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Introduction
Substance abuse in pregnancy has increased over the past three 

decades in the United States [1]. A National survey on drug Use and 
Health from 2002-2003 has estimated that 4.3% of pregnant women 
aged 15-44 years reported illicit drug use within the month to being 
questioned [1,2]. Approximately 250,000 women in the United State, 
of whom 90% are of childbearing age with criteria for intravenous 
drug, resulting in approximately 225,000 infants yearly with prenatal 
exposure to illicit substances. Legal and illegal substances and their 
effect on pregnancy have recently reviewed include opiates, cocaine, 
alcohol, tobacco, marijuana, and amphetamines [3]. Illicit drug use 
during pregnancy is a major risk factor for maternal morbidity and 
neonatal complications.

Cocaine use in pregnancy can lead to spontaneous abortion, 
preterm births, placental abruption, and congenital anomalies. 
Neonatal issues include poor feeding, lethargy, and seizures. Mothers 
using cocaine require specialized prenatal care and the neonate may 
require extra supportive care.

The aim of this review is to provide information regarding the 
prenatal cocaine exposure (PCE) and the associated impact on placental 
function and pregnancy outcomes.

Effect of Cocaine on Preconception, Pregnancy and 
Postpartum

The information regarding the effect of cocaine on preconception, 
pregnancy and postpartum is driven from Keegan et al. [3].

Preconception
According to a 2005 government survey, approximately 4% of 

women use illicit drugs during their pregnancy, and cocaine is one of the 

most commonly abused drugs [4]. Prenatal cocaine use is commonly 
associated with poor pregnancy and adverse birth outcomes, and 
cocaine abuse particularly impacts measures of fetal growth and well-
being. Low birth weight, intrauterine growth restriction, and decreased 
head circumference are all noted to be increased in newborns of 
mothers who use cocaine in pregnancy. In addition, cocaine use is 
frequently associated with inadequate prenatal care and the frequent 
concomitant use of tobacco and alcohol [5]. Moreover, cocaine use is 
associated with psychosocial, behavioral, and biomedical risk factors, 
such as poverty, poor nutrition, stress, depression, physical abuse, lack 
of social support, and sexually transmitted infections [5], all of which 
can greatly affect pregnancy outcome [6].

Pregnancy
Maternal cocaine use may have both direct and indirect effects 

on the fetus. Cocaine rapidly crosses the placenta and a higher 
concentration occurs in the fetus. There are many adverse outcomes 
associated with cocaine use during pregnancy.

Cocaine use during the early months of pregnancy can cause 
spontaneous abortion. Upto 38% of early pregnancies may result in 
miscarriage in cocaine-abusing mothers [5]. This increase in incidence 
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Abstract
During the early months of pregnancy, cocaine exposure may increase the risk of miscarriage. Later in 

pregnancy, cocaine use can cause placental abruption. Placental abruption can lead to severe bleeding, preterm 
birth, and fetal death. Women who use cocaine throughout their pregnancy have the risk of an increased chance of 
premature labor and birth defect. In addition babies may also have a smaller head and have their growth hindered. 
Babies who are exposed to cocaine later in pregnancy may be born dependent and suffer from withdrawal symptoms 
such as tremors, sleeplessness, muscle spasms, and feeding difficulties. 

The effects of prenatal cocaine exposure (PCE) have been examined in infants and young children across 
multiple developmental domains (e.g., growth, intelligence, language, motor, attention, and neurophysiology). 
Studies revealed that in most domains, the neurobiological effects of PCE play a subtle role, with effects no greater 
than other known teratogens or environmental factors. Associations between PCE and negative developmental 
outcomes were typically attenuated when models included conditions that commonly co-occur with PCE (eg. tobacco 
or alcohol exposure, malnutrition, poor quality of care). Some investigations suggest that learning difficulties may 
result as the child gets older. Defects of the genitals, kidneys, and brain are also possible. The aim of this review is to 
provide information regarding the prenatal exposure and the associated impact on placental function and pregnancy 
outcomes. 
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of spontaneous abortion is probably secondary to an increase in 
maternal plasma norepinephrine, which increases uterine contractility, 
constricts placental vessels, and decreases blood flow to the fetus. 
Placental abruption accounts for 2% to 15% of adverse effects of cocaine 
use during pregnancy. Abruption is thought to be caused by vasospasm 
and hypoxia of the placental bed, and it is more common with cocaine 
binging than with regular use. As a result of maternal cocaine use and 
placental abruption, the incidence of stillbirth in cocaine-abusing 
mothers is elevated 8% above the expected level when compared to the 
general population [5,7].

