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Abstract

Vaccination has been the most efficacious way to combat infectious diseases in human history. Nevertheless,
there are still a variety of pathogens for which vaccines are urgently needed. In the last 25 years, DNA vaccines
emerged as promising in prophylactic and therapeutic settings. However, despite all the practical advantages, DNA
vaccines face challenges in inducing potent antigen specific immune responses and protection in humans. In the
last years, rational approaches to improve the efficacy of DNA vaccines were developed and include: modifications
of plasmid basic design, use of next-generation delivery methods, addition of adjuvants in the formulation,
improvement in immunization protocols and even targeting to dendritic cells. In this review, we will explore the
advances and hurdles involved in the development of more potent DNA vaccines.

Introduction
Since their development, vaccines have had an enormous impact on

public health. Millions of lives were saved and pathogens that used to
cause fatal diseases were controlled (or even eradicated) in many parts
of the world. Vaccination is nowadays the most efficient way of
controlling infectious diseases and the search for new and improved
vaccines continues as a way to ameliorate human health.

Vaccines are traditionally based on immunogens delivered as
inactivated (Influenza) or attenuated live (smallpox) pathogens,
recombinant proteins (Hepatitis B) or virus-like particles (Human
Papillomavirus). Their ability to induce protection is primarily based
on antibody-dependent mechanisms that work quite well by blocking
infections caused by viruses like variola, mumps, measles or polio, and
bacteria like diphtheria or tetanus. However, the development of
effective vaccines against other viruses (e.g. HIV, dengue or hepatitis
C), bacteria (Yersinia pestis, Mycobacterium leprae, and
Staphylococcus aureus, among others) and parasites (Plasmodium sp,
Toxoplasma gondii, Leishmania sp or Trypanosoma cruzi, for
example) has been hampered by the fact that humoral immune
response does not seem to be the best effector arm of the immune
system to provide protection [1]. Some of these are chronic diseases
and it is thought that both humoral and strong cellular immunity are
necessary for protection.

New vaccine modalities are being developed with the aim of
generating appropriate humoral and/or cellular immunity. Among
those, DNA vaccines are very promising, as they are able to elicit both
humoral and cellular immune responses. The demonstration that a
protein-coding gene is able to elicit a specific immune response in vivo
was first published by Tang and Johnston [2] who showed that the
direct delivery of the human growth hormone gene into the skin of
mice could elicit antigen-specific antibody responses. Since then,
recombinant DNA vaccines have emerged as promising tools for
vaccine development against infectious agents, cancer, autoimmunity
and even allergy [3].

DNA vaccines are based on the delivery of genes encoding a specific
protein antigen that is transcribed and translated by host cells [4,5].
DNA can present antigens in a suitable molecular form, ranging from
full-length sequence to short MHC class I- or II-binding epitopes, to
optimize induction of T-cell responses [6]. This vaccination
technology has shown promising results in eliciting both humoral and
cell-mediated and in inducing protection against various pathogen
challenges in preclinical models [3,7].

DNA vaccination provides several important advantages over
current vaccine approaches. First, DNA vaccines are safer than live-
attenuated vaccines or inactivated viral vaccines since they are neither
infectious nor capable of replication [8]. Therefore, DNA vaccines are
considered the safest vaccine platform available (Figure 1).

Figure 1: Safety and efficacy of different vaccine platforms.

Second, DNA vaccines can elicit both humoral and cellular immune
responses against multiple defined antigens simultaneously and do not
induce vector immunity in the host. Indeed, they can mimic the effects
of live attenuated vaccines in their ability to induce MHC class I
restricted CD8+ T-cell responses. Third, DNA vaccines are easily
designed manufactured at low cost and can be produced at
commercial scale with a high degree of purity. Furthermore, DNA
vaccines form stable formulations (they do not require a preservative
in the final preparation) that facilitate storage and shipping when
compared to other vaccine modalities.

Since plasmid DNA is a safe vaccine platform, the main limitation
for its use in humans is due to its low immunogenicity. It has been a
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challenge to transfer the success of inducing potent immunity
observed in small animal models to humans. The reasons for reduced
immunity presented in humans when compared to mice, for example,
are still not fully understood. Hypotheses were formulated and
differences in the rate of DNA uptake by target cells or in the ratio of
injected DNA versus body weight are plausible. Some approaches now
available to enhance the immunogenicity of DNA vaccines will be
reviewed in the sections ahead. The main advantages and limitations
of DNA vaccination are displayed in Table 1.

Advantages Limitations

Easy design and production Low immunogenicity

New molecular biology tools facilitate
design and production

DNA vaccines are poorly
immunogenic in humans

Easy to scale up  

Large scale production methods available  

Safe vaccine platform  

Subunit vaccine; non-infectious, non-
replicative; unable to revert to virulent
forms

 

Stable formulation  

Easy storage and shipping; no cold chain
requirement for transport

 

Cost effective

Immunogenic  

Can induce both humoral and cellular
specific immune responses (including CTL)

 

CTL: Cytotoxic T Cells

Table 1: Advantages × limitations of DNA vaccines.

How DNA Vaccines Work
After in vivo administration, the plasmid enters the nucleus of

transfected cells, initiates gene transcription and produces the
corresponding protein inside them [9]. Secreted or exogenous proteins
undergo endocytosis or phagocytosis by professional antigen
presenting cells (APCs) to enter the MHC class II pathway of antigen
processing and stimulate CD4+ T cells. Endogenously produced
proteins/peptides are presented to the immune system through an
MHC class I dependent pathway to stimulate CD8+ T cells. After DNA
vaccination, the proposed three major mechanisms for antigen
presentation in the context of MHC class I are: i) transfection of
somatic cells (e.g. myocytes, keratinocytes, fibroblasts); ii) transfection
of professional APCs (e.g. dendritic cells); iii) antigen uptake and
presentation by professional APCs through cross-priming (APCs
phagocytose apoptotic/necrotic transfected somatic cells).

Transfection of somatic cells
When somatic cells like myocytes and keratinocytes are transfected

with DNA, the produced antigen is processed by the cell proteasome
and the resulting peptides are presented to T cells via MHC class I.
Although muscle cells express MHC class I molecules, they are not
efficient in priming T cell responses when compared to professional

APCs (e.g. dendritic cells). For other somatic cells like keratinocytes, it
was shown that they constitute one of the major cell types transfected
by plasmid DNA after injection into the skin [10].

Transfection of professional antigen presenting cells
Direct transfection of APCs seems to be the most efficient method

of priming a T cell response, and dendritic cells are thought to play a
key role. After antigen production, the endogenously synthesized
protein is processed by proteasome and the resulting peptides are
presented via MHC class I to CD8+ T cells. DNA uptake and gene
expression have been observed in dendritic cells in vivo following
DNA immunization [11] and adoptive transfer of these in vivo
transfected cells leads to induction of cytotoxic T cells (CTL) [12].

