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Abstract

The numerical density derivative approach is used to measure fluid densities around the wellbore and to 
generate pressure equivalent for each phase using simplified pressure-density correlation. While statistical 
derivative method determines fluid phase permeabilities and also average effective permeability for a given 
reservoir system with new empirical model. Both methods were only tested in conventional oil and gas reservoir 
system.

This study introduces a new mathematical model for interpreting pressures behavior of a vertical well with 
cross form fracture in shale gas reservoir using numerical density approach. In this case, the imposed fractures 
can be longitudinal and transverse but symmetrical to a reference point (the wellbore). The major advantage is 
that it simplified the complex fracture-matrix flow equation by applying ordinary laplace transform model OLTM 
to formulate linear, bilinear and trilinear flow model.

The model is tested for constant pressure and constant rate conditions with the generated average fluid 
phase pressure-densities equivalent displaying the distinctive fractures flow fingerprint. It also indicates that 
the dimensionless rate or pressure derivative response and distinctive flow regions are influenced by mostly 
fracture’s conductivities, dimensions and reservoir’s boundaries. A new flow region have been added with the 
first as the linear flow region which is the flow along the vertical plane parallel into the wellbore and the second as 
the Bilinear or Trilinear flow region which is the flow along the vertical plane parallel to the wellbore, then into the 
fracture after the pressure pulse reaches the upper and lower impermeable boundaries depending on the ratio 
of primary and secondary cross form fracture lengths and conductivities. In this paper, it has been demonstrated 
that for constant rate solution, the smaller the fracture aperture, the reduction in the number of flow regions to 
be seen.
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Nomenclature
LfD=Dimensionless fracture length
Cs=Wellbore storage constant
wf=Fracture width ft
CA=Area compressibility 1/psi
Ct=Total compressibility 1/psi
∆p=Change in pressure psia 
A=Drainage Area acres
Amf=Fracture cross-sectional area to flow ft2
Bgi=Formation volume factor at initial reservoir pressure, rcf/scf
ct=Liquid total compressibility,1/psi
dz=Well position in reservoir, dimensionless
D=Diameter, fracture spacing, ft
h=Reservoir thickness, ft
k=Homogeneous reservoir permeability, md
kf=Fracture permeability of dual porosity models, md
km=Matrix permeability, md
kx=Permeability in the X-direction, md
ky =Permeability in the Y-direction, md
kz =Permeability in the Z-direction, md

l=Half of fracture spacing, ft
l−1=Inverse Laplace space operator
L=General fracture spacing, ft
m(p)=Pseudopressure (gas), psi2/cp
Pi=Initial reservoir pressure, psia
Pwf=Wellbore flowing pressure, psia
Pf=Fracture pressure psia
PflD=Dimensionless pressure in the fracture
Pm=Matrix pressure psia
PmlD=Dimensionless pressure in the matrix
qlwD=Dimensionless well rate based on matrix-fracture
qg=Gas rate, Mscf/day
Q=Cumulative production, STB
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r=Radial geometry coordinate 
rw=Wellbore radius , ft
s=Laplace space variable
S=Skin dimensionless
t=Time, hrs
tDXf=Dimensionless time coordinate
tDA=Dimensionless time based on fracture matrix geometry
T=Temperature,
yD=Dimensionless reservoir length (rectangular geometry)
xD=Dimensionless reservoir length (rectangular geometry)
z=Coordinate, z-direction (matrix)
zD=Dimensionless coordinate, z-direction
xw =X-Cartesian coordinates of the production point
yw =Y-Cartesian coordinates of the production point
zw =Z-Cartesian coordinates of the production point
f(s)= Relation used in Laplace space to distinguish matrix geometry 
types

Abbreviation: PEDNA: Pressure Equivalent of Density Weighted 
Average

Introduction
Pressure transient analysis (PTA) is the industry’s most recognized 

and acceptable method for assessing well deliverability, skin, near-
wellbore permeability and characterize reservoir heterogeneities for 
hydraulically fractured wells. For these wells, several flowing regions 
may occur in or around due to the 3D nature of formations flow 
geometry for which the radial flow symmetry do not often exists. These 
flow regions are difficult to define by basis of pressure transient data 
because of near wellbore and formation factors, such as penetration 
ratio (the ratio of the fractures height to the formation height), 
inclination angle from the vertical direction, the spacing between 
fractures, heterogeneities such as vertical and horizontal permeability’s 
and anisotropy [1]. These parameters influence the well sand face 
pressure and derivative response.