Cocaine stimulates uterine contractility through β-agonist 
action on the β2-receptors of the uterus. The consequence of this β- 
agonist property is an increased risk of premature preterm rupture 
of membranes, preterm labor, and preterm delivery. These adverse 
outcomes are observed in 17% to 29% of pregnancies of cocaine-
abusing mothers. Intrauterine growth restriction (IUGR) and low birth 
weight can be observed in 22% to 34% of all infants exposed to cocaine 
in utero, secondary to the constriction of the uterine blood vessels, 
which leads to intermittent hypo-perfusion of the uterus and placenta 
[8]. Moreover, cocaine significantly suppresses maternal appetite 
which contributes to poor maternal and fetal nutrition [7,8]. Cocaine 
exposure can affect embryonic and fetal development. Congenital 
anomalies have been reported to occur in 7% to 40% of infants exposed 
to cocaine in utero. Evidence of brain malformation and cardiovascular 
abnormalities can occur in approximately 35% and 4% to 40% of 
exposed fetuses, respectively [9].

Postpartum
The mainstay of the management of the cocaine-addicted mother 

and newborn immediately following delivery is supportive care 
[7]. Although the symptoms of cocaine neurotoxicity are not often 
life threatening for the mother or the newborn, these symptoms are 
extremely unpleasant [7,10]. For the mother during the postpartum 
period, mood symptoms and, less commonly, hallucinations may 
require treatment with antipsychotic medications, particularly 
during the inpatient stay. From a social-focused and family-focused 
standpoint, the use of cocaine is extremely problematic. Cocaine use 
during pregnancy is considered a significant risk factor for infant 
neglect and abuse. Evidence of cocaine use in pregnancy often results 
in the removal of the in infant from maternal custody within the first 
18 months of life [11]. Prospective studies have also indicated a strong 
link between cocaine-using mothers and child maltreatment, with 
high rates of care-giving disruption (43%) and child maltreatment by 2 
years (9% to 23%) [11]. Finally, a stable and secure home environment 
helps reduce the stressors associated with cocaine addiction, so any 
intervention in this regard may be extremely helpful.

The effects of prenatal cocaine exposure (PCE) have been 
examined in infants and young children across multiple developmental 
domains (eg, growth, intelligence, language, motor, attention, and 
neurophysiology). A 2001 review of 36 peer-reviewed articles revealed 
that in most domains, the neurobiological effects of PCE play a 
subtle role, with effects no greater than other known teratogens or 
environmental factors [12]. Associations between PCE and negative 
developmental outcomes were typically attenuated when models 
included conditions that commonly co-occur with PCE (e.g., tobacco 
or alcohol exposure, malnutrition, poor quality of care). Little is known 
about the long-term effects of PCE. One possibility is that PCE has direct 
effects on brain structure or function, which may heighten children’s 
vulnerability to negative developmental outcomes [13]. Another 

possibility is that PCE is a marker for environmental risk factors and, 
therefore, must be considered in the context of other developmental 
threats, including poverty, insensitive parenting, maternal stress and 
depression, caregiver drug dependence, limited educational resources, 
unstable home environments, and high rates of domestic violence [14-
16]. Both perspectives highlight the need to consider the long-term 
effects of PCE within an environmental and developmental context 
that includes brain and behavioral development. Over time, children 
face increasingly complex cognitive and social demands, requiring 
advances in aspects of executive control including sustained attention, 
working memory, planning, inhibitory control, and emotion regulation. 
Such higher-order processes are thought to underlie children’s ability 
to engage in behavioral self-regulation, and preclinical models have 
suggested that PCE may target brain regions and pathways associated 
with the development of these capabilities.

