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Introduction
A wide range of optimization problems, which include a large 

number of continuous and/or discrete design variables, fall into the 
category of linear programming (LP), nonlinear programming (NLP), 
integer programming (IP), mixed integer linear programming (MILP), 
and mixed integer nonlinear programming (MINLP). Gradient based 
methods such as Branch and Bound (BB), Generalized Bender's 
Decomposition (GBD), and Outer Approximation (OA), are generally 
used for solving IP, MILP, and MINLP problems. However, these 
methods have limitations whenever, the optimization problems do not 
satisfy convexity conditions, the problems have large combinatorial 
explosion, or the search domain is discontinuous [1]. Metaheuristic 
optimization strategies such as simulated annealing (SA) [2], genetic 
algorithm (GA) [3] and ant colony optimization (ACO) [4] can provide 
a viable alternative to the gradient based programming techniques. 
Review on metaheuristic algorithms can be viewed at Kahraman et 
al. [5]. One of the metaheuristic optimization techniques that attract 
researchers in recent years is an ACO algorithm. ACO algorithm was 
first introduced by Dorigo [4] and it has been receiving increased 
attention because of a series of successful applications in different 
disciplines such as routing, scheduling, machine learning, assignment, 
and design problems, and different branches of engineering [6-10]. 
Even though, ACO algorithm was practiced with great success for 
combinatorial optimization problems, in recent years, the research 
focus has been on extending the combinatorial ACO algorithm to 
continuous and mixed variable nonlinear programming problems. 
In this work, a new variant of ACO algorithm to solve deterministic 
optimization problems is proposed.

An ant colony is a population of simple, independent, asynchronous 
agents that cooperate to find a good solution to an optimization 
problem. In the case of real ants, the problem is to find good quality of 
food in a close vicinity of the nest, while in the case of artificial ants, it 
is to find a good solution to a given optimization problem [6]. A single 
ant is able to find a solution to its problem, but only cooperation among 
many individual ants through stigmergy (indirect communication) 
enables them to find good or global optimal solutions. Therefore, the 
ACO algorithm is inspired by the ants' foraging behavior. Natural ants 
deposit pheromone on the ground in order to mark some favorable 
path that should be followed by other members of the colony. ACO 

algorithm exploits a similar mechanism for solving optimization 
problems [4]. It was originally introduced to solve combinatorial 
optimization problems, in which decision variables are characterized 
by a finite set of components. However, in recent years, its adaptation 
to solve continuous [11-14] and mixed variable [15-17] programming 
problems has received an increasing attention.

In this paper, a new strategy that improves the computational 
performance of ACO algorithm by increasing the initial solution 
archive diversity and the uniformity of the random operations using a 
quasi-random sampling technique referred as Hammersley Sequence 
Sampling (HSS) [20]. This sampling mechanism has been shown to 
exhibit better uniformity property over the multivariate parameter 
space than the crude Monte Carlo sampling (MCS) and the variance 
reduction techniques such as Latin hypercube sampling (LHS) [14-
17]. The ACO benefits from the multivariate uniformity property of 
the HSS. Therefore, the main advantage of the proposed algorithm is 
the high computational efficiency attained from the EACO algorithm 
compared to the conventional ACO algorithm. 

The rest of this article is organized as follows: The Ant colony 
optimization algorithms for combinatorial, continuous and mixed 
variables are presented in the next section. In Section 3, Oracle penalty 
method to solve constrained optimization problems is introduced. The 
"Sampling Techniques" are introduced in Section 4. The efficient ant 
colony optimization algorithm proposed in this work is presented in 
Section 5. Following the benchmark problems presentation in Section 
6, results and discussions of the benchmark problems are presented in 
Section 7. Finally, the concluding remarks are presented in the Section 
8.
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Abstract
In this paper, an efficient ant colony optimization (EACO) algorithm is proposed based on efficient sampling method 

for solving combinatorial, continuous and mixed-variable optimization problems. In EACO algorithm, Hammersley 
Sequence Sampling (HSS) is introduced to initialize the solution archive and to generate multidimensional random 
numbers. The capabilities of the proposed algorithm are illustrated through 9 benchmark problems. The results of the 
benchmark problems from EACO algorithm and the conventional ACO algorithm are compared. More than 99% of the 
results from the EACO show efficiency improvement and the computational efficiency improvement range from 3% to 
71%. Thus, this new algorithm can be a useful tool for large-scale and wide range of optimization problems. Moreover, 
the performance of the EACO is also tested using the five variants of ant algorithms for combinatorial problems.
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Ant Colony Optimization
The ACO is a metaheuristic class of optimization algorithm 

inspired by the foraging behavior of real ants [6]. Natural ants randomly 
search food by exploring the area around their nest. If an ant locates a 
food source, while returning back to the nest, it lay down a chemical 
pheromone trail that marks its path. This pheromone trail will indirectly 
communicate with other members of the ant colony to follow the 
path. Over time, the pheromone will start to evaporate and therefore 
reduce the attraction of the path. The routes that are used frequently 
will have higher concentration of the pheromone trial and remain 
attractive. Thus, the shorter the route between the nest and food source 
imply short cycle time for the ants and these routes will have higher 
concentration of pheromone than the longer routes. Consequently, 
more ants are attracted by the shorter paths in the future. Finally, the 
shortest path will be discovered by the ant colony [6,8].