Uptake of secreted antigen and presentation by professional
APCs through direct or cross-priming

Alternatively, antigens synthesized after DNA vaccination can also
be released from the transfected cells (e.g. somatic cells) into the
extracellular milieu, and these soluble materials are taken up by
specialized APCs that express both classes of MHC molecules. Inside
these APCs the antigens enter the MHC class II pathway and induce
MHC class II restricted CD4+ T cells, which usually secrete cytokines
and provide “help” for B and CD8+ T cells.

Another mechanism that has been demonstrated to occur in APCs
is cross-priming. The transfected cell (e.g. myocyte) produces the
protein antigen, that is phagocytized by APCs and gains entry into the
MHC class I pathway that in turn activates CTL responses [13]. Cross-
priming can also occur when the transfected somatic cell undergoes
apoptosis/necrosis and is engulfed by APCs [14]. Furthermore, soluble
antigens can encounter B-lymphocytes, be captured by specific high
affinity immunoglobulins and therefore (in concert with CD4+ T cell
“help”) induce an effective antibody response.

Independently of the APC activation mechanism (by direct
transfection or through cross-priming), antigen-loaded APCs (e.g.
dendritic cells) migrate to the draining lymph nodes (DLN) where
they present peptide antigens to naive T cells (CD4+ and CD8+) via the
interaction of MHC and T cell receptor (TCR) in combination with
co-stimulatory molecules (e.g. CD80 and CD86). Once activated, these
T cells expand and migrate out of the DLN.

Efficient antigen presentation by dendritic cells is intrinsically
linked to the maturation status of these APCs. The direct contribution
of the plasmid backbone for the improvement of DNA
immunogenicity has been subject of research in the last decade. As
DNA plasmids are normally derived from bacteria, they contain many
unmethylated CpG motifs that can be recognized by mammals as a
pathogen-associated molecular pattern (PAMP). They are recognized
by the toll-like receptor (TLR)-9 [15] and rapidly trigger an innate
immune response characterized by the production of IL-6, IL-12 and
IFN-γ [16]. Rottembourg and colleagues showed that TLR9 was
important for CD8+ T cell priming when a DNA vaccine against
lymphocytic chroriomeningitis virus (LCMV) was administered to
mice [17]. However, as TLR9-deficient mice still respond to plasmid
DNA immunization and are able to mount humoral and cellular
responses, it seems that TLR9 signaling is not essential for the
induction of immune responses following DNA immunization [18,19].
The search for the mechanisms of dsDNA sensing by mammalian cells
showed that TANK-binding kinase 1 (TBK1), a non-canonical IκB
kinase, is essential for immunogenicity of DNA vaccines in mice, as it
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mediates the plasmid adjuvant effect [20]. An essential pathway that
governs the production of type I IFN by foreign DNA was discovered
and shown to be dependent on a molecule referred to as STING
(stimulator of IFN genes) [21,22]. In addition, it was also shown that
cytoplasmic DNA could bind to AIM2 (absent melanoma 2),
triggering the formation of an inflammasome and the production of
IL-1β [23,24]. Besides the molecules cited above, others were also
implicated in cytosolic DNA sensing. A more detailed review on this
specific topic can be found elsewhere [25].

Strategies to Enhance the Potency of DNA Vaccines
As stated previously, DNA vaccines are considered the safest

vaccine platform available. They offer the promise of a molecularly
defined reagent that is neither infectious nor capable of replication.

Approach Example

Modification of plasmid
design

Promoter/enhancer elements

Polyadenylation sequence

 Kozak sequence

 Secretory leader sequence

 Consensus sequence

 Codon optimization

Delivery methods Electroporation

 DNA tattoo

 Gene Gun

 Polyethylenimine (PEI) and Vaxfectin®

Adjuvants Plasmid unmethylated CpG motifs

 TLR agonists

 Genetic adjuvants (e.g. cytokines/chemokines)

 Glycoprotein D of Herpes Simplex Virus (HSV)

 Chemical Compounds (e.g. bupivacaine)

Targeting to dendritic cells DEC205 receptor

 CD11c receptor

PD1

Heterologous prime-boost DNA prime followed by boost with recombinant
attenuated viruses (e.g. MVA)

 DNA prime followed by boost with recombinant
proteins

TLR: Toll Like Receptor

PD1: Programmed Cell Death 1

MVA: Modified Vaccinia Virus Ankara

Table 2: Strategies to enhance the potency of DNA vaccines.

Usually high DNA doses in the milligram (mg) range are required
in humans, and even so immunogenicity is low. Several approaches are
being tested in an attempt to enhance their immunogenicity. They

include modifications of plasmid basic design, use of next-generation
delivery methods, inclusion of adjuvants in the formulation, improved
immunization protocols and even antigen targeting directly to
dendritic cells (Table 2).

Modifications of Plasmid Basic Design
In general, the higher the level of expression of the target gene is

correlated to the strength of the induced immune response. The
amount of plasmid that is internalized in vivo after intramuscular
injection is usually in the picogram range [26]. Modifications in the
plasmid backbone can greatly enhance the level of gene transcription.
The inclusion of a strong viral-derived promoter/enhancer has
provided superior gene expression in vivo than other eukaryotic
promoters. In particular, the human cytomegalovirus (CMV)
enhancer/promoter was shown to direct the highest level of transgene
expression in eukaryotic tissues when compared to other promoters
[27,28]. The presence of an intron in the vector backbone downstream
of the promoter can enhance the stability of mRNA increasing gene
expression. For example, the presence of intron A of the CMV
immediate-early gene in the plasmid backbone increased the
production and secretion of different proteins [29]. When a plasmid
containing the CMV promoter and the human immunodeficiency
virus (HIV)-1 envelope (Env) protein was used to immunize mice,
anti-Env immune responses were also increased [30]. It is important to
mention that high expression of the target gene may sometimes be
detrimental. For example, the hepatitis C virus core protein is a good
vaccine candidate but exhibits immunosuppressive properties [31]. In
addition, the strong immune activation caused by the high levels of
promoter-driven protein expression and secretion can induce down
regulation of the viral promoter because of the inflammatory cytokine
production they drive [32].

A second important modification is the inclusion of a termination
site, or poly (A) signal site, that is required for proper termination of
transcription and stabilization of mRNA transcripts [33]. Several DNA
vaccines use the bovine growth hormone (BGH) or simian virus 40
(SV40) sequences to ensure proper transcriptional termination. The
late SV40 polyadenylation signal is very efficient and increases the
steady-state level of the mRNA transcript [34]. The use of the BGH
polyadenylation signal in plasmids encoding Influenza A virus
nucleoprotein (NP) or hemagglutinin (HA) resulted in protection
from subsequent lethal challenges of influenza [35].

