonferroni method was used to assess 
experiment-wise statistical significance of the p-values (Bonferroni-
corrected p-value=1.89×10-6 for a significance level of α =0.05).

Due to the extraordinarily strong associations between age and 
many of the CpG sites (>7,000 sites with p-values ranging from 
10-6 to 10-43), we wanted to assess the joint effects of CpG sites with 
age. We first used a set of models to evaluate how well each of the 
DNA methylation markers predicted age. In these models, age was 
the outcome and each of the 26,428 CpG sites were predictors, 
individually, in a linear mixed model: Ageijk=β0 + β1Eijk + Wjk + εijk 
for participant i in sibship j at the kth CpG site. We again used the 
Bonferroni method to assess experiment-wise statistical significance 
(Bonferroni-corrected p-value=1.89x10-6).

In order to better understand the joint effects and correlation 
structure of the large number of CpG sites associated with age, we 
performed principal component (PC) analysis. We calculated PCs 
using all 2,095 CpG sites that were significantly associated with age at 
1.89x10-6. From the scree plot of the PCs, we identified elbow points at 
1 PC, 5 PCs, and 10 PCs. Next, we evaluated the bivariate association 
between age and each of the top five PCs in separate mixed models such 
that Ageij=β0 + β1PCij + Wj + εij. Finally, we evaluated the association 
between age and the top five PCs combined in a multivariable mixed 
model such that Ageij=β0 + β1 PC1ij + β2 PC2ij + β3 PC3ij + β4 PC4ij + 
β5 PC5ij + Wj + εij, for participant i in sibship j. We also constructed a 
multivariable mixed model using the top 10 PCs. R2 values based on 
likelihood ratio models (R2

LR) were calculated for each model using the 
R package lmmfit [40].

Results
Description of data: After exclusions, this study used phenotype 

and methylation data from 972 African Americans in 296 sibships 
across 26,428 CpG sites. The sample was predominantly female (70.7%) 
and hypertensive (82.5%), with mean age of 66.3 years and mean body 
mass index (BMI) of 31.2 kg/m2. Additional descriptive statistics are 
presented in Table 1. The mean M-value for each of the 2,428 CpG sites 
ranged from -5.37 to 5.07 with an average mean M-value across all sites 

of -1.58 (Figure 1). The majority of the sites (15,221 sites, 57.6%) were 
unmethylated, with a mean M-value of <-2. 

Associations between age and CpG sites: In modeling age as 
a predictor of M-value, age was significantly associated with 7,601 
(28.8%) CpG sites after Bonferroni correction for α=0.05. Of the sites 
with statistically significant associations, 671 (8.8%) contained non-
specific binding probes, 159 (2.1%) contained polymorphic probes, 
and nine sites (0.12%) had both non-specific binding and polymorphic 
probes as defined by Chen et al. [36]. Adding sex as a covariate into 
the model did not substantially change the associations between age 
and the CpG sites (7,410 of the 7,601 associations were still significant 
after accounting for sex). Table 2 shows the 30 CpG sites that were 
most strongly predicted by age. A striking finding of this analysis is 
that age had an inverse association with all but two of the top 30 CpG 

 Total N Mean (SD) Range
Age, years 972 66.3 (7.6) 39-95
BMI, kg/m2 965 31.2 (6.1) 16.4-55.1
Systolic BP, mm Hg 970 140 (21) 79-221
Diastolic BP, mm Hg 972 78 (11) 45-121
Total cholesterol, mg/dL 972 203.7 (42.1) 73.5-354.5
Triglycerides, mg/dL 963 116.6 (53.8) 37-345
HDL cholesterol, mg/dL 967 57.9 (17.1) 21.7-122.3
LDL cholesterol, mg/dL 972 123.6 (39.7) 24.9-272.1
Glucose, mg/dL 951 108.6 (29.6) 49.5-245
Insulin, mU/mL 953 9.23 (8.25) 0.22-58.29
Serum creatinine, mg/dL 961 0.92 (0.25) 0.42-2.16
 Total N Count Percent
Female sex 972 687 70.7%
Ever smoker 909 266 29.3%
Hypertension 972 802 82.5%
Diabetes 972 298 30.7%
Obesity 968 467 48.2%

BMI=body mass index, BP=blood pressure, HDL=high density lipoprotein, LDL=low 
density lipoprotein. Obesity is defined as BMI>30 kg/m2.