In ACO algorithms, artificial ants are stochastic candidate solution 
construction procedures that exploit a pheromone model and possibly 
available heuristic information of the mathematical model. The artificial 
pheromone trails (numeric values) are the sole means of communication 
among the artificial ants. Pheromone decay, a mechanism analogous to 
the evaporation of the pheromone trial of the real ant colony allows 
the artificial ants to forget the past history and focus on new promising 
search directions. Like the natural ants, by updating the pheromone 
values according to the information learned in the preceding iteration, 
the algorithmic procedure leads to very good and hopefully, a global 
optimal solution.

ACO for Discrete optimization problems

In a discrete optimization problem (shown in Eqn.1), the search 
domain of the problem is partitioned into a finite set of components, 
and the discrete optimization algorithm attempts to find the optimal 
combination or permutation of a finite set of elements from large and 
finite set of the search domain [17].
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The combinatorial search space Y is given as a set of discrete 
variables yi where i = 1, ..., NDIM, with possible set of options 
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each decision variable that satisfies all the constraints, it is a feasible 
solution of the discrete optimization problem. A solution Yy ∈∗ is 
called a global optimal if and only if; Yyyfyf ∈∀≤∗ ),()( . Therefore, 
solving a discrete optimization problem involves finding at least one

Yy ∈∗ .

To solve a discrete optimization problem, artificial ants construct a 
solution by moving from one solution state to another in a sequential 
manner. Real ants walk to locate the shortest path by choosing a 
direction based on local pheromone concentrations and a stochastic 
decision policy. Likewise, the artificial ants construct solutions by 
moving through each decision variable guided by the value of the 
artificial pheromone trial and by making stochastic decisions at each 
state.

The important differences between the real and artificial ants are 

•	 Artificial ants move sequentially through a finite set of decision 
variable set of options. Real ants move in a direction of the food 
by selecting from different passible paths, which are not finite.

•	 Real ants deposit and react to the concentration of the 
pheromone while walking. However, in artificial ants, 
sometimes the pheromone update is done only by some of the 
artificial ants, and often the pheromone updated is only after a 
complete solution is constructed.

•	 Artificial ants can introduce additional mechanisms to improve 
the solution such as adding local search strategies that does not 
exist in real ants.

The decision policy in choosing the solution component considers 
a trade-off between the pheromone intensity on a particular edge and 
the desirability of that edge with respect to the edge contribution on 
the objective function [4]. Taking these two properties of an edge into 
account, ACO algorithms effectively utilize the pheromone intensity 
which is based on the information learnt from the prior solution 
construction and the edge desirability. The decision policy is given by 
the transition probability function as shown in Eqn. 2. 

(it)ij ijprob (it)ij (it)ij ijil

βατ η
=

βατ η∑                                     (2)

where probij(it) is the probability of choosing edge ij as a solution 
component when an ant is at node i at iteration it, ij (it) τ is the 
pheromone value associated with edge ij at iteration it, ij (it) η is the 
desirability of edge ij. α and β are parameters that control the relative 
importance of pheromone intensity and desirability, respectively. If 
α  >> β, the algorithm will make decisions based on mainly on the 
learned information, represented by the pheromone, and ifα << β, the 
algorithm will act as a greedy heuristic selecting mainly the cheapest 
edges, disregarding the learned information [6].

Evaluation of the pheromone value ij (it) τ at the end of each of the 
iteration is the core of ACO algorithm. After each ant has constructed 
a solution (i.e., at each iteration) the pheromone value on each edge 
is updated. The goal of the pheromone update is to increase the 
pheromone values associated with good or promising solutions, and 
to decrease those that are associated with bad ones. The pheromone 
updating rule consists of two operations:

•	 The pheromone evaporation operation that reduces the current 
level of pheromone

•	 The pheromone additive operation: depends on the quality of 
the solutions generated at the iteration, pheromone is added to 
the edge of good solutions. The updating rule is given as follows 
[6] as shown in Eqn. 3.

ij ij ij(it 1) (it) (it)τ + = ρτ + ∆τ                                                           (3)

Where ρ is the pheromone evaporation factor representing 
the pheromone decay (0 ≤ ρ  ≤1) and ij (it)∆τ  is the pheromone 
addition for edge ij. The decay of the pheromone levels enables the 
colony to 'forget' poor edges and increases the probability of good 
edges being selected (i.e. the assumption behind this is that as the 
process continues in time, the algorithm learns to add pheromone only 
to good edges, implying that more recent information is better than 
older information). For 1→ρ , only small amounts of pheromone are 
decayed between iterations and the convergence rate is slower. This 
is characterized by the high probability of finding the global optimal 
solution at the expense computational efficiency. Whereas for 0→ρ
more pheromone is decayed resulting in a faster convergence. This 
trend leads to getting stuck at the local optimal solutions. 



Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel 
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 3 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

The pheromone addition operation is increasing the pheromone 
values associated with good or promising solutions and it is the 
main feature that dictates how an ACO algorithm utilizes its learned 
information. Typically, pheromone is only added to edges that have 
been selected, and the amount of pheromone added is proportional to 
the quality of the solution. In this way, solutions of higher quality receive 
higher amounts of pheromone [17]. The pheromone concentration 
added at iteration it is determined from Eqn. 4. 

nAnts
k

ij ij
k

(it) (it)∆τ = ∆τ∑                                                                     (4)

Where the pheromone concentration associated with ant k as function 
of the quality of the objective function is determined as shown below.
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ACO algorithm to solve discrete optimization problems has five 
most popular variants which are the ant system (AS) [4], elitist ant 
system (EAS) [4], rank based ant system (RAS), ant colony system 
(ACS) and the Max-Min ant system (MMAS). For details of the ant 
algorithm variants, the book by Dorigo and Stutzle [6] can be viewed. 
These variants are derived from the AS algorithm and they follow 
similar solution construction procedure and pheromone evaporation 
procedure. The main differences among these variants are the way the 
pheromone update and pheromone trial management are performed. 

ACO for Continuous domain optimization problem

Continuous variable optimization problems could be tackled 
with a discrete optimization algorithm only if the continuous ranges 
of the decision variables are discretized into finite sets [17]. The 
continuous ACO algorithm stores a set of K solutions in a solution 
archive which represents as the pheromone model of the combinatorial 
ACO algorithm. This solution archive is used to generate a probability 
distribution of the promising solutions over the search space. In this 
algorithm, the solution archive is first initialized and the algorithm 
iteratively finds the optimal solution by generating new solutions of 
size equal to the number of ants (nAnts). The new nAnts size solutions 
are then added to the K size solutions from the previous iteration. To 
propagate the updated K size solutions to the next iteration, the K + 
nAnts solutions are first sorted according to the quality of the objective 
function of each solution. Then, the solution archive is updated by 
keeping the best K solutions of the combined solutions and removing 
the worst nAnts size solutions. The details of the algorithm formulation 
can be found in Socha [17], but for the completion of this work the 
main features of the formulation are presented below.

Similar to the combinatorial ACO algorithm the solution 
construction of ants is accomplished in an incremental manner, i.e 
variable by variable. First, an ant chooses probabilistically one of the 
solutions in the solution archive as a solution construction guide. The 
probability of choosing solution j as guide is given by Eqn. 6:
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where jω  is the weight associated with solution j. The weight is 
determined using the Gaussian function [17] as follows:
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                                                                             (7)

where, j is rank of the solution in the archive, q is an algorithmic 
parameter and K is the size of the solution archive. The mean of the 

Gaussian function is 1, so that the best solution has highest weight 
[17]. The ant treats each problem variable i = 1, . . . NDIM separately. 
It takes value i

jx  of variable i of the jth solution guide and samples its 
neighborhood.

The algorithm for continuous domain is designed with the aim of 
obtaining multimodal one dimensional density function (PDF) from 
a set of probability density functions. Each PDF is obtained from the 
search experience and it is used to incrementally build a solution

nx ℜ∈ . Where, x is a vector of the continuous decision variables. To 
approximate a multimodal PDF [14] proposed a Gaussian kernel which 
is defined as a weighted sum of several one dimensional Gaussian 
functions gji(x) as shown in Eqn. 8.
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where { }Ki ,...,2,1∈
 
 and { }Kj ,...,2,1∈

 
identify the optimization 

problem dimensionality and ranking of the solution in the archive. jω
is vector of weights associated with the individual Gaussian function. 

ijµ is the vector of means of the individual solution components. ijσ is 
vector of the standard deviations. All these vectors have cardinality K.

Each row of the solution archive maintains the solution components 
n

jx ℜ∈
 
where xj is vector of solution of row j of the solution archive

),...,,( 21 jnjjj xxxx = , the objective function f(xj) and the weight 
associated with the solution (ωi). The objective function values and the 
corresponding weight are stored in such a way that f(x1) < f(x2), . . . 
, < f(xj), . . . , < f(xK) and  ω1 > ω2, . . . , > j , . . . , > ωK . The solutions 
in the achieve T are, therefore, used to dynamically generate the PDFs 
involved in the Gaussian kernels. More specifically, in order to obtain 
the Gaussian kernel Gi , the three parameters ( iω , iµ , and iσ ) has 
to be determined. Thus, for each Gi , the values of the ith variable of 
the K solutions in the archive will be elements of vector µi, that is, 

KijiiiKijiiii xxxx ...,,...,,...,,...,, 2121 == µµµµµ . O n 
the other hand, each component of the standard deviation vector 

Kijiiii σσσσσ ...,,...,, 21=
 
is determined as shown in Eqn. 9. 
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where { }Kj ,...,2,1∈ , ξ > 0 is a parameter that has similar effect to 
that of the pheromone evaporation parameter in combinatorial ACO 
algorithm. The higher the value of ξ leads to the lower convergence 
speed of the algorithm.