The optimization of the recognition start site by eukaryotic
ribosomes can also improve gene expression by increasing translation
efficiency. To optimize this process, a Kozak sequence must be
included on the nucleotide sequence immediately upstream of the
target gene´s ATG [36]. The consensus of Kozak sequence is
gccRccAUGG, where R is a purine (adenine or guanine) three bases
upstream of the start codon (AUG), which is followed by another 'G'
[37]. Addition of a secretory leader sequence (e.g IgE leader sequence,
human tissue plasminogen activator (tPA) leader sequence) is another
way to enhance antigen expression by stabilizing the mRNA and
contributing to translational efficiency [38].

When developing vaccines to highly mutable viruses (e.g. HIV), in
silico tools can also be used. For example, sequences from a viral strain
isolated from different patients can be analyzed and the most common
amino acid used at any position can be determined and selected for
further synthesis. The resulted gene is based on the consensus
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sequence and has been used to design vaccines against influenza [38]
and HIV [39,40].

Another important aspect to consider in the design of a DNA
vaccine is codon usage. Although sharing the same genetic code, most
species have preferences for the use of particular codons. This is due to
the fact that not all transfer RNAs (tRNA) exist at equal levels within
cells from different species. One of the most effective ways to increase
the expression of the encoded protein is through the use of codon
optimization, i.e. to select codons that target the more abundant
tRNAs within the cell. This procedure correlates with translational
efficiency in mammalian cells [41] that in turn results in increased
protein production and enhanced immune responses. Plasmids
encoding codon optimized bacterial genes increased humoral [42] and
cellular immune responses [43]. In the case of viral proteins, codon
optimization was shown to improve immunogenicity against proteins
derived from human [44], HIV-1 [45,46], simian immunodeficiency
virus (SIV) [47], hepatitis C virus (HCV) [48], influenza virus [49],
and respiratory syncytial virus (RSV) [50], among others. Although
these improvements of immunogenicity were accomplished in mouse
models, such modifications hold promise for studies in humans.
Taking all this information into account, the best results came from
studies that optimized all components mentioned above in the vaccine
design [30,51].

Other modifications such as removal of bacterial elements
(necessary for plasmid replication and/or selection in bacteria) and
plasmid design for long-term expression are also being evaluated and
are reviewed elsewhere [52].

Delivery Methods
Nowadays, a variety of routes for gene delivery are available

including intramuscular, intradermal, intravenous, intraperitoneal,
oral, intranasal, and intravaginal. The amount of DNA required to
elicit antigen specific immune responses by different routes (delivery

methods) can vary according to the antigen expressed and the animal
model used.

Although partially empirical, the type of protective immunity that
one wants to achieve can influence the choice of the delivery method.
For example, mucosal immunization is superior to parenteral route to
induce and sustain mucosal IgA and protective immune responses to
pathogens that normally infect mucosal sites [53,54].

In vivo electroporation (EP) is a method in which millisecond
electrical pulses are applied to the vaccination site shortly after the
administration of plasmid DNA. During this short period, the plasmid
entry is facilitated and protein expression is increased [55,56]. EP
enhances the overall immunogenicity of DNA vaccines in mice and in
large animal models [57]. This increase in immunogenicity may be
due to the induction of danger signal release (e.g. proinflammatory
molecules) and APC recruitment to the site [58]. Several studies in
nonhuman primates emphasized that EP enhanced the
immunogenicity of DNA vaccines against monkeypox [57], malaria
[59,60] and SIV [61,62]. Furthermore, EP has been shown to increase
the number of vaccine specific polyfunctional T cells, a feature
associated with protective immune responses against infectious agents
[63]. The clinical settings mirrored to some extent these observations
[64,65] and a search in the clinicaltrials.gov website revealed 33 human
trials completed, active or recruiting, that involve the administration
of DNA vaccines together with electroporation for the prevention of
infectious diseases or cancer treatment (Table 3).

A few completed trials were already published. One of them showed
the induction of specific antibody responses against the prostate-
specific membrane antigen in cancer patients immunized
intramuscularly with plasmid DNA followed by EP [66]. Another trial
involved the electroporation of a plasmid DNA encoding IL-12
directly into the lesions of patients with metastatic melanoma. In this
case, only two (out of 19) patients showed complete lesion regression
[67].

Condition Intervention Phase Clinical trial
identifier*

Infectious Diseases

Influenza virus Influenza DNA vaccine/Trivalent inactivated vaccine Phase I NCT01609998

NCT01498718

NCT01676402

NCT00995982

Monovalent H5 Influenza DNA vaccine (A Vietnam/1194/2004) Phase I NCT00347529

Trivalent DNA vaccine (PIA0601) with or without DEI-LT (pPJV2012) Phase I NCT00375206

Phase I NCT00709800

NCT00694213

Prime-boost with monovalent Influenza subunit virion (H5N1) vaccine followed
by H5 DNA vaccine (VRC-AVIDNA036-00-VP)

Phase I NCT01086657

NCT00776711

H1 and H5 Influenza hemagglutinin DNA vaccines Phase I NCT01405885

Trivalent (A/New Caledonia/20/99, A/Panama/2007/99, B/Jiangsu/10/20) DNA
Influenza vaccine

Phase I NCT00349037

Recombinant H7 DNA vaccine administered alone or with monovalent
Influenza subunit virion H7N9 vaccine (MIV)

Phase I NCT02206464
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DNA-based Influenza vaccine (FVH1) Phase I NCT01587131

H5 avian Influenza DNA vaccine (VGX-3400X) Phase I NCT01142362

NCT01184976

H1 Influenza DNA vaccine (VRC-FLUDNA057-00-VP) Phase I NCT00973895

Influenza DNA vaccine (VRC-FLUDNA047-00-VP) followed by the seasonal
Influenza trivalent inactivated vaccine (TIV)

Phase I NCT00858611

Hemorrhagic Fever With Renal
Syndrome

Hantaan/Puumala Virus DNA Vaccine Phase II

Phase I

NCT02116205

NCT01502345

Venezuelan Equine Encephalitis
Virus Infection

Venezuelan Equine Encephalitis Virus DNA vaccine Phase I NCT01984983

Dengue Dengue-1 pre-membrane/envelope DNA vaccine Phase I NCT00290147

Tetravalent Dengue vaccine formulated with Vaxfectin® Phase I NCT01502358

Chronic Hepatitis B HBV envelope DNA vaccine (pCMVS2.S) Phase I, Phase II NCT00536627

NCT00988767

Mixed plasmid DNA (HB-110) vaccine Phase I NCT00513968

pPDPSC18 DNA vaccine Phase I NCT00277576

HB110E Hepatitis B DNA vaccine in combination with Entecavir - NCT01813487

DNA vaccine encoding HBsAg and HBcAg (INO-1800) and a DNA plasmid
encoding human IL-12 (INO-9112)