Table 1: Baseline characteristics of GENOA participants.

Figure 1: Distribution of mean M-value across 26,428 CpG sites.

Figure 2: T-statistic distribution of regression of M-value on age vs. mean 
M-value of corresponding CpG site for 26,428 DNA methylation markers. Red 
vertical lines at -2 and 2 represent delineation of unmethylated and methylated 
levels of CpG sites, such that sites having mean M-value <-2 are considered 
unmethylated, and sites having mean M-value >2 are methylated. 
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sites, indicating that increased age is strongly associated with decreased 
methylation at the majority of the most strongly associated sites. 

The tendency for age to be inversely associated with CpG site 
methylation was also observed in the 7,601 CpG site M-values that 
were significantly predicted by age. Figure 2 shows the relationship 
between the mean M-value at each of the 26,428 sites and the 
t-statistic corresponding to the regression coefficient for age. The 
t-statistic on the y-axis provides two types of information: a) the 
magnitude of the association with age, and b) the direction of the 
association with age. For example, a t-statistic of -5.0 represents a 
p-value=5x10-7 and indicates that increasing age is associated with 
decreasing methylation. Of the 7,601 sites statistically significantly 
associated with age, 7,292 (95.9%) had negative t-statistics, while 
only 309 (4.1%) had positive t-statistics. Of the 7,292 CpG sites with 
negative t-statistics, 5,589 sites (76.6%) were unmethylated, 1,675 
(23.0%) were semi-methylated, and 28 (0.4%) were methylated. The 
increased density of negative t-statistics for unmethylated markers 
(M-values < -2) indicates that they are increasingly less methylated 
with older age. In contrast, of the 309 sites with positive t-statistics, 

34 (11.0%) were unmethylated, 106 (34.3%) were semi-methylated, 
and 169 (54.7%) were methylated. The increased density of positive 
t-statistics for methylated markers (M-values >+2) indicates that 
these methylated markers are increasingly more methylated with 
older age. A final feature of the genome-wide results displayed in 
Figure 2 is that it appears that vast majority of the most significant 
associations with age (p<10-10) were in markers that are semi-
methylated (M-values between -2 and +2). 

Given the very large number of highly significant age associations 
with DNA methylation at CpG sites, we investigated how well the DNA 
methylation markers could predict age. We examined linear mixed 
models of CpG site M-values as predictors of age and found 2,095 
(7.9%) sites that were significant predictors of age after Bonferroni 
correction with experiment-wise α=0.05. Supplemental Table 1 shows 
the 30 CpG sites that had the strongest association with age. Nearly 
all (2,086, 99.6%) of these sites were also significant in the previously 
evaluated regression of M-values on age, and had the same direction 
of effect. 

Principal components of the 2,095 age-associated CpG sites 
were estimated in order to examine the features of the multivariable 