The solution archive update is performed following the three steps 
below.

•	 The newly generated solutions of size equal to the number of 
ants (nAnts) are added to the old solution archive.

•	 The combined solutions are sorted according to the quality of 
the objective functions.

•	 The first K best solutions are stored and the worst nAnts size 
solutions are removed.

ACO for Mixed-integer nonlinear programming problem

For optimization problem that includes continuous and discrete 
variables, the ACO algorithm uses a continuous-relaxation approach 
for ordering variables and similar to the combinatorial approach for 
categorical variables [17].

Ordering discrete variables: the algorithm works with indexes. In 
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similar fashion to that of the algorithm for continuous variables, the 
ACO algorithm generates values of the indexes for a new solution as 
real numbers. However, before the objective function is evaluated, a 
heuristic rule is applied for the continuous values that represent the 
discrete variables by round off the continuous values to the closest 
index, and the value at the new index is then used to evaluate the 
objective function.

Categorical discrete variables: in conventional ACO algorithm 
for combinatorial problems, solutions are constructed by choosing the 
solution component values from the finite search domain following the 
transition probability test that depend on the static pheromone value. 
However, because the solution archive replaces the pheromone model 
of the ACO algorithm, the transition probabilistic rule is modified to 
handle the solution archive.

Similar to the case of continuous variables, each ant constructs the 
discrete part of the solution incrementally. For each i = 1, NT discrete 
variables, each ant chooses probabilistically one solution component 
sci from the finite set of solution component options available

{ }iNOP
i

2
i

1
i ,...,, vvvNOPv i

j
i =∈ . The probability of choosing the jth 

value is given by Eqn. 10.
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where ωj is the weight associated with the jth available option. It is 
calculated based on the weights (ω) and some additional parameters 
as shown below:

η
ω

ω q
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j +=
                                                                                     (11)

where the weight ωjr is calculated according to Eqn. 7, jr is the index of 
the highest quality solution in the solution archive that uses value j

iv  
for the ith variable. r

iu  is the number of solutions in the archive that use 
value j

iv  for the ith variable. Therefore, the more popular value j
iv  in the 

archive, the lower is its final weight. The second component is a fixed 
value (i.e., it does not depend on the value j

iv selected):  η is the number 
of values of j

iv  from the sci available that are unused by the solutions 
in the archive, and q is the same algorithm parameter that was used in 
Eqn. 7. Some of the available categorical values j

iv  may be unused for 
a given ith decision variable in all the solutions of the archive. Hence, 
their initial weight is zero. The second component is added in order to 
enhance exploration and prevent premature convergence.

Oracle Penalty Method
The problem given in Eqn. 1 is a constrained optimization problem, 

which can be solved using a penalty method. To solve such problem, 
first the problem is transformed into unconstrained optimization 
problem by transforming the original objective function into a penalty 
function. In most cases, the penalty function is given as a weighted sum 
of the original objective function and the constraint violations [15,22]. 
In such a way, the penalty function serves as an objective function. 
The main advantage of the penalty method is its simplicity. However, 
the simple penalty methods often perform very poorly on challenging 
constrained optimization problems, while the more advanced methods 
need additional parameters thus require an additional tuning of these 
parameters. An oracle penalty method proposed by Kalagnanam [23] is 
a simple to implement and general method capable of handling simple 
and challenging constrained optimization problems. In oracle penalty 
method, the objective function is first transformed into additional 

equality constraint h0(x) = f(x) - Ω; where Ω is a parameter called 
oracle. The objective function becomes redundant in the transformed 
problem definition. Therefore, it is a constant zero function )(~ xf and 
the transformed optimization problem is presented as shown below:
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By transforming the objective function into an equality constraint, 
then minimizing the new constraint h0(x) and the residual of the 
original constraints h(x) and g(x) becomes directly comparable. The 
penalty function balances its penalty weight between the transformed 
objective function and the violation of the original constraints. 
The implementation of the oracle penalty function can be found in 
Appendix A. 

Sampling Techniques
Sampling is a statistical procedure that involves selecting a finite 

number of observations, states, or individuals from a population 
of interest. A sample is assumed to be representative of the whole 
population to which it belongs. Instead of evaluating all the members of 
the population, which would be time consuming and costly, sampling 
techniques are used to infer some knowledge about the population. 
Sampling techniques are used in a wide range of science and engineering 
applications. The most commonly used sampling technique is a 
probabilistic sampling technique which is based on a pseudo-random 
number generator called Monte Carlo Sampling (MCS). This sampling 
technique has probabilistic error bounds and large sample sizes are 
needed to achieve the desired accuracy. Variance reduction techniques 
have been applied to circumvent the disadvantages of Monte Carlo 
sampling [18,19,24].