Phase I NCT02431312

VGX-6150 Phase I NCT02027116

HIV HIV clades B and C DNA vaccine Phase II NCT01705223

HIV gag, pro, RT, env, tat, vpu, and rev DNA vaccine (pGA2/JS2) Phase I NCT00043511

NCT00908323

Prime-boost with pGA2/JS2 DNA vaccine followed by a modified vaccinia HIV
vaccine (MVA/HIV62)

Phase I

Phase II

NCT00301184

NCT00820846

Prime-boost with pGA2/JS7 DNA vaccine followed by a modified vaccinia HIV
vaccine (MVA/HIV62)

Phase I NCT01378156

PENNVAX®-GP (gag, pol, env) HIV-1 DNA vaccine and a DNA plasmid
encoding human IL-12

Phase I NCT02431767

PENNVAX®-B (gag, pol, env) HIV-1 DNA vaccine and a DNA plasmid
encoding human IL-12

Phase I NCT00991354

PENNVAX®-B (gag, pol, env) HIV-1 DNA vaccine with or without a DNA
plasmid encoding human IL-12 or IL-15

Phase I NCT00775424

NCT00528489

PENNVAX™-B (gag, pol, env) administered by electroporation Phase I NCT01082692

Prime-boost with PENNVAX-G DNA (HIV-1 env A, C, and D, and consensus
gag plasmids) followed by modified vaccinia HIV vaccine (MVA-CMDR)

Phase I NCT01260727

Prime-boost with HIV-1 DNA Priming Regimens (Nat-B Env, CON-S Env, and
Mosaic Env) followed by MVA-CMDR

Phase I NCT02296541

Prime-boost with HIV-1 DNA vaccine (DNA HIVIS) followed by a modified
vaccinia HIV vaccine (MVA-CMDR)

Phase I NCT01407497

Prime-boost with env DNA vaccine followed by env recombinant adenovirus
(AdV5 and AdV35)

Phase I NCT00801697

Prime-boost with multiclade, multigene HIV DNA vaccine followed by env
recombinant adenovirus (AdV5 and AdV35)

Phase I NCT00472719
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Prime-boost with multiclade HIV-1 DNA vaccine followed by a multiclade
HIV-1 recombinant adenovirus (AdV5)

Phase II NCT00865566

Prime-boost with DNA-HIV-recombinant vaccine (EP-1233) followed by an
HIV-recombinant viral vaccine (MVA-mBN32)

Phase I NCT00428337

HIV-1 gag DNA vaccine administered together a DNA plasmid encoding IL-15 Phase I NCT00115960

HIV-1 DNA vaccine encoding a modified Gag-Pol protein Phase I NCT00009685

Prime-boost with a DNA vaccine (GEO-D03) followed by a modified vaccinia
HIV vaccine (MVA/HIV62)

Phase I NCT01571960

HIV-1 gag DNA vaccine administered together a DNA plasmid encoding IL-12 Phase I NCT00111605

HIV-1 DNA vaccine encoding the env and rev genes (APL 400-003) Phase I NCT00001538

NCT00002232

NCT00002231

NCT00002350

HIV-1 gag-pol DNA vaccine (APL-400-047) administered with bupivacaine Phase I NCT00001088

DNA vaccines encoding HIV clades A, B and C env, clade B rev, clades A and
B gag, and clade B RT

Phase I NCT01140139

Prime-boost DNA vaccine encoding multiple HIV-1 proteins (HIV-MAG) with or
without a DNA plasmid encoding IL-12 followed by VSV-gag HIV vaccine

Phase I NCT01578889

NCT01859325

HIV DNA vaccine (DNA-HIV-PT123) administered with a gp120 protein
vaccine (AIDSVAX®B/E) or HIV vaccine (NYVAC-HIV-PT1 and NYVAC-HIV-
PT4) administered with a gp120 protein vaccine (AIDSVAX®B/E)

Phase I NCT01799954

HIV DNA vaccine (DNA-HIV-PT123) administered with a gp120 protein
vaccine (AIDSVAX®B/E)

Phase I NCT02376582

Prime-boost with a HIV DNA vaccine (DNA-HIV-PT123) followed by NYVAC
HIV protein vaccine (NYVAC-HIV-PT1 and NYVAC-HIV-PT4)

Phase I NCT01783977

DNA vaccine composed of 21 highly specific CTL epitopes (EP HIV-1090) Phase I NCT00054860

NCT00052182

Prime-boost with a DNA vaccine (pSG2.HIV) followed by ChAdV63-HIV or
MVA-HIV after depletion of serum amyloid P component

Phase I, Phase II NCT02425241

HIV-1 vaccine encoding the gag, env, pol, nef, and tat antigens (ADVAX)
administered by electroporation

Phase I NCT00545987

NCT00249106

Prime-boost with a DNA vaccine (encoding clade B HIV-1 gag, pol and nef
and HIV-1 env glycoprotein from clades A, B, and C) followed by four non-
replicating AdV (encoding HIV-1 gag/pol polyproteins from clade B and HIV-1
env glycoproteins from clades A, B, and C)

Phase I NCT00109629

NCT00321061

Prime-boost with a DNA vaccine (encoding clades A, B, and C HIV gag, pol,
nef, and env) followed by AdV (encoding gag, pol, and env).

Phase I NCT00384787

NCT00270465

DNA vaccine (GTU-MultiHIV B) followed by a Lipopeptide vaccine (LIPO-5) Phase II NCT01492985

DNA vaccine encoding gag, pol, vpr, nef, rev, and env (EP HIV-1090)
compared with recombinant protein vaccine containing the 18 HIV proteins
from pol, vpu, and gag (EP HIV-1043)

Phase I NCT00141024

Multiclade HIV-1 DNA Vaccine (VRC-HIVDNA009-00-VP) Phase I,

Phase II

NCT00071851

NCT00125099

NCT01549470

NCT00047931

Multiclade HIV-1 DNA vaccine (VRC-HIVDNA009-00-VP) administered with
IL-2/Immunoglobulin DNA vaccine

Phase I NCT00069030
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Multiclade HIV-1 DNA vaccine (VRC-HIVDNA016-00-VP) Phase I NCT00089531

Prime-boost with a multiclade HIV-1 DNA vaccine (VRC-HIVDNA016-00-VP)
followed by AdV vaccine (VRC-HIVADV014-00-VP)

Phase I NCT01054872

NCT01386489

Prime-boost with a multiclade HIV-1 DNA vaccine (VRC-HIVDNA009-00-VP)
followed by AdV vaccine (VRC-HIVADV014-00-VP)

Phase I NCT00270218

HIV-1 DNA vaccine expressing gag, pol, nef, and env (VRC-HIVDNA006-00-
VP)

Phase I NCT00045838

B clade DNA vaccine encoding a multi-HIV antigen consisting of a synthetic
fusion protein built up by full-length polypeptides of Rev, Nef, Tat, p17 and
p24 with more than 20 Th and CTL epitopes of protease, RT and gp160
(GTU®).