Regions with strong dopaminergic innervation (eg, anterior 
cingulate cortex, prefrontal cortex, striatum) may be particularly 
susceptible to PCE [17]. Because these regions continue to develop 
throughout childhood and adolescence, the effects of PCE may not be 
evident until many years after the initial prenatal exposure. The effects 
of PCE are manifest in distinct ways at different ages. Investigations 
using longitudinal models with covariate controls can examine the 
differential effects of drug exposure over time. Studies that include 
parenting and environmental influences (eg, school, neighborhood, 
peers) are necessary to determine the amount of variance attributed to 
each level of influence.

Human Placenta Development
The placenta provides the direct link between mother and fetus, 

transferring nutrients for growth and development of the fetus as well 
as for its own growth and development. It plays an essential role in 
the growth and development of the fetus by performing a multitude 
of functions. The placenta and the chorion (outer membrane, 
trophoblast layer) are derived from the trophoectoderm cells of the 
blastocyst. Other extraembryonic tissues develop from the inner cell 
mass of the blastocyst. These include the amnion (inner membrane), 
the yolk sac, the allantois and the extraembryonic mesoderm. The 
umbilical cord and the blood vessels of the placenta are derived 
from the mesoderm. The placenta represents a significant, valuable 
and promising source of stem cells with variable potency. A unique 
function of the placenta is its role as an endocrine organ producing 
various steroid hormones (e.g., estrogens and progesterone) and 
polypeptide hormones (e.g., chorionic gonadotropin and placental 
lactogen) relevant to pregnancy. It functions as a nutritive organ by 
mediating the transfer of essential nutrients such as glucose, amino 
acids, fatty acids, minerals, and vitamins from mother to fetus. It is also 
responsible for the exchange of oxygen and carbon dioxide between 
the maternal and fetal circulations. In addition, it plays a critical role in 
the elimination of various metabolic waste products such as bilirubin 
from the fetus. In order to perform many of these functions, placenta 
expresses numerous transporters. In a manner similar to intestine 
and kidney, placenta is capable of vectorial transfer of nutrients and 
metabolic waste products. Thus, placenta can mediate the transfer of 
certain compounds from mother to fetus and certain other compounds 
from fetus to mother. This is made possible by the polarized nature 
of syncytiotrophoblast, the functional unit of the placenta. Placental 
syncytiotrophoblast is a multinucleated cell that is formed by the 
fusion of differentiating cytotrophoblasts. The plasma membrane of 
syncytiotrophoblast consists of two distinct regions: a brush border 
membrane that is facing the maternal side and a basal membrane 
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that is facing the fetal side. On the maternal side, there is no capillary 
network between the uterine arterioles and uterine venules because the 
invasion of the placental tissue into the uterine endometrium destroys 
the uterine blood vessels at the site of implantation. As a result, blood 
flows into the placental intervillous space and comes in direct contact 
with the brush border membrane of the syncytiotrophoblast without 
the intervening endothelium of the capillaries. The intraplacental 
fetal circulation is fully established at the end of the fifth week post-
conception [18]. The complete fetal–placental– maternal circulation 
is not entirely established until around the tenth week of pregnancy, 
therefore substances present in the maternal blood until this time must 
be introduced to the embryo via diffusion through the extracellular 
fluid [19]. The fetal circulation ends in the villous trees and these are 
found in the vascular units (cotyledons) within the placenta. The full-
term placenta contain between 10 and 40 cotyledons separated from 
each other by the placental septa. The transfer of any compound from 
the maternal blood into fetal blood across the syncytiotrophoblast has 
to involve transport across the brush border membrane followed by 
transport across the basal membrane. Similarly, the transfer of any 
compound from the fetal blood into maternal blood has to involve 
transport across the basal membrane followed by transport across the 
brush border membrane. To facilitate this process, the two membranes 
express various transporters in a differential manner. The fetal capillary 
endothelium forms an additional barrier for the maternal–fetal 
exchange of nutrients and metabolites and, accordingly, this cell also 
expresses a wide variety of transporters to accomplish the exchange 
process.