Monte Carlo Sampling

One of the simplest and most widely used methods for sampling 
is the Monte Carlo sampling. Monte Carlo method is a numerical 
method that provides approximate solution to a variety of physical and 
mathematical problems by random sampling. In crude Monte Carlo 
approach, a value is drawn at random from the probability distribution 
for each input, and the corresponding output value is computed. The 
entire process is repeated n times producing n corresponding output 
values. These output values constitute a random sample from the 
probability distribution over the output induced by the probability 
distributions over the inputs. One advantage of this approach is that the 
precision of the output distribution may be estimated using standard 
statistical techniques. On average, the error ϵ of approximation is of the 
order O(N1/2). One important feature of this sampling technique is that 
the error bound is not dependent on the dimension. However, this error 
bound is probabilistic, which means that there is never any guarantee 
that the expected accuracy will be achieved. The pseudorandom number 
generator produces samples that may be clustered in certain regions 
of the population and does not produce uniform samples. Therefore, 
in order to reach high accuracy, larger sample sizes are needed, which 
adversely affects the computational efficiency [18,19].

Hammersley Sequence Sampling

To improve the efficiency of Monte Carlo simulations and overcome 
the disadvantages, eg, probabilistic error bounds, variance reduction 
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techniques were proposed. The sampling approaches for variance 
reduction that are used more frequently in the chemical engineering 
applications are importance sampling, Latin Hypercube Sampling 
(LHS), Descriptive Sampling, and HSS. The HSS belongs to the group 
of quasi-Monte Carlo methods [19].

LHS is one form of stratified sampling that can yield more precise 
estimates of the distribution function, and therefore reduce the number 
of samples required to improve computational efficiency. This sampling 
method was used in ACO algorithm to initialize the solution archive 
for continuous variable optimization problem [25]. LHS was designed 
to improve the uniformity properties of Monte Carlo methods. It was 
shown that the error of approximating a distribution by finite sample 
depends on the equi-distribution properties of the sample used, but 
the relationship between successive points in a sample, the randomness 
or the independence is not critical [18,19]. The main drawback of this 
stratification scheme is that it is uniform in one dimension (1D) but it 
does not provide the uniformity property in k dimensions.

HSS is an efficient sampling technique developed by Diwekar  
research group [18,19,24]. It is based on quasi-random number 
generator. HSS uses Hammersley points to uniformly sample a unit 
hypercube and inverts these points over the joint cumulative probability 
distribution to provide a sample set for the variables of interest. HSS 
technique uses an optimal design scheme for placing n points on a 
k-dimensional hypercube. This scheme ensures that the sample is 
more representative of the population showing uniformity properties 
in multi-dimensions [18,19,24]. A qualitative picture of the uniformity 
properties of the MCS and HSS techniques on a unit square is presented 
in Figure 1. In the figure, it is clearly shown that samples generated by 
the HSS technique achieve better uniformity in the parameter space 
and hence results better computational efficiency.   
 

Efficient Ant Colony Optimization (EACO) Algorithm
The proposed EACO algorithm improves the conventional 

ACO algorithm for combinatorial, continuous and mixed variable 
optimization problems by introducing the HSS technique. The 
initial solution archive diversity for continuous and mixed-variable 
optimization problems plays an important role in the performance 
of ACO algorithm. The uniformity property of the HSS technique is 
used in this step to avoid initial solution archive clustered in a small 
region of the potential solution space. Moreover, ACO algorithm 
is a probabilistic method, several random probability functions are 
involved in the algorithm procedure. Examples: in combinatorial 
ACO algorithm, the transition probability that help to choose the 
next solution component and for continuous and mixed-variable 
optimization problems, the probability of choosing ant guide from the 
solution archive. The distribution of the random numbers generated 
for the acceptance probability of a solution component and ant guide 
affects the performance of the ACO algorithm. At this stage, the 
multidimensional uniformity property of HSS is exploited to choose 
these random numbers. 

The EACO algorithm uses as termination criteria maximum 
number of solution construction steps (MaxIter), and the tolerance 
(ϵ) that is the relative difference between solutions found in two 
consecutive iterations is less than or equal to a parameter ϵ for a set of 
consecutive number of iterations, ICON. The EACO algorithm is given 
in Table 1 and Figure 2. 

T is solution archive and K is size of T. nAnts is the number of 
ants. NC, NO, NT and NDIM are the number of continuous, ordinal, 
categorical and the total number of decision variables, respectively. 
NOPT is the number of options in categorical variables.

The best features of the EACO algorithm are 

•	 The ability to exploit the multi-dimensional uniformity 
property of the Hammersley sequence sampling (HSS) 

•	 The high computational efficiency over the conventional ACO 
algorithm

•	 The ability to solve combinatorial, continuous and mixed-
integer optimization problems

•	 The ability to solve large scale convex and nonconvex 
optimization problems

Benchmark problems
The main goal of the benchmark problems is to establish the 

performance comparison between the proposed EACO algorithm and 
the conventional ACO algorithm. For combinatorial, continuous and 
mixed-variable optimization problems, 2, 3 and 4 benchmark problems, 
respectively, are used for the experimentation. In all of the benchmark 
problems, we did the experiments for 5, 10, 15, and 20 dimensional 
variables. 10 experiments for each combination of the benchmark and the 
dimensions were performed. Moreover, for the combinatorial ant algorithm, 

(a) MCS 

(b) HSS  
Figure 1: 100 sample points on a unit square using crude MCS (a) and the 
HSS technique (b).
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Figure 2: EACO algorithm for continuous, combinatorial and mixed variable 
problems.