Outcome Chr Gene Mean (SD) M-value Probe Type** N β(Age) p-value
cg19761273 17 CSNK1D -1.98 (0.3) 0 972 -0.0179 8.45E-43
cg15538427 11 LOC221091 -0.11 (0.22) 0 969 -0.0128 3.24E-40
cg01820374 12 LAG3 -0.67 (0.31) 0 970 -0.0160 6.23E-33
cg17471102 19 FUT3 0.67 (0.29) 0 969 -0.0145 1.64E-31
cg15804973 6 MAP3K5 -0.63 (0.34) 0 972 -0.0167 1.14E-30
cg03996822 4 RASSF6 -0.21 (0.33) 0 972 -0.0161 2.67E-29
cg25538571 8 FLJ46365 -0.67 (0.31) 1 972 -0.0149 7.08E-29
cg00451635 16 EMP2 0.62 (0.33) 0 969 -0.0156 2.34E-28
cg19722847 12 IPO8 -1.78 (0.32) 0 971 -0.0152 8.15E-28
cg14244577 16 DDX19B -1.7 (0.28) 0 971 -0.0132 8.99E-28
cg08888956 12 NTS 0.04 (0.27) 0 972 -0.0128 2.13E-27
cg05442902 22 P2RXL1 -1.71 (0.25) 0 971 -0.0115 3.53E-27
cg17034109 1 CYB561D1 0.16 (0.25) 0 971 -0.0114 9.10E-27
cg16744741 4 PRKG2 -0.46 (0.35) 0 972 -0.0160 5.44E-26
cg15037004 5 ZNF366 -0.15 (0.23) 0 970 -0.0107 9.61E-26
cg00431114 20 C20orf121 -1.02 (0.27) 0 972 -0.0125 1.60E-25
cg22736354 6 NHLRC1 -1.6 (0.39) 0 972 0.0177 2.00E-25
cg00168942 10 GJD4 0.05 (0.26) 0 971 -0.0119 4.31E-25
cg07158339 9 FXN -1.19 (0.32) 0 972 -0.0139 5.93E-25
cg04474832 3 ABHD14A -1.72 (0.28) 0 972 -0.0125 6.08E-25
cg27015931 16 MGC50721 -2.72 (0.29) 0 971 -0.0127 6.75E-25
cg04662594 8 EPB49 -0.81 (0.38) 1 972 -0.0166 2.75E-24
cg03172991 19 NFIX 0.53 (0.16) 0 970 -0.0073 3.86E-24
cg08587542 5 KIAA0141 -2.42 (0.28) 0 971 -0.0124 4.75E-24
cg05724065 7 PHKG1 1.52 (0.28) 0 970 -0.0121 5.03E-24
cg08090640 17 IFI35 -1.15 (0.36) 0 971 -0.0160 6.62E-24
cg21232015 12 CHFR 2.49 (0.32) 0 970 0.0138 8.36E-24
cg08319238 19 BCAM -1.97 (0.24) 0 970 -0.0105 8.66E-24
cg09706243 11 POLD4 -0.97 (0.27) 0 969 -0.0117 1.35E-23
cg03143849 11 CDKN1C -0.22 (0.24) 0 970 -0.0104 1.47E-23

Model: Eij=β0 + β1Ageij + Wj

Probes are designated as polymorphic and/or non-specific binding according to Chen et al. [36]. 
** 0=Neither polymorphic nor non-specific binding, 1=Polymorphic. 
CpG sites listed within this table were not among those with non-specific binding probes.

Table 2: Top 30 methylation sites most strongly predicted by age.
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distribution of significant epigenetic predictors of age (Table 3). The 
top five principal components accounted for 69.3% of the variability in 
the 2,095 CpG sites, and the next five principal components accounted 
for an additional 4.7% (i.e., a total of 74.0%). When each of the top 
five PCs was used as a predictor of age, each of the first four PCs was 
significantly associated with age. In a multivariate model, the top five 
PCs combined explained 26.8% of the variation in age. The linear mixed 
model containing the top 10 together explained an additional 9.22% 
(i.e., a total of 36.5%) of the variation in age.

Discussion
Our findings in GENOA African Americans suggest that age and 

DNA methylation are very strongly associated at many CpG sites across 
the genome (28.8% of the CpG sites that we examined). In this study, 
the associations between the methylation markers and adult age are 
so ubiquitous and strong that we hypothesize that DNA methylation 
patterns may be an important measure of cellular aging processes in 
this population. Given the highly correlated nature of the age-associated 
epigenome (as evidenced by the principal components analysis), whole 
pathways may be regulated as a consequence of aging.