Placental Transport Mechanisms
In the human placenta the syncytiotrophoblast arises from the 

fusion of cytotrophoblast stem cells forming a syncytium over the 
surface of the placenta facing the maternal blood. The plasma membrane 
of the syncytiotrophoblast is polarized; the brush-border membrane in 
direct contact with maternal blood and the basal membrane facing the 
fetal circulation. The brush-border membrane possesses a microvillus 
structure that effectively amplifies the surface area, whereas the basal 
membrane lacks this structure. Transport proteins may exist in either 
or both the brush border and basal membrane with their location and 
orientation determining the direction of substrate transport [20,21].

The syncytiotrophoblast, the outermost layer of human the placenta 
is the main site of exchange for drugs and metabolites, nutrients, waste 
products and gases between maternal and fetal circulations [22]. 
Efficient transfer of nutrients, gasses, electrolytes and solutes across 
the placenta is essential for fetal growth and development. There are 
several mechanisms by which transfer occurs, and depending on the 
mechanism of transfer the direction may be toward maternal or fetal 
circulation [23].

Solvent drag

Solvent drag is the movement (bulk flow) of water in which 
drugs, solutes, gasses and nutrients are dissolved. Bulk flow has been 
demonstrated in the perfused human placental cotyledon in response 
to hydrostatic pressure changes. With this mechanism, transfer of a 
drug would be passive, in the sense of flow with water into or out of 
placental tissue. This mechanism is unlikely to represent an efficient 
mechanism for drug access to the placenta or fetus. 

Simple diffusion

Simple diffusion is the passive transfer of solutes driven by 
concentration and electrical gradients. All solutes are transferred by 

diffusion, but the relative contribution is dependent on molecular 
properties, and presence of transport mechanisms which facilitate 
exchange between maternal and fetal circulations. As an example, 
lipophilic molecules, such as respiratory gases, are readily exchanged 
by simple diffusion. Many commonly used medications and abused 
agents observed during pregnancy cross the placenta by passive or 
simple diffusion were recently reviewed by Malek and Mattison, 2010 
[24]. 

Determinants of passive diffusion across the placenta include the 
physicochemical properties of the molecule, as well as protein binding 
in maternal and fetal circulations and metabolism in the mother, 
placenta or fetus [19,25]. One determinant of passive diffusion is 
molecular weight of the chemical, with decreasing transfer as molecular 
weight increases. Hydrophobicity and ionizability also influence 
placental exchange, and may also influence the amount of the drug 
which remains sequestered, or bound within placental tissues. Protein 
binding in fetal and maternal circulations also influences transfer 
across the placenta as the concentration gradient driving diffusion is 
the free concentration difference. Consequently, total concentrations 
may be higher in maternal or fetal blood based on protein binding to 
albumin or alpha-1-acid glycoprotein but free concentrations similar 
[26-29]. 

Transcellular transfer

This type of transfer utilizes transport proteins in the microvillus, 
basal membranes of the syncytiotrophoblast or fetal capillary 
endothelium. There are three types:

Channels: These proteins form water-filled pores in the plasma 
membrane through which ions can diffuse down an electrochemical 
gradient. This allows transport of charged hydrophilic substances which 
are insoluble in lipids. Placental aquaporins and chloride channels are 
examples of channels that function in the transport of water and small 
molecules, and are essential for fetal development [30,31]. 

Facilitated diffusion: These transporters are saturable carrier 
proteins, which are independent of metabolic energy, so that transport 
occurs more rapidly than would occur for simple diffusion but will not 
occur against a concentration or other driving gradient. As an example, 
glucose is transported by the facilitated GLUT transporters. It has also 
been proposed that metformin is transported from fetal to maternal 
circulations by facilitated diffusion [32]. 

Carrier-mediated active transport: Primary active transport 
utilizes ATP to move solutes against a gradient, Na+K+ATPase and 
Ca2+ATPase are two examples. Secondary active transport utilizes 
concentration gradients across the cell that are set by the primary 
system, Na + amino-acid co-transport and the Ca2 + / Na + exchanger 
are examples. Transport ATPases are known to be present in human 
placenta. These include the Na+ K+pump (Na+K+ATPase), which is 
localized on the microvillus and basal membrane, and a high-affinity 
Ca2+ATPase located on the basal membrane [19,33]. It is thought 
that these active transport proteins are dysregulated in fetal growth 
abnormalities [34,35]. The role these could play in transport of drugs 
or peptides into or out of the fetus remains to be described. 