Start program
• Set K, nAnts, NC, NO, NT, NOPT, , q, ξ and termination criteria 
• Initialize solution archive T(K, NC + NO) using HSS 
• Initialize solution archive T(K, NT) randomly from the possible options 
• Combine and evaluate the objective function of the K solutions T(K, NDIM)
• Rank solutions based on the quality of the objective function (T = rank(S1 

…SK))
• For categorical optimization problems, introduce multidimensional random 

number generated with HSS (IterMax × nAnts × NT, NOPT)
While Termination criterion is not satisfied
• Generate solutions equivalent to the number of ants (nAnts)

For all # nAnts
• Incremental solution construction

For all # NDIM
{{ Probabilistically construct continuous decision variables
{{ Probabilistically construct ordinal decision variables
{{ Probabilistically construct categorical decision variables

End for # NDIM
• Store and evaluate the objective function of the newly generated solutions

End for # nAnts
• Combine, rank and select the best K solutions, T = Best(rank(S1 ... SK ... SK+ 

nAnts), K)
• Update solution

End while
End program

Table 1: EACO Algorithm for continuous, combinatorial and mixed variable 
problem.

Function Formula Range
Combinatorial Optimization Problems
1 Travelling Salesman Problem

2 EX. II

1y
2 i 2 i 2

BC 1 2 3
i 1

f (y) (y 3) (y 3) (y 3)
=

= − + − + −∑
 [1,5]NC

Continuous Combinatorial Optimization Problems

3 Parabolic (PRCV)

NC
2

PR i
i-1

f (x) x  =∑
   [-3,3] NC

4 Ellipsoid (ELCV)

i-1NC
2n-1

EL i
i 1

f (x) 5 x  
=

=∑
   [-3,3] NC

5 Cigar (CGCV)

NC
2 4 2

CG 1 i
i 2

f (x) x 10 x  
=

= + ∑
   [-3,3] NC

Mixed-variable Combinatorial Optimization Problems

6 Parabolic (PRMV)

NC ND
2 2

PR i i
i 1 i 1

f (x, y) x   y  
= =

= +∑ ∑
   [-3,3] NM

7 Ellipsoid (ELMV)

i-1 i-1NC ND
2 2n-1 n-1

EL i i
i 1 i 1

f (x, y) 5 x  5 y
= =

= +∑ ∑
   [-3,3] NM

8 Cigar (CGMV)

NC ND
2 4 2 2 4 2

CG 1 i 1 i
i 2 i 2

f (x, y) x 10 x y 10 y  
= =

= + + +∑ ∑
   [-3,3] NM

9 EX. III
( )

i

NDNC ND
2 2

i i
i 1 i 1 i 1

f (x, y) x i / NC y cos(4 y )
= = =

= − + + π∑ ∑ ∏
   [-3,3] NM

Table 2: Benchmarks problems.

there are five most popular algorithm variants [6]. The performance of each 
variant is tested using the EACO algorithm. The performance measure 
used to evaluate the algorithms was based on the number of iterations that 
the algorithm needed to reach the global optimal of the test functions for 
the same algorithmic parameter setting and terminating criterion. The 
benchmark problems are explained below and are given in Table 2.
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•	 Traveling Salesman Problem (TSP): Given the number of cities 
to be visited and the distances between each pair of cities, find 
the shortest possible route that lead to visiting each city exactly 
once and returns back to the origin city. The TSP is an NP-hard 
combinatorial optimization problem.

•	 A TSP with known global optimal solution is also retrieved 
from the TSPLIB benchmark library accessible at http://www.
iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. 
For each variant of the combinatorial ACO optimization 
algorithm, a 16 Odyssey geographical locations (ulysses16.tsp) 
with global optimal solution of 6859 is used to perform the 
computational efficiency comparison between the EACO and 
the conventional ACO algorithm. 

•	 A pure combinatorial problem, example II of Kim and Diwekar 
[26]. This problem has one global minimum 0 when all y1; y2i; 
and y3i are equal to 3.

•	 Three test functions are used for the continuous optimization 
problems. The parabolic function is from Kim and Diwekar 
example I [26]. This function is a multidimensional parabolic 
function that has one global optimum at 0 for all decision 
variables equal to 0. The second and third test functions, which 
are the ellipsoid and cigar functions, are from Socha [17].

•	 The three test functions used for the continuous optimization 
problem are further modified to represent mixed variable 
optimization problems as shown in Table 2.

•	 Example III from Kim and Diwekar [26] which is an MINLP 
problem that has one global minimum -1 is further used as an 
MINLP benchmark problem.

•	 Case studies on real world optimization problems solved by the 
proposed EACO algorithm can be viewed in references [28,29]. 