Consistent with previous studies in humans and other vertebrates 
[41-43], we found that the majority of CpG sites (95.9%) tended to 
be less methylated with increased age (Figure 2). These changes in 
methylation may contribute to chronic diseases through a variety of 
mechanisms. For example, it has been found that loss of methylation 
in CpG dinucleotides over time may transcriptionally activate silenced 

retrotransposons and lead to genomic instability [44,45]. We also 
detected a minority of sites (4.1%) that were more methylated with 
increased age. Increases in methylation at CpG dinucleotides may 
prevent the binding of transcription factors and potentially suppress 
gene expression [46]. More investigation of the pathways implicated in 
these sets of sites may lead to important insights into aging and disease 
processes. However, replication of these sites would be an important 
prerequisite to detailed pathway analysis.

Previous research has indicated that DNA methylation is a molecular 
representation of the cellular memory of environmental experiences. 
We found that the joint effects of 2,095 CpG sites, represented in the top 
10 principal components, were able to explain ~36% of the variation 
in our GENOA African American adults (mean age=66.3 years; 
SD=7.6). This indicates that epigenetic markers may be an important 
link to understanding the genetic and environmental components that 
contribute to inter-individual differences in the aging process. 

Several other studies conducted in a variety of populations have 
examined the association between age and DNA methylation across 
the genome using the same Illumina Infinium HumanMethylation27 
microarray platform that was used in this study [22-25]. We were able 
to replicate many of the associations between CpG sites and age that 
were detected in other studies; however, the extent of replication in 
GENOA African Americans varied according to the age distribution of 
the other study population, as well as the tissue type used to measure 
methylation. Table 4 summarizes the findings from studies that have 
examined the association between age and DNA methylation and the 

CpG site Chr Gene Mean (SD) M-value Probe Type** N β(CpG) p-value
cg19761273 17 CSNK1D -1.98 (0.3) 0 972 -9.36 8.51E-36
cg15538427 11 LOC221091 -0.11 (0.22) 0 969 -12.42 2.44E-33
cg01820374 12 LAG3 -0.67 (0.31) 0 970 -8.90 2.75E-31
cg17471102 19 FUT3 0.67 (0.29) 0 969 -9.35 6.75E-30
cg03996822 4 RASSF6 -0.21 (0.33) 0 972 -7.80 1.24E-27
cg22736354 6 NHLRC1 -1.6 (0.39) 0 972 6.26 1.20E-25
cg00451635 16 EMP2 0.62 (0.33) 0 969 -7.51 3.85E-25
cg25538571 8 FLJ46365 -0.67 (0.31) 1 972 -7.71 1.39E-24
cg15804973 6 MAP3K5 -0.63 (0.34) 0 972 -7.00 4.45E-24
cg08888956 12 NTS 0.04 (0.27) 0 972 -8.67 7.00E-24
cg16744741 4 PRKG2 -0.46 (0.35) 0 972 -6.61 2.51E-23
cg14244577 16 DDX19B -1.7 (0.28) 0 971 -8.24 3.92E-23
cg04662594 8 EPB49 -0.81 (0.38) 1 972 -6.04 8.22E-22
cg09809672 1 EDARADD -0.35 (0.44) 0 972 -5.27 8.51E-22
cg00431114 20 C20orf121 -1.02 (0.27) 0 972 -8.09 1.70E-21
cg17034109 1 CYB561D1 0.16 (0.25) 0 971 -8.91 1.83E-21
cg23124451 22 CBX7 0.37 (0.37) 0 971 -5.71 2.11E-21
cg04474832 3 ABHD14A -1.72 (0.28) 0 972 -7.75 2.17E-21
cg00168942 10 CX40.1 0.05 (0.26) 0 971 -8.20 2.66E-21
cg03172991 19 NFIX 0.53 (0.16) 0 970 -13.09 3.41E-21
cg05724065 7 PHKG1 1.52 (0.28) 0 970 -7.79 7.14E-21
cg09706243 11 POLD4 -0.97 (0.27) 0 969 -8.09 9.85E-21
cg05442902 22 P2RXL1 -1.71 (0.25) 0 971 -8.51 1.26E-20
cg15297650 2 DKFZP566N034 -0.04 (0.29) 0 972 -7.20 1.10E-19
cg10917602 16 HSD3B7 0.42 (0.43) 0 971 -4.93 1.33E-19
cg00308665 13 HTR2A 0.03 (0.3) 0 971 -7.08 1.61E-19
cg17421623 3 C3orf9 -1.57 (0.37) 0 971 -5.67 1.78E-19
cg15037004 5 ZNF366 -0.15 (0.23) 0 970 -8.88 1.85E-19
cg17324128 10 RASSF4 -2.22 (0.28) 0 972 -7.52 2.09E-19
cg20870362 9 CCIN 0.97 (0.23) 0 968 -9.13 2.25E-19