Endocytosis and exocytosis: During endocytosis, material is 
engulfed in extracellular fluid during invagination of the cell surface 
to form a fluid-filled vesicle. Exocytosis is the reverse of this process, 
vesicles fuse with the cell membrane to release their contents. This 
process can be receptor mediated, that is, it is triggered by a specific 
interaction between the solute and a receptor on the cell membrane. 
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Most drugs cross the human placenta by simple diffusion; 
however, any of the mechanisms described above may also be involved. 
Plasma membrane carriers, biotransforming enzymes, and efflux and 
influx pumps (transport proteins) may have a role in maternal-fetal 
exchange. Factors that affect transfer include molecular weight, degree 
of ionization, lipid solubility, protein binding, and fetal and maternal-
placental blood flow and pH. Nonionized, nonprotein-bound lipid 
soluble drugs with molecular weight below 600 Da freely cross the 
placenta. High molecular weight drugs, such as insulin (6,000 Da), do 
not exchange between maternal and fetal circulations in significant 
amounts. One important placental function is transfer of antibodies 
(IgGs) from the mother to the fetus, which can occur when the mother 
is immunized during pregnancy. This passive immunization of the 
fetus requires the expression of placental FcRn receptor [36-40].

Transport Proteins
Within the placenta there are specific proteins, likely developed 

for endogenous substrates, which transport substances with high 
efficiency from maternal to fetal circulations (influx transporters) or 
fetal to maternal circulations (efflux transporters). Transport proteins 
may be expressed in the microvilli brush border or basal membrane 
of the syncytiotrophoblast or the endothelium of the fetal capillaries 
found in the villi. Many of these transport proteins are found in other 
organs including; gut, liver, brain and kidney where they perform 
similar functions. Recognizing the presence and substrate specificity 
of these transport proteins provides opportunity in drug development 
to target or exclude drug access to fetal or placental tissues [33,41]. 
Examples of efflux transporters in the placenta include; ATP binding 
cassette proteins (ABC), breast cancer resistant proteins (BCRP) and 
the multiple drug resistance associated proteins (MDRP). Examples of 
influx transporters include; organic cation transporters, dicarboxylate 
transporters, and the sodium/multivitamin transporters [42,19]. 

The expression of Permeability-glycoprotein (P-gp) on the 
maternal side of the placenta (eg, in the placental brush border of the 
syncytiotrophoblast facing the intervillous space) is encoded within 
the syncytiotrophoblast by the multidrug resistance gene. In some cells 
P-gp has physiological substrates (eg, estradiol-glucuronide, opioid 
neuropeptides) but also transports drugs (eg, digoxin and verapamil) 
out of the placenta and away from the fetal circulation. The function 
of this protein is to mediate active efflux of substrates from the cell 
with the driving force coming from ATP hydrolysis. P-gp-mediated 
active transport is unidirectional, facilitating efflux of substrates due 
to the asymmetrical membrane topology of the protein [20,21]. It 
appears that this efflux transporter may have evolved as a protective 
mechanism, being expressed not only in the placenta but also; GI tract, 
kidney, liver, and blood-brain barrier [20,21]. The plasma membranes 
of absorptive cells of the placenta, intestine, kidney, hepatocytes and 
endothelial cells of the blood-brain barrier exhibit polar expression of 
this protein. 

Exploring Methods of Human Placental Function
Data from humans [43] and experimental animal studies have 

demonstrated that cocaine crosses the placenta [44-47]. Cocaine 
produces dose-related cardiac arrhythmias and death in pregnant ewes 
at lower doses than in nonpregnant ewes [46]. Plessinger and Woods 
(1990) [48] have indicated that pregnancy and progesterone enhance 
the maternal cardiovascular toxicity of cocaine in the pregnant sheep. 
For example, pregnant ewes exhibit a blood pressure response to 
cocaine two-fold greater than that of nonpregnant ewes given the 
identical dose [48]. In the Long Evans rat, pregnancy increases the 

direct cardiotoxicity to cocaine, and progesterone may be responsible 
for this enhanced cocaine toxicity [49].