Phase I NCT02075983

HIV-1 multi-envelope DNA vaccine (EnvDNA) Phase I NCT00187148

Prime-boost with a multigene DNA vaccine consisting of two plasmids
expressing an HIV-1 subtype C polyprotein (Gag, RT, Tat, Nef) and an HIV-1
subtype C truncated Env (SAAVI DNA-C2) followed by a recombinant MVA
vaccine expressing the same immunogens (SAAVI MVA-C).

Phase I NCT00574600

DNA vaccine encoding a gag, pol and nef polypeptide and the gp140 env
followed by MVA expressing gag, pol, nef and gp120

Phase I NCT01922284

Plasmodium falciparum Malaria Polyepitope DNA Vaccine Phase I NCT01169077

Prime-boost with a DNA vaccine followed by AdV encoding Circumsporozoite
Protein and Apical Membrane Antigen 1

Phase I NCT00870987

Herpes Simplex Virus Type 2
(genital herpes)

pPJV7630 HSV-2 DNA vaccine Phase I NCT00274300

NCT00310271

Plasmid DNA vaccine encoding one or two HSV-2 proteins (VCL-HM01 and
VCL-HB01)

Phase I, Phase II NCT02030301

Cancer

Head and Neck Squamous Cell
Cancer

DNA plasmids encoding E6 and E7 proteins of HPV 16 and HPV 18
(VGX-3100) administered with DNA plasmid encoding human IL-12
(INO-9012)

Phase I NCT02163057

Aerodigestive Malignancies DNA plasmid encoding HPV 6 proteins (INO-3106) administered with DNA
plasmid encoding human IL-12 (INO-9012)

Phase I NCT02241369

Cervical Cancer HPV16 E6/E7, HPV18 E6/E7 DNA Vaccine Phase II NCT01304524

pNGVL4a-CRT/E7 DNA vaccine - NCT00988559

DNA plasmids encoding E6 and E7 proteins of HPV 16 and HPV 18
administered with DNA plasmid encoding human IL-12

Phase I,

Phase II

NCT02172911

DNA plasmids encoding E6 and E7 proteins of HPV 16 and HPV 18
(VGX-3100)

Phase I NCT00685412

NCT01188850

GX-188E Phase II NCT02139267

Cervical Cancer, Precancerous
Condition

pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine Phase I,

Phase II

NCT00121173

NCT00788164

pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine with or without topical
Imiquimod

Phase I NCT00788164

Breast Cancer Personalized polyepitope DNA vaccine Phase I NCT02348320

Metastatic Breast Cancer Mammaglobin-A DNA vaccine Phase I

Phase I

NCT00807781

NCT02204098
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Breast and Ovarian Cancers DNA vaccine encoding the HER-2/Neu intracellular domain (pNGVL3-hICD)
admixed with GM-CSF

Phase I NCT00436254

Ovarian Epithelial Cancer pUMVC3-hIGFBP-2 multi-epitope plasmid DNA vaccine Phase I NCT01322802

Melanoma Xenogeneic Tyrosinase DNA Vaccine Phase I NCT00471133

gp75 DNA vaccine Phase I NCT00034554

gp100 DNA vaccine Phase I NCT00104845

NCT00398073

Human tyrosinase DNA vaccine

Mouse tyrosinase DNA vaccine

Phase I NCT00698100

NCT00680589

®MKC1106-MT) Phase I, Phase II NCT00033228

Lymphoma Xenogeneic CD20 DNA vaccine Phase I NCT00561756

Lymphoplasmacytic Lymphoma Phase I NCT01209871

Prostate Cancer DNA vaccine encoding androgen receptor ligand-binding domain (AR LBD)
with or without GM-CSF

Phase I NCT02411786

DNA vaccine encoding the rhesus prostate specific antigen (rhPSA) Phase I, Phase II NCT00859729

DNA vaccine encoding prostatic acid phosphatase (pTVG-HP) with
recombinant GM-CSF

Phase II

Phase I

NCT01341652

NCT00582140

Sipuleucel-T with or without prostatic acid phosphatase DNA (pTVG-HP)
Booster Vaccine

Phase II NCT01706458

pTVG-HP DNA vaccine with rhGM-CSF Phase II NCT00849121

Neuroendocrine Carcinoma IL-12 DNA vaccine Phase II NCT01440816

Pancreatic Cancer Vascular endothelial growth factor receptor 2 (VEGFR-2) DNA vaccine
(VXM01)

Phase I NCT01486329

Kidney Cancer Human prostate-specific membrane antigen DNA vaccine Phase I NCT00096629

Others

Allogeneic Hematopoietic Cell
Transplant

Cytomegalovirus therapeutic DNA vaccine (ASP0113) Phase II NCT01903928

Allergic Rhinoconjunctivitis to
Japanese red cedar

DNA vaccine encoding the CryJ2- gene fused to the lysosomal associated
membrane protein (CryJ2 -DNA-LAMP)

Phase I NCT01707069

Seasonal Allergic Rhinitis Amb a 1 Immunostimulatory Oligodeoxyribonucleotide Conjugate (AIC) Phase II NCT00346086

* www.clinicaltrials.gov

HBV: Hepatitis B Virus; HBsAg: Hepatitis B Surface Antigen; Th: T Helper; CTL: Cytotoxic T Lymphocyte; IL: Interleukin; AdV: Adenovirus; ChAdV: Reverse
Transcriptase; HPV: Human Papiloma Virus.

Table 3: Human clinical trials involving DNA vaccines.

DNA tattooing is a technique that uses a perforating needle device
that oscillates at a constant high frequency and punctures the skin
resulting in transfection of skin-associated cells and expression of the
antigen. It was demonstrated that DNA tattooing induces stronger
vaccine-specific immune responses over intramuscular immunization
in mice [68,69] and in nonhuman primates [70]. More recently, DNA
vaccination by tattoo induced full protection against bacterial
challenge in mice in a rapid vaccination protocol [71]. A recent work
developed an ex vivo human skin model to determine the factors that
control vaccine-induced antigen expression and define the optimal

parameters for the evaluation of DNA tattooing in Phase I clinical
trials [72].

Another DNA delivery method tested is known as “gene gun”. In
this case, plasmid DNA is coated onto high-density gold or tungsten
microparticles, which are then accelerated to high velocity by a helium
pulse [73,74]. This process drives the coated particles into the skin
transfecting APCs like Langerhans cells and dermal dendritic cells,
besides other cells in the epidermis. Induction of an immune response
to the antigen of interest is then obtained [75-77]. One of the
limitations of this type of technology is that it normally induces a Th2
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type of response, at least in mice and in non-human primates [78].
Needle-free devices such as Biojector® have also been developed and a
more comprehensive review of this technology can be found in [79].