Model:  Ageij = β0 + β1 Eij + Wj 
Polymorphic and Non-Specific Probes according to Chen et al.36 
**  0 = Neither, 1 = Polymorphic.  
CpG sites listed within this table were not among those with non-specific binding probes. 

Supplemental Table 1.  Top 30 methylation sites most strongly associated with age
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extent of replication of these findings in GENOA African American 
adults.

Briefly, we replicated 84.4% of the age-associated CpG sites from 
a study of saliva samples from 34 monozygotic twin pairs aged 21-55 
years conducted by Bocklandt et al. [22] (p-value <0.05 in GENOA and 
the same direction of effect). In a study of whole blood methylation 
from 398 healthy males aged 3 through 17 years conducted by Alisch 
et al., we replicated 72.5% of the age-associated CpG sites [23]. Of the 
sites that we replicated from the Alisch et al. study, the majority (84.6%)
were less methylated with increasing age. In order to assess methylation 
patterns throughout different phases of development, Numata et al. 
examined methylation in the dorsolateral frontal cortex of the brain in 
study groups of varying ages (fetal (N=30), childhood, ages 0-10 years 
(N=15), and beyond childhood, age > 10 years (N=63)) [24]. Despite 
using a biologically available tissue, we replicated 13%, 49%, and 63% 
of the frontal cortex age-associated CpG sites in these study groups, 
respectively. Finally, we replicated 86% of the age-associated CpG 
sites associated from a study conducted by Teschendorff et al., which 
examined the association between age and DNA methylation from 
whole blood samples of postmenopausal women (N=113 ovarian cancer 
cases and N=148 controls) [25]. Of the sites replicated in GENOA, the 
majority (69.3%) were less methylated with increasing age. 

A variety of factors may have contributed to the differences in 
findings between the present study and previous studies. Different 
tissue types display differences in methylation patterns, and there is 
also a substantial difference between the methylation patterns observed 

between tissue samples and blood samples [47]. It is not surprising 
that we replicated a much higher percentage of the age-associated 
sites from studies that measured methylation in peripheral blood 
than studies that used tissue samples. Population demographics of 
the studies may also have contributed to differences in findings. The 
GENOA population is African American, has an older average age than 
other populations studied, and is primarily hypertensive. The higher 
prevalence of hypertension, diabetes, and obesity in this population 
and/or the higher prevalence of risk factors for these chronic diseases 
(such as diet, stress, and physical activity) may have led to specific DNA 
methylation signatures. Since we assessed a cell population of peripheral 
blood leukocytes that consists largely of neutrophils (40-75%) and 
lymphocytes (16-48%) [48], we recognize that we may be exploring 
the aging processes of these cell types which are involved in promoting 
chronic inflammation, a common correlate of common chronic 
diseases. Differences in statistical techniques and sample sizes may also 
have led to differences in the significance levels of age-associated sites, 
and hence the comparability across studies. However, despite these 
important differences between studies, we can conclude that there are 
many CpG sites that are associated with age across a variety of studies, 
and that our study contributes to a growing body of knowledge that 
indicate groupings of CpG sites that are important indicators of age and 
developmental stage across a variety of populations.