The study of exposure of preimplantation mouse embryos to 
cocaine in vitro has suggested that cocaine is capable of blocking 
preimplantation embryogenesis, particularly following exposure at the 
earliest stages of embryonic development [50]. Of interest, the authors 
suggest that this embryonic toxicity abates as cocaine is biotransformed 
to benzoylecogenine.

Administration of cocaine during pregnancy in the rabbit has 
shown similar adverse outcomes as seen in humans, such as stillbirth, 
maternal death, spontaneous abortion, and gross malformation [51]. 
Transplacental cardiotoxicity of cocaine during early pregnancy 
showed endocardial and myocardial damage and atrial walls 
thickening in the neonatal hamster [52] and causes atrial Purkinje 
fiber damage [53]. Administration of cocaine in the third-trimester to 
pregnant nonhuman primates have demonstrated not only cocaine’s 
deleterious effects to the placental circulation, but also cocaine’s direct 
pharmacological effect to the developing fetal brain [54].

Ex vivo Models of Human Placenta
In vivo, placental tissue maintains a highly active metabolism, with 

oxygen consumption similar to organs like brain, kidney or liver [55]. 
Although placental tissue is readily available after birth, this tissue has 
been exposed to the stress of parturition and to an ischemic period of 
20-30 min before initiating experimental procedures, or beginning to 
prepare subcellular fractions. Despite these stresses, placental tissue 
shows a remarkable resistance to ischemic hypoxia, using adaptive 
mechanisms which allow tissue survival and maintenance of function 
[56,57].

The accessibility of human placental tissue together with its 
resistance to hypoxia or anoxia makes the human placenta particularly 
well suited for in vitro studies, with certain caveats, including; the tissue 
represents the structure and function of the mature placenta and may 
not reflect placental function earlier in gestation. Therefore multiple 
models such as; cell culture, tissue explants and ex vivo perfusion of 
human placental tissues have been utilized to explore a wide variety 
functions like cellular proliferation and differentiation as well as 
hormone production and endocrine function, permeability, transport, 
influx, efflux and metabolism.

Human placental cell culture

Cytotrophoblast cells can be isolated from human placenta and 
cultured, forming a syncytium which can be used to investigate drug 
uptake, metabolism, efflux or transfer across the syncytium. However, 
the method is complicated by the difficulty of preparing pure fractions 
of cytotrophoblast. Additionally, at the present time cytotrophoblast 
cultures are not viable for more than one week [58]. Other similar 
approaches include development of immortalized cell lines from 
human placental cytotrophoblast either after viral transformation or 
from choriocarcinomas [59].

Human placental explants

Recently, Miller et al. 2005 reviewed studies using placental explants 
[60], this research methodology has demonstrated improvement; 
providing additional tools for investigation of placental transport, 
metabolism, enzyme and endocrine function, and cellular proliferation 
and differentiation. Human placental explants have a lifetime of ~2 
weeks, but users should carefully monitor explant integrity [60]. The 
culture of villous explants provides a model in which tissue structure is 
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partially maintained. Furthermore, this system allows experimentation 
using placental tissue from different stages of pregnancy [61]. 

Basic studies on placental villous explant viability; analysis 
of morphology, metabolic activity, glucose consumption, lactate 
production and protein expression have shown that placental explants 
remain functional for ~2 weeks following an initial degeneration with 
recovery after ~48 h of culture [62,63]. A detailed understanding of 
the extent to which placental explant integrity is comparable to the 
physiological, in vivo situation and how the process of post-ischemic 
recovery in vitro affects tissue integrity and viability is lacking [62-
64]. In particular, the significance of the interval between delivery 
and initiation of explant culture is poorly understood. However, given 
the utility of this model across a broad range of gestational ages, the 
ability to explore influx, efflux, transport and metabolism, it is apparent 
that placental villous explants will be of substantial utility in drug 
development. 

Ex vivo human placental perfusion

Placental perfusion for the study of tissue functions began in the 
1960’s [65-67]. Perfusion of the isolated human placental cotyledon 
was described in 1967 by Panigel [68], and in 1970 Nesbitt [69] 
introduced an apparatus for dual perfusion (both maternal and fetal 
circuits) which was later modified by other research groups enabling 
more systematic studies of placental synthetic, metabolic and transport 
functions [68-71]. Dual perfusion of the human placenta has been 
extremely useful in understanding transplacental pharmacokinetics 
and offers substantial opportunity to enhance drug development 
during pregnancy [41,57,72-74]. 