Polyethyleneimine (PEI) is cationic polymer used as a reagent for
nucleic acid transfections in vitro and as a delivery vehicle in vivo [80].
PEI has also been used to deliver genes to retinal ganglion cells [81]
and to pulmonary mucosa [82]. In a murine model of influenza
infection, intranasal delivery of a PEI/DNA vaccine induced strong T
cell responses with polyfunctional profile and mucosal immunity.
Furthermore, PEI/DNA immunization elicited full protection against
the parental strain and partial cross-protection against other viral
sytrains [83].

Another cationic lipid formulation developed to boost DNA
vaccines is Vaxfectin® [84]. Antibody responses to a DNA vaccine
administered together with Vaxfectin® against measles virus were
significantly enhanced in non-human primates, but no effect on virus-
specific IFN-γ producing T-cells was observed [85]. Phase I clinical
studies are also being conducted using Vaxfectin® together with a
tetravalent dengue virus DNA vaccine and with a therapeutic DNA
vaccine for herpes simplex virus type 2 (HSV-2) (see NCT01502358
and NCT02030301, Table 3)

These findings provided important information for the further
selection and optimization of DNA vaccine delivery methods for
human applications.

Adjuvants
Because limited immunogenicity is the major caveat towards the

use of DNA vaccines in large animal models including humans, it is
clear, and even mandatory, the use of adjuvants associated with this
type of vaccine. Currently, adjuvant selection brings a major
breakthrough for the use of DNA vaccines for either prophylactic or
therapeutic treatments. Here we will discuss only a few examples. A
more detailed review on this topic can be found elsewhere [52,79].

As mentioned previously, plasmid DNA vaccines are commonly
produced in bacteria and therefore contain unmethylated CpG motifs
that are the natural ligands of TLR9. In this way, DNA vaccination can
be improved by the addition of multiple copies of these motives in the
plasmid [86]. In fact, addition of CpG sequences in a plasmid DNA
encoding the HPV E7 protein enhanced IFN-γ, granzyme B, and
antitumor response, especially when electroporation was used [87].

Toll like receptor (TLR) agonists have been also used as adjuvants
with DNA vaccines. Adjuvanting a DNA vaccine with the TLR9
agonist, CpG oligodeoxinucleotides (ODN), at the time of priming
enhanced CD8+ T cell responses and control of viral load after SIV
challenge in rhesus macaques [88]. A recent study showed that the
TLR3 agonist poly (I:C) and the TLR7 agonist resiquimod were both
able to induce significant tumor regression when administered
together with a DNA vaccine against a model tumor expressing the
HPV-16 in mice [89]. However, when a SIV DNA vaccine was
administered together with poly (ICLC), a stabilized poly (I:C)
analogue, in rhesus macaques, no improvement in immunogenicity
was observed [90]. In another study, the TLR7 agonist resiquimod
modestly enhanced IFN-γ production and T cell proliferation in a
HIV-1 gag DNA vaccine [91]. The TLR4 ligand lipopolysaccharide
(LPS) presents potent activation of the innate immune response.
However, due to its toxicity, it is rather difficult to obtain approval for
use in clinical trials. In addition, a few experiments showed that the

dose of LPS used together with a DNA vaccine can modulate the
outcome of the immune response towards a Th1 or Th2 bias [92,93].

Another common approach is to incorporate into the vaccine
plasmid, genes coding for cytokines, chemokines, co-stimulatory
molecules and anti-apoptotic genes as “genetic adjuvants” [94-97].
Also, these genes can be delivered as separate plasmids. It has been
demonstrated that addition of such genetic adjuvants may increase the
breadth and magnitude of immune response and also skew its type [8].

Plasmids encoding interleukin (IL)-2 have been used together with
plasmids encoding proteins derived from different viruses. For
example, both CD4+ inflammatory T cell proliferative responses and
CD8+ CTL activity to HCV core protein were enhanced substantially
after coimmunization with an IL-2 expressing plasmid [98]. In mice
immunized with the nucleocapsid protein of the severe acute
respiratory syndrome virus (SARS), the coadministration of an IL-2
plasmid enhanced specific cellular and humoral immunity [99]. A
bicistronic plasmid expressing influenza proteins plus IL-2 was able to
protect mice against a lethal challenge with this virus [100]. For HIV,
progress has been also made in the induction of immune response
against this virus envelope protein. In a mouse model, the anti-gp120
specific immune response was enhanced in mice when a plasmid
encoding the gp120 gene was administered first and then followed by
another plasmid encoding a fusion IL-2/Ig (IL-2 fused to the Fc
portion of immunoglobulin G (IgG) [101]. This study was extended to
monkeys using plasmids encoding SIV Gag and HIV-1 Env genes
administered with the IL-2/Ig plasmid. No evidence of clinical disease
was observed in the group of monkeys that received the combination
of plasmids and were subsequently challenged [102]. A clinical trial
was then set in place to evaluate a HIV-1 DNA vaccine with the
plasmid cytokine adjuvant (IL-2/Ig) in 70 HIV-negative adults. As
observed in the mouse study, IL-2/Ig plasmid increased immune
responses when administered 2 days after the DNA vaccine (see
NCT00069030 in Table 3) [103].

Cytokines such as interleukin (IL)-12 and IL-15 have been effective
in enhancing immune responses in both murine and nonhuman
primate models [104,105]. This approach was used successfully against
Mycobacterium tuberculosis [106], Yersinia pestis [107,108], HIV
[3,109], cytomegalovirus [110], and tumors [111]. The co-
administration of plasmids encoding IL-12 and IL-15 in macaques
increased the specific CD8+ T cell memory populations and their
ability to produce cytokines [112]. In humans, three clinical trials were
completed using HIV DNA vaccines administered together with
plasmids encoding IL-12 (NCT00991354, see Table 3), or IL-12 and
IL-15 (NCT00528489 and NCT00775424, see Table 3). Study
NCT02431767 (Table 3) is not yet recruiting, but its the goal is to
evaluate the HIV DNA vaccine (composed of gag, pol and env genes)
coadministered with an IL-12 plasmid delivered by intradermal or
intramuscular electroporation.

Granulocyte-macrophage colony-stimulating factor (GM-CSF)
associated with DNA vaccines recruits and activates dendritic cells to
the site of vaccination [113]. Promising results were observed when a
plasmid encoding GM-CSF was used with DNA vaccines against
HSV-2 [114] and HIV [115].

The envelope glycoprotein D (gD) of the human herpes simplex
virus (HSV-1) has also an adjuvant effect [116]. The immunological
effects of gD, particularly the activation of CD8+ T cell responses,
involve the binding of gD to herpes virus entry mediator (HVEM) and
the blockage of a co-inhibitory immune mechanism involving the B-
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and T lymphocyte attenuator (BTLA) cell receptor [117,118].
Immunization of mice with a bicistronic DNA vaccine expressing gD
(HSV) fused with HPV-16 or HIV-1 proteins induced antigen-specific
CD8+ T cell responses, including in vivo cytotoxic responses.
Furthermore, the vaccine conferred protective immunity against
challenges showing antiviral and antitumor capacity [119].