Our study does have several limitations. First, as discussed above, 
the study population is African American, of older age, and primarily 
hypertensive. Thus, findings may not be entirely generalizable to 

  Univariable Models Multivariable Model

PC % Variation Explained in 
2,095 CpG Sites β p-value R2

LR x100 β p-value R2
LR x100

1 50.65 -0.12 6.63E-06 12.72 -0.13 5.60E-08
2 9.53 0.15 0.014 10.34 0.16 3.34E-03
3 4.52 -0.69 8.84E-14 18.95 -0.72 1.03E-15
4 2.47 -0.41 4.79E-04 11.39 -0.43 7.45E-05
5 2.15 0.16 0.21 9.58 0.22 0.22 26.76

6-10 4.68
Total 74.00 36.54

Model: Ageij=β0 + β1PCij + Wj+ εij (univariable model) 
Table 3: Association between top 5 principal components (estimated from 2,095 site M-values significant with age, after Bonferroni correction for α=0.05) and age.

Citation Sample Ethnicity Tissue Findings
Number of Sites 

available in 
GENOA

Number (%) of Sites 
with Same Direction 
of Effect and p<0.05 

in GENOA 
Bocklandt et 

al. [22]
Monozygotic twins (N=34 
pairs), ages 21-55 years Not specified Saliva 88 CpG sites at q-value<0.05 

(absolute correlation>0.57) 87 65 (84%) 

Alisch et al. 
[23]

Males ages 3-17 years 
(N=398)

81% Caucasian, 1% 
African American, 4% 
Asian, 14% Other/NA

Peripheral blood cells 2,078 CpG sites at FDR<0.01 2,022 1,465 (73%) 

Numata et al. 
[24] Fetal (N=30) 40% Caucasian, 60% 

African American
Dorsolateral frontal 

cortex

865 at FDR<0.05 (top 99 
reported in supplemental 

material)
96 12 (13%) 

Childhood, ages 0-10 years 
(N=15)

5,506 at FDR<0.05 (top 99 
reported in supplemental 

material)
99 49 (49%) 

Age>10 to 83 years (N=63)
10,578 at FDR<0.05 (top 

99 reported in supplemental 
material)

99 63 (63%) 

Teschendorff 
et al. [25]

Post-menopausal women, 
ages 50-84 years (N=113 

ovarian cancer cases; 
N=148 controls)

Not specified Whole blood 589 at FDR<0.05 583 499 (86%) 

Note: All studies measured methylation using the Illumina Infinium HumanMethylation27 BeadChip
Table 4: Comparison of age-associated methylation sites between GENOA and previous studies.
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populations of other ethnic backgrounds, ages, or disease history 
profiles. However, the GENOA study is a community-based sample 
that is composed of both hypertensive and normotensive individuals 
in sibships that have demographics that are similar to other families 
in the community (age range=39-95 years) [29]. A second limitation 
is that we do not know the extent to which genetic variation influences 
epigenetic variation. If there is a substantial influence, then admixture 
in the African American community from Jackson, MS may affect the 
results of this study. A third limitation of this study is that we only have 
cross-sectional measures of methylation and age. Since we do not have 
longitudinal measures of methylation, we can’t assess how methylation 
changes with age in individual participants.

This study shows that in this population of GENOA African 
Americans, many CpG sites are strongly associated with age and predict 
a substantial amount of variation in age. Future research should include 
a closer examination of the highly significant markers to determine 
their molecular physiological role in the aging process. Another avenue 
of research would be to identify individuals with methylation profiles 
that are extremely different than their chronological age in order to 
understand how these markers translate into physiological differences. 
From a clinical and public health perspective, differences between 
chronological age and cellular age could be used to identify individuals 
at greater risk of premature aging and age-related chronic diseases.
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