At the present time, and depending on the research question, 
placentae for perfusion are obtained from uncomplicated deliveries 
at term following normal pregnancies with an appropriately grown 
newborn [75]. Placentae from diseased states have also been utilized 
in perfusion experiments. Following delivery the placenta is taken to 
the laboratory and inspected for damage that would impair its use in 
a perfusion experiment. If the placenta appears suitable a peripheral 
cotyledon is identified for dual ex vivo perfusion; a chorionic artery and 
vein supplying the cotyledon are identified, cannulated and perfusion of 
the corresponding villous capillary system started (fetal compartment). 
Following cannulation the perfused cotyledon is fixed in a perfusion 
chamber maintained at 37°C. Blunt metal cannulae are introduced into 
the intervillous space by penetration of decidual tissue and connected 
to a second circuit for perfusion of the maternal compartment. The 
perfusate is generally tissue culture medium (eg, NCTC-135 or M199 
with additional solutes as appropriate) and is continuously equilibrated 
with atmospheric oxygen and 5% carbon dioxide on the maternal and 
95% nitrogen and 5% carbon dioxide on the fetal side. Integrity of the 
perfused tissue is monitored throughout the experiment [28]. 

To allow recovery and assure integrity of the isolated perfused 
cotyledon, experiment are preceded by a period of open perfusion 
(pre-phase) of both compartments [28]. Thereafter, experiments can 
be performed by using either closed (recirculating) or the open (non-
recirculating) method. Recirculating studies imitate physiological 
conditions and can be used to study transplacental transfer and 
metabolism, in open perfusions drug clearance can be studied. 

Antipyrine and creatinine are control references used to 
characterize membrane permeability and perfusion-perfusion overlap. 
Antipyrine diffuses rapidly, equilibrating between the two circuits, 
while creatinine, a hydrophilic molecule, diffuses more slowly across 

the placenta. The transport of antipyrine is flow limited [70-72,76], 
while creatinine transfer is limited by its hydrophilic property and 
transferred through extra-cellular pathways [76-78]. Antipyrine 
and creatinine are generally used to normalize data across multiple 
experiments [28]. 

In vivo information obtained through comparison of maternal 
and fetal (umbilical cord) concentrations of any medication (or 
other molecule), provides information on steady state concentrations 
without indicating the mechanism(s) involved in exchange between 
maternal and fetal compartments [79-81]. The ex vivo perfusion model 
allows studying placental transport, metabolism, influx or efflux as well 
as the kinetic profile and action of the chemical on placental tissue. This 
method has been used to study the transfer of many substances, such as 
nutrients, hormones, proteins, therapeutic agents and drugs of abuse, 
and offers an extremely useful tool for drug development [82]. 

Impact of Cocaine on Placental Function
In few studies the transport of cocaine and its effect on placental 

function under ex vivo conditions was investigated. In a first study 
using the ex vivo dually perfused human placentae with recirculation 
of both maternal and fetal perfusates, 3H-cocaine and 14C-inulin was 
added to the maternal circulation [83]. Inulin was used as reference 
marker for placental permeability. This study demonstrated that 
cocaine is taken up relatively quickly by the maternal tissue side of 
the placenta and transported to the fetal circulation. Steady state 
levels were achieved within 20 minutes in the fetal circulation, which 
were approximately 8% of the initial concentration of cocaine used in 
the maternal circulation. The level of cocaine in the fetal circulation 
remained higher than inulin. The permeability of inulin in the presence 
of cocaine was significantly reduced. The permeability measured for 
cocaine has indicated a similar permeability reduction as shown for 
inulin. Although the uptake of 3H-cocaine was much higher than 
of inulin, the restriction of the transfer rate of cocaine compared to 
inulin as expected by simple diffusion is apparently due to the receptor 
binding site of cocaine in human placenta. In addition to the impact 
of cocaine on the placental permeability, there was an additional effect 
on placental hormone release function. After the addition of cocaine 
to the maternal circulation the released rate of human chorionic 
gonadotropin (HCG) into the maternal circulation was significantly 
reduced. 