Chemical compounds were also evaluated as adjuvants for DNA
vaccines [120]. One of such compounds is bupivacaine or marcaine, a
local anesthetic drug that works by blocking neuron transmission.
Bupivacaine is also a myotoxin that when injected destroys myofibers,
inducing the clearance of cell debris and proliferation of myoblasts. In
addition, the recruitment of inflammatory cells to the site of
bupivacaine injection may allow the transfection of immune cells
[121]. Muscle pretreatment with bupivacaine several days prior to
injection of plasmid DNA results in increased DNA uptake, as
evidenced by increased expression at the injection site [122,123]. The
complex formed with bupivacaine protects the plasmid DNA from
nuclease degradation, and intramuscular immunization with this
formulation results in higher immune responses against the encoded
antigen [124]. Intranasal or intramuscular administration of a DNA
vaccine encoding Streptococcus mutants antigens plus bupivacaine
induced antibodies, IFN-γ production and significant reduction in
dental caries lesions [125]. Further in support of the adjuvant effect of
bupivacaine, a recent study demonstrated that the concomitant
administration of bupivacaine with a DNA vaccine encoding 18 HIV-1
epitopes was able to increase the magnitude of T cell responses,
cytokine production and also the longevity of specific immune
responses [126].

Besides the substances discussed previously, chemokines, signaling
and co-stimulatory molecules have also been tested and a very detailed
review is available in [79].

Dendritic Cell Targeting
Dendritic cells (DCs) have a central role in antigen uptake and

presentation to T cells. Due to their privileged localization in different
tissues and their ability to sense the environment through a myriad of
surface and intracellular receptors, DCs are able to rapidly detect,
phagocytize and process pathogens into peptides that will be
successfully presented to T cells and induce the development of
adaptive immune responses. For that reason, DCs are excellent targets
for the development of immunization strategies, and targeting an
antigen directly to these cells constitutes a way to improve
immunogenicity.

In the last decade, antigen targeting directly to DCs became a reality
through the design of specific monoclonal antibodies (mAbs) against
their surface receptors fused with antigens of interest. When delivered
to maturing DCs, these fusion antibodies were able to elicit strong
cellular and humoral responses to the fused antigen, and even
protection in some experimental models [127,128]. Although
promising, this approach relies on the development of an immunogen
(i.e. the fusion mAb) that may be difficult to generate because the
antigen has to be fused with the mAb. This can be accomplished by
chemically coupling the antigen to the mAb [129] or by genetically
fusing the antigen sequence with the sequence of the mAb heavy
chain, and posteriorly producing the fusion mAb using transfection of
eukaryotic cells [130,131]. An alternative to such a hurdle is to
produce DC targeting immunogens in the form of plasmid DNAs. The
addition of DC targeting capacity to a DNA vaccine has been tested as

another way to help overcome their poor immunogenicity in humans
[3]. Many groups have shown that this strategy can work efficiently
when different antigens and DC targeting molecules are used.
Demangel et al., for example, designed DNA vaccines encoding a
fusion protein comprised of a mycobacterial antigen and a single-
chain Fv antibody (scFv) specific for two murine DC-restricted surface
receptors: CD11c and DEC205. Their results showed that antigen
targeting to DCs via the DEC205 binding scFv led to enhanced
immunogenicity when compared to targeting through the CD11c
binding scFv [132]. To further expand these results, Nchinda et al.
showed that a DNA vaccine encoding ovalbumin or the HIV gag p41-
scFv DEC205 fusion protein induced higher antibody levels and
increased numbers of IFN-γ-producing CD4+ and CD8+ T cells when
compared to non-targeted constructs even when a lower dose of DNA
was administered [133]. In an attempt to improve even more the
induction of CD8+ T cells, the ovalbumin-scFv DEC205 and HIV gag
p41-scFv DEC205 DNA vaccines were used to prime mice that were
subsequently boosted with adenoviruses expressing a non-targeted
version of the same molecules. Surprisingly, targeting of DNA-
encoded ovalbumin to DCs suppressed CD8+ T-cell responses after
the adenoviral booster immunization. This effect was only observed
for ovalbumin-scFv DEC205 and the reasons why different outcomes
were observed are not currently understood. However, when both
DNA vaccines were administered together with the TLR9 ligand CpG
and the TLR3 ligand poly(I:C), an increase in the CD8+ T cell response
was observed after the adenoviral boost [134]. This increase can be
explained by the fact that DEC205-targeted protein or DNA vaccines
critically depend on the activation and maturation status of the
targeted DCs. scFv DEC205 DNA vaccines were also successfully used
to immunize calves. In this approach, the authors constructed a multi-
component DNA construct expressing the DEC205-targeted antigen
fused to the CD40L minimal functional domain. Animals were then
vaccinated with a low dose of the antigen-scFv DEC205-CD40L
plasmid together with DNA plasmids expressing FMS-like tyrosine
kinase 3 ligand (Flt3L) and GM-CSF. The DC targeted version of the
plasmid elicited higher proliferation and IFN-γ production by CD4+ T
cells when compared to animals immunized with plasmid DNA
containing the non-targeted version of the antigen [135]. Despite the
good results obtained in calves, when a DNA vaccine comprising the
SIV p27 capsid protein gene fused to the monkey scFv DEC205 region
was administered to rhesus macaques, no improvement in antigen
immunogenicity was observed even when theTLR3 ligand poly(I:C) as
co-injected. On the contrary, a more robust response was detected in
the monkeys immunized with SIV p27 gene fused to a non-targeted
scFv [90]. scFv DEC205 DNA vaccines have also been used to target
self antigens in an attempt to prevent autoimmune diseases and
cancer. A recent article by Wang et al. showed that CD40 targeting
directly to DCs using the CD40-scFv DEC205 DNA vaccine was able
to protect rats from developing Heymann nephritis [136]. For breast
cancer therapy in the mouse model, the scFv DEC205 plasmid was
fused with the tumor-associated antigen HER2/neu ectodomain.
HER2/neu targeting to DCs through HER2/neu-scFv DEC205 DNA
immunization elicited specific cellular and humoral immune
responses that were protective against challenge [137].

Even though scFv DEC205 fusion DNA constructs are the most
commonly used until now, other molecules were also tested. Among
them is the programmed death-1 (PD1) molecule. The PD1 ligands
(PD-L1 and PD-L2) are expressed in different cell types, including
DCs. The vaccination of mice with a plasmid encoding the PD1
soluble domain fused to the HIV gag p24 protein elicited high
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frequencies of gag-specific polyfunctional and cytotoxic CD8+ T cells.
It is interesting to notice that this vaccination strategy elicited stronger
responses than those elicited in mice vaccinated with the HIV gag p41-
scFv DEC205 [138].