 Since early seventies, PTA industry’s experts and researchers have 
developed several models considering different well, reservoir and 
boundaries conditions to describe the pressure transient behavior with 
or without hydraulic fractures in vertical or horizontal wells. These 
models were developed based on the source solution and Green’s 
function to solve unsteady-state flow problem in the reservoir which 
was presented by Gringarten and Ramey [2]. Also, the Newman product 
method and source function have been used for solving transient flow 
problem interpreting pressure behaviors.

 Cinco-Ley et al. [3] developed the concept of finite flow capacity 
and applied semi analytical approach to illustrate the importance of 
finite fracture when the FCD<300 which is similar to long fractures and 
low capacity fractures. Their idea facilitated the evaluation of massive 
hydraulic fracturing programs, although with limitation applicable to 
systems with small, constant compressibility. Also, their type curve 
is presently the reference for data analysis from a constant-rate flow 
test or a pressure-build-up test, depicting vertical hydraulic fracture 
model in an infinite-acting reservoir. In their study, they introduced a 
relationship between dimensionless time and pressure behavior which 
depends on time, and dimensionless fracture conductivity, FCD:

f f
CD

f

K w
F

Kx
= 					                     (1)

Bennett et al. [4] established finite conductivity type-curves to 
distinguish the linear and bilinear flow region with a straight line for 
multi layered reservoirs using analytical solution for cases of constant 
pressure and rate. They concluded that this approach is applicable only 
if the productive interval is within the fracture and that the fracture 
conductivity is dependent on depth.

Zerzar et al. [5] integrated the boundary element method and 
Laplace transformation to publish a comprehensive solution for 
multiple vertical fractures in horizontal wells. In this study, seven flow 
regions were identified which include bilinear, first linear, elliptical, 
radial, pseudo-radial, second linear and pseudo-steady state.

Several studies on modeling the fractured flow patterns in 
hydraulically fractured wells have been done by researchers over the 
last four decades with well documented results in various engineering 
and mathematical research journals. In all of these researches, four flow 
regions have been reliably in dentified to occur in the reservoir with 
hydraulically fractured well. These flow regions are highlighted below:

Firstly, linear flow: which is due to flow from fluid expansion 
along the fracture parallel to the wellbore. Occasionally, the wellbore 
storage effect could mask its response. Its occurrence depends on the 
length of the test and the fracture conductivities. This flow regime is 
recognized as a 1/2 slope in the log-log pressure derivative diagnostic 
plot and is used to determine fracture half-length, channel or reservoir 
width if vertical permeability is known [6]. Secondly, bilinear flow: 
a combination of a combination of two simultaneous linear flows in 
perpendicular directions. This only occurs for finite-conductivity 
fracture where linear flow exists both in the fracture and to the fracture 
plane. This flow regime is recognized as a 1/4 slope in the log-log 
pressure derivative diagnostic plot and is used to determine the fracture 
conductivity [7].

Thirdly, pseudo-radial flow with fractures of all conductivities and 
in most cases as late time features. It does occur after sufficient long 
flowing period.

Lastly, trilinear flow model has been developed over the last decade 
to account for flow from dual fracture features. Notably, research on 
this topic has centered on modeling trilinear flow in finite conductivity 
fractures in tight gas formation. Further researches are been carried out 
to ascertain the flow source and sink. This paper focuses on developing 
mathematical model for different (linear, bilinear and trilinear) flow 
regions in a non-conventional reservoir completed with vertical well 
and within a cross form fractures.