Results and Discussions
Benchmark Problems

This section presents a comparative study between the EACO 
and the conventional ACO algorithm that use MCS for initializing 
the solution archive and generating the multidimensional random 
number to optimize the 9 benchmark problems presented in Table 2. 
The proposed EACO algorithm effectively solves discrete, continuous, 
and mixed-integer optimization problem benchmarks. The algorithm 
terminates when it reaches maximum number of solution construction 
steps, MaxIter, or if the tolerance (ϵ) that is the relative difference 
between solutions found in two consecutive iterations is less than or 
equal to a parameter ϵ for a set of consecutive number of iterations, 
ICON. 

In order to make unbiased comparison between the EACO and the 
conventional ACO algorithms, we use the same parameters to conduct 
the experiments. The results are based on 10 independent runs on 
each benchmark problem. Each run differs in the seed to generate the 
random numbers and the solution archive initialization. The parameters 
used to tackle the problems are selected after performing a number of 
experimentations using different combination of the parameters. The 
experiments to get the parameter settings are performed using the 
conventional ACO algorithm. The summary of the parameters that we 
use for the algorithms are presented in Table 3. As shown in Table 3, the 
parameter setting differs from problem to problem. The archive size K 
and the number of ants nAnts for 5 dimensional variables are 50 and 2, 

respectively. 

 x and y are vector of continuous and discrete variables, respectively. 
NC, ND, and NM are number of continuous, discrete and mixed 
variable, respectively.

EX. II and III refers to examples from Diwekar [26].

Combinatorial EACO algorithms: The results of the discrete 
benchmark problems are presented in Tables 4-5. As shown in the 
tables, for each of the 40 (3×10 + 10) pair of the experimental runs 
of the benchmark problems, the EACO algorithm shows a better 
computational efficiency than the conventional ACO algorithm. The 
iteration improvement ranges from 24.2% of the multistage turbine 
problem of example II from Kim and Diwekar [26] to 33% of the 
travelling salesman problem with 10 and 20 numbers of cities to be 
visited. For the discrete optimization problems, by keeping the diversity 
of the multidimensional random numbers, the EACO algorithm 
produces more uniform operation to guide ants in making decisions of 
accepting or rejecting the current transition probability that lead to the 
finding of a new solution component. The results in Table 4 and  5 show 
that the EACO benefits from the uniformity property and diversified 
multidimensional random number generations.

Comparison of variants of the combinatorial EACO algorithms: To 
compare the performance of the EACO algorithm with the variants of 
the combinatorial ACO algorithms, the following algorithm parameter 
settings are used. Maximum number of tour construction steps 
(MaxIter) of 1000 and absolute error between the global optimal and 
the best so-far solution ϵ = 1E-6 are used as stopping criteria. Moreover, 
the parameter settings dependent on the algorithm variant are given as 
follows. AS: α = 1; β = 3; ρ = 0.5, and nAnts = n, that is number of ants 
equal to the number of the geometrical locations (n). EAS: α = 1; β = 
5; ρ = 0.5, e = n, and nAnts = n. RAS: α = 1; β = 4; ρ = 0.6, w = 10, and 
nAnts = n. ACS: α = 1; β = 3; ρ = 0.9, ξ = 0.1, and nAnts = n. MMAS : α 
= 1; β = 5; ρ = 0.98, pbst = 0.05; and nAnts = n. The pheromone update 
for MMAS is performed using only the iteration-best ant. 

The results are based on 25 independent runs of the Ulysses16.
tsp problem using the five ant colony algorithm variants. The same 
parameter settings are used for the same ant colony algorithm variant 
except the random number generated using the Monte Carlo sampling 
(ACO) and the multidimensional quasi-uniform HSS sampling methods 
(EACO). As shown in Figure 3, for ant system (AS), rank based ant 

NCITY
HSS MCS Improve [%]

Iter Length Iter Length [%] Iter [%] Length
10 6 123 9 123 33 0
20 14 164 21 164 33 0
40 31 209 45 207 31 -1

Table 4: Combinatorial: Travelling Salesman Problem for 10, 20 and 40 cities.

ND Runs Glob. Opt
EACO ACO Improve

Iter Iter [%]

11 10 0 16 22 24.2

Table 5: Combinatorial: Example II of Diwekar [26].

Table 3: Summary of the parameters used for the benchmark problems.

Function α β ρ nAnts K q ε
TSP 1 4 0.5 nCity - - 1E-4
Ex. II [27] - - 0.5 20 150 0.001 1E-6
Other test functions - - 0.5 5 150 0.001 1E-5
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system (RAS), and ant colony system (ACS), the EACO form of these 
algorithms perform better than the conventional ACO algorithm form of 
these variants. That is, the numbers of runs that find the global optimal 
solution using the EACO form of AS, RAS and ACCS are higher than that 
of the conventional ACO algorithm forms of the same variants. In the 
case of elitist ant system, both methods find the global optimal solutions 
for the same number of runs (17/25). However, for Max-Min ant system, 
the conventional ACO algorithm find global optimal solution in more 
runs (23/25) than the EACO algorithm (22/25). This could be attributed 
to the fact that the small problem size and already MMAS is an efficient 
method of all the ant variants. 