Similar to cocaine, opiate cross the placenta and cause intrauterine 
growth retardation (IUGR) and preterm deliveries. Methadone is 
the standard therapy for pregnant opioid-dependent women [84]. 
The positive effects of methadone are an increase in birth weight 
and prolongation of gestation [85,86]. Because co-consumption of 
methadone with other drugs such as cocaine and heroin is frequent, 
additional drugs may influence the placental transfer of methadone 
and other substances by different mechanisms. In case of inhibition of 
the P-glycoprotein (P-gp) function by other drugs, the placental barrier 
may disrupt, and P-gp substrates may increasingly transfer to fetal 
circulation [87,88]. The P-gp which is expressed in the brush-border 
of the placental syncytiotrophoblast and this syncytial layer is floating 
in the maternal blood. The P-gp is an efflux transporter meaning the 
protection of the placenta and the fetus against many drugs [87,88]. 
In a second perfusion study [89], the effect of the combined cocaine 
plus methadone on the placental function was investigated. All 
tested compounds were added to the maternal circulation. Under the 
conditions of the control experiments or the presence of methadone 
alone similar values were observed for metabolic function. While a slight 
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decrease in the placental permeability in the presence of methadone, a 
significant increase in the placental permeability was observed in the 
combined presence of the cocaine plus methadone. Consequently, 
more toxic substances or bacteria and viruses may cross the placenta 
and harm the fetus. Previous studies reported increased prevalence 
of infectious diagnoses in cocaine-exposed infants [89]. Under low 
oxygen (2%, hypoxic condition) there was an increased proliferation 
of the cytotrophoblast and lack of the fusion with syncytiotrophoblast, 
so shedding of MPs was predominantly the result of necrosis [91]. The 
already validated method of the ex-vivo placenta perfusion using 95% 
air on the maternal circuit was used [92]. In addition, the combined 
presence of cocaine plus methadone in the maternal circulation has 
induced the degradation of the syncytiotrophoblast [89], which was 
measured by the higher released fraction of the syncytial microparticles 
into the maternal circulation than those observed under control 
conditions, while methadone alone did not show similar effect. This 
observation suggests that cocaine may induce an oxidative stress on 
placental tissue causing the shedding of the syncytial microparticles 
seen in preeclampsia [92]. 

Conclusions
The impact of cocaine on human reproduction can be divided into 

three stages; preconception, pregnancy and postpartum. Approximately 
4% of women use illicit drugs during their pregnancy, and cocaine is 
one of the most commonly abused drugs. Preconception and prenatal 
cocaine use is commonly associated with poor pregnancy outcomes 
with psychosocial, behavioral, and risk factors, such as poverty, poor 
nutrition, stress, depression, physical abuse, lake of social support, and 
sexually transmitted infection. Illicit drug use during pregnancy is a 
major risk factor for maternal morbidity and neonatal complications. 
Cocaine use during early pregnancy can cause spontaneous abortion, 
miscarriage, placental abortion and stillbirth. Beside cocaine effect 
on embryonic and fetal development, cocaine stimulates uterine 
contractility leading to an increased risk factor of preterm rupture 
of membranes, preterm labor, and preterm delivery. Moreover, 
congenital anomalies haven reported including brain malformation 
and cardiovascular abnormalities.

Supportive care should be provided for cocaine-addicted mother 
and newborn immediately following delivery. Cocaine use during 
pregnancy is considered a significant risk factor for infant neglect 
and abuse, which often results in the removal of the infant from 
maternal custody. The prenatal cocaine exposure has direct effect on 
brain structure or function, which heighten children´s vulnerability 
to negative developmental outcomes. The transport of cocaine and 
its effect on placental function were studied under ex vivo perfusion 
model of human placental tissues. This investigation demonstrated 
that cocaine is taken up relatively quickly by maternal tissue side of 
the placenta and transported to the fetal circulation. Moreover, cocaine 
induces an impact on placental permeability explaining the fetal 
nutritional reduction causing fetal growth reduction seen under in 
vivo conditions. There was an additional effect on placental hormone 
production and the degradation of the syncytiotrophoblast which is 
responsible for nutritional supply of the developing placenta and fetus. 
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