The data presented above indicates that the use of DNA constructs
with the capacity to encode molecules capable of targeting antigens to
DCs increases the magnitude of T cell responses and may help to
overcome the low immunogenicity of DNA vaccines in humans.

Heterologous Prime-boost
Another way to increase the potency/efficacy of DNA vaccines is to

use the heterologous prime-boost immunization regimen. In this
approach, the immune system is primed by administering the antigen
of interest by one method (e.g DNA vaccine) and then boosted by a
different one that delivers the same antigen (e.g recombinant protein,
recombinant virus). A vast number of experiments have been
performed in mice and non-human primates [139] and these strategies
are already into clinical trials [140]. Detailed reviews on heterologous
prime-boost strategies have been published elsewhere [3,141-143].

Taking DNA Vaccines from the Bench to the Field
A number of safety concerns came up since the beginning of DNA

vaccine utilization in the early 90´s. These include the possibility that
such vaccines may (i) stimulate the production of autoantibodies
against the plasmid DNA, potentially inducing or accelerating the
development of systemic autoimmune diseases; (ii) integrate into the
host genome, increasing the risk of carcinogenesis or other genetic
abnormalities; (iii) induce the development of tolerance rather than
immunity; (iv) selectively alter host´s cytokine response to infections.
Many of such concerns have been addressed and elucidated in the past
years. For example, cumulative data from clinical trials showed that
DNA vaccines did not accelerate systemic or organ-specific
autoimmune diseases. Furthermore, there is no evidence from pre-
clinical or clinical trials that DNA vaccines result in the development
of tolerance in adults [144].

An overview of the specific guidelines and regulatory aspects for
manufacturing, accessing preclinical immunogenicity, safety, quality
assurance and quality control of prophylactic DNA vaccines were
developed by the World Health Organization (WHO) (http://
www.who.int/biologicals/publications/ECBS%202005%20Annex
%201%20DNA.pdf) and the FDA [145]. Recently, a paper described
the evolution of FDA policy, the status of current regulatory guidance
and several recommendations to facilitate the development of
prophylactic DNA vaccines [144]. One main issue is that the
production process should conform to cGMP (current Good
Manufacturing Practices) guidelines and be acceptable to the FDA or
other national regulatory agencies. After endorsement of the quality
and pre-clinical safety of a new DNA vaccine, clinical trials should
proceed through three phases. Typically, phase I trials involve a small
group of healthy volunteers (20-80), who are designed primarily to
determine whether the vaccine formulation is safe for human use, but
also their immunogenicity can be evaluated. Phase II trials involve a
larger number of healthy volunteers and are designed to further
evaluate vaccine safety and potential side effects, immunogenicity,
optimum dosage and schedule. Phase III trials analyze whether a
vaccine provides any protection against infection or disease, and can
also monitor safety and potential side effects on a large scale. These
trials must be large enough (thousands of volunteers) to ensure that

the vaccine works under various conditions. If Phase III results
demonstrate safety and sufficient efficacy, the manufacturer applies for
permission to license and market the product and submits a plan for
long-term, post-licensure safety monitoring (Phase IV trials). A full set
of clinical trials for a successful candidate vaccine can take 10 to 12
years, involve 50,000 to 100,000 volunteers, and cost millions of
dollars. For those reasons, few vaccine candidates survive this rigorous
process.

Despite the time consuming process, a large number of DNA
vaccine candidates are being tested in clinical trials. A quick search in
the Clinical Trials website from the U.S. National Institutes of Health
(www.clinicaltrials.gov) using the key words “DNA vaccine” revealed
139 studies that are either already completed, active or recruiting
(Table 3). Almost half of the studies focused on the development of an
HIV-1 vaccine. Plasmids encoding different HIV-1 proteins were
administered together with interleukins (such as IL-12 and IL-15),
anesthetic drugs (e.g. bupivacaine) or even recombinant HIV-1
proteins. Prime-boost experiments were also conducted using
normally a plasmid DNA prime followed by a boost with attenuated
recombinant viruses (e.g. modified vaccinia ankara, adenovirus and
vesicular stomatitis virus). Electroporation devices were also used in
an attempt to improve DNA vaccine efficacy. Although HIV-1 is the
most frequent target, DNA vaccines are are also being developed for
Influenza, Plasmodium falciparum malaria, dengue, chronic hepatitis
B, among others (Table 3).

Vaccine
name

Species Vaccine Target Reference

Oncept Dog Melanoma [149]

Apex-IHN Salmon Infectious
haematopoietic
necrosis virus

www.vical.com/
products/infectious-
disease-vaccines/
Apex-IHN/default.aspx

West Nile -
Innovator

Horse West Nile virus [150]

LifeTide SW
5

Pig Growth hormone
releasing hormone
(GHRH)

www.vgxah.com/
LifetideSW5.html

Table 4: Licensed DNA vaccines for animal use

The search for new treatments against different types of tumors
opened the possibility for the use of DNA vaccines in therapeutic
settings. Clinical trials have been set up to evaluate efficacy of DNA
vaccines against melanoma, lymphoma, cervical, ovarian, prostate,
pancreatic and kidney cancers, among others (Table 3). Although
generally safe, no DNA vaccine for use in humans has yet met
applicable efficacy requirements. On the other hand, DNA vaccines for
veterinary use have shown efficacy in some trials. Potentially
protective immune responses were observed against many infectious
agents in different target species including fish, companion and farm
animals. A veterinary DNA vaccine to protect horses against West Nile
virus was first licensed in 2005 by the FDA [146]. In 2008, the
Australian Pesticides and Veterinary Medicines Authority approved a
DNA-based growth hormone therapy, delivered using electroporation
(EP), for use in swines [147]. In total, four animal DNA vaccines were
approved for the vaccination of horses, salmon, pigs and dogs (Table
4).
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While the quality and safety considerations for veterinary use differ
from vaccines for human use, experience with veterinary DNA
vaccines can provide valuable information for the control and use of
human DNA vaccines.

Recently, a web-based DNA vaccine database was developed aiming
to analyze plasmid vectors and protective antigens used in DNA
vaccines based on peer-reviewed articles [148].

Concluding Remarks
As described in the previous sections, a significant amount of time

and effort has been spent in an attempt to improve DNA vaccines.
Since the first demonstration that naked DNA was able to induce
specific immune responses 25 years ago, much has been accomplished.
Improvements in plasmid design and delivery methods, as well as
advances in large scale DNA production under GMP conditions paved
the way for human trials. Despite the disappointing initial results,
especially concerning immunogenicity of DNA vaccines in humans,
different groups keep working to improve this technology. New
approaches and reagents are constantly being generated and many
different clinical trials are set to evaluate the results in humans. The
exchange of results and technologies by researchers in this field has the
potential to push DNA vaccine development even further and
guarantee that this promising technology is translated into effective
vaccines.
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