Continuous EACO algorithm: The results of the continuous 
benchmark problems are presented in Tables 6-8. Among the 120 (3 
×4×10) pair of the experimental runs of the benchmark problems, 
only in one instant (Table 6 of parabolic function with 5 decision 
variables) the two algorithms have same performance. For 99.2% of 
the experimental runs of the continuous functions the performance of 

the EACO algorithm is better than the conventional ACO algorithm. 
Because of the multidimensional uniformity property of HSS, the 
EACO algorithm needed less iteration than using the MCS to find the 
global optimal solutions. The computational efficiency improvement 
ranges from 7% for the parabolic function with 20 decision variables 
(Table 6) to 23.5% of the cigar function with 15 decision variables 
(Table 8). 

MINLP EACO algorithm: The results of the mixed-integer 
benchmark problems are presented in Tables 9-12. Among the 160 (4 
×4×10) pair of the experimental runs of the benchmark problems, all 
of the 160 pair experimental runs show that the performance of the 
EACO algorithm is better than the conventional ACO algorithm. The 
computational efficiency improvement ranges from 3% for the mixed 
variable cigar function with 20 decision variables (see Table 11) to 
71% of the same function with 5 decision variables. Moreover, the 
tables also show that for the mixed variable optimization problems, 
the improvement on the computational efficiency of EACO is more 
pronounced.

Convergence Trajectory: Furthermore, the convergence paths 
of the EACO and the conventional ACO from each type of the 
benchmark problems are presented in Figures 4 - 6. The figures show 
the trajectories of the objective function value for combinatorial 
(Figure 4), continuous (Figure 5) and mixed variable (Figure 6) of 
the benchmark problems as function of the number of iterations to 
find the optimal solution. As shown in the figures, EACO algorithm 
found the global optimal solutions with 14, 196 and 326 iterations, 

Figure 3: Number of runs that find the global optimal solution of the ulysses16.
tsp (6859) for each variant the combinatorial ACO and EACO.

NDIM
EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 15 43 65

10 0 95 117 19
15 0 156 177 12
20 0 188 266 29

Table 10: Mixed variable: Ellipsoid function for 5, 10, 15 and 20 decision variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 26 89 71

10 0 156 189 17
15 0 245 273 10
20 0 337 348 3

Table 11: Mixed variable: Cigar function for 5, 10, 15 and 20 decision variables.

NDIM
EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 77 85 9

10 0 100 108 7
15 0 118 135 13
20 0 166 234 29

Table 9: Mixed variable: Parabolic function for 5, 10, 15 and 20 decision variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 -1 60 65 8

10 -1 112 128 13
15 -1 180 197 9
20 -1 232 268 13

Table 12: Mixed variable: Example III of Diwekar UM for 5, 10, 15 and 20 decision 
variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 90 90 0

10 0 151 165 8
15 0 166 187 11
20 0 250 270 7

Table 6: Continuous: Parabolic function for 5, 10, 15 and 20 decision variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 32 37 14

10 0 169 183 8
15 0 198 233 15
20 0 294 341 14

Table 7: Continuous: Ellipsoid function for 5, 10, 15 and 20 decision variables.

NDIM
EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 85 105 19

10 0 304 325 6
15 0 326 426 23.5
20 0 493 536 8

Table 8: Continuous: Cigar function for 5, 10, 15 and 20 decision variables.
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Figure 4: Travelling salesman problem optimization trajectory.

(a) Cigar function.

(b) Cigar function zoomed
Figure 5: Continuous variable: The iteration range [80 160] of Figure 5a is 
zoomed and presented in Figure 5b.

Figure 6: Example III of Kim and Diwekar 2002a.

respectively. While the conventional ACO that uses MCS needs 
hogher number of iteration 21, 226, and 426 to reach the same optimal 
solutions. All the above observations prove that EACO algorithm 
benefits from the uniformity property of the HSS, by producing more 
uniform and diverse samples.

Conclusions
The ACO algorithm is a simple to implement yet a powerful and 

effective optimization framework for handling discrete, continuous 
and mixed-variable optimization problems. In this work, we proposed 
EACO as an alternative to the conventional ACO algorithm and the 
gradient based algorithms for optimization of large scale problems. ACO 
algorithm is probabilistic optimization strategy and the performance of 
the algorithm depends on the sampling strategies implemented in the 
algorithm. EACO algorithm is developed based on efficient sampling 
technique that keeps the diversity and the multidimensional uniformity 
property of samples. The capabilities of the proposed method are 
illustrated through 9 benchmark problems. The results show that the 
computational efficiency of the conventional ACO is improved in 
more than 99% of the experiments and the computational efficiency 
improvement ranges from 3% to 71%. Moreover, the tests on the five 
combinatorial ant colony algorithm variants show that the probability 
of finding the global optimal solution using the EACO algorithm is 
higher than that of the conventional ant colony algorithms.
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