Cross form fracture flowing region model derivation

For cross form fractures symmetrical to a reference point (the 
wellbore) at an arbitrary angle to the horizontal axis X as shown in 
Figure 1, the following assumptions are made to formulate the general 
solution:

•	 The reservoir system is dual porosity in nature

•	 The system is naturally fracture reservoir consisting of natural 
fractures.

•	 Flow are via the two fractures into the wellbore

•	 Pressure at the wellbore is the sum of combining pressure units 
along the fractures
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Dimensionless pressure:
2

fd d
t

kh pP P
q B
π
µ
∆

⇒ ⇒  		     	                                   (2)

Dimension time:

2

f
fd

t t fm t

k t
t

c c lϕ ϕ µ
⇒

 +       
 			                (3)

Dimensionless length coordinate (L), assuming isotropic properties

xc
D k

k
L
xx =  					                  (4)

yc
D k

k
L
yy = 					                  (5)

22
21 ff

D l
z

l
zz ==  				                   (6)

Where 1fl  and 2fl  are lengths of primary and secondary fractures, 
cL  =distance along the fracture path.

For isotropic system:

f
fD

c

l
L

L
⇒ 					                     (7)

•	 The matrix part act as a uniformly source of flow distribution 
into the fracture

•	 Viscosity is constant and slightly compressible fluid

•	 Reservoir is on a rectangular shape with producing well located 
at the centre.

•	 Transient interporosity flow model is adopted for the matrix and 
fracture transient flow.

•	 The fractures are modelled as homogeneous slab porous median 
with primary fracture=Lf1 and secondary fracture=Lf2. 

•	 The fractures have width Wf and fully penetrate the entire pay 
zone. 

•	 Flows into the fractures are along the fractures and no flow via 
the fractures tips.

•	 The fractures centreline is resolved along X axis and Y axis by 
virtue of the angle of inclination. 

•	 Figure 2 represent a 2D pictorial view of the fracture pathway 
along the wellbore, then the expected flow behavior around and 
away from the wellbore. Also a 3D view of a centered secondary 
fracture intersecting two primary fractures is shown in Figure 3. 
In terms of flowing pressure behavior; the following which is not 
in sequential order are possible:

•	 Single/Dual linear flow into the well. 

•	 Possible Pseudo radial flow close to the well but could be masked 
by wellbore storage

•	 Bi/Tri-linear flow away from the well

•	 Pseudo radial flow at the end of the fractures

The benefit of the cross form fracture model is that it creates a 
high conductive path close and some distance away from the well bore 
which allows large surface area exposure of low permeability formation 
resulting to more flow into the wellbore. In this case, large volume 
of fluid per unit of time is produced into the wellbore resulting in an 
increased production rate without drilling another well.

The following dimensionless parameters are defined for the 
formulation:
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Figure 1: X and Y axis orientation cross form fracture model symmetrical at 
the wellbore.

Well

Xfa

Xfb

Figure 2: 2D view of a centered secondary fracture intersecting two primary 
fractures.

  
Figure 3: 3D view of a centered secondary fracture intersecting two primary 
fractures. Source: Olufemi [6].
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c
D L

h
h ⇒ 					                  (8)

 The dimensionless variable rescaling the anisotropy system to an 
equivalent isotropic system is given as;

yxc

f
fD k

k
k

k
L
l

L θθ 22 sincos
+⇒  			                   (9)

h=reservoir thickness, kx and ky are permeabilities along x and y 
axis If the fractures are of same length, then

fff lll == 21 =equivalent fracture length

The dimensionless fracture conductivity is defined as: 
f f

fD
mf

k w
C

kλ
= 					                   (10)

Interporosity flow parameter:

2

12 m
mf mf

f f

k
A

l k
λ ⇒ 				                  (11)

as defined by Warren and Roof, 1963

Dimensionless storativity:			   	             (11a)
[ ]

[ ] [ ] ftmt

ft
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c

φφ
φ

ω
+

⇒

For fracture one (Primary fracture), the diffusivity equation is 
given as:

1

2

2
21

.

2

f

f ft m m
lz

ff
f

P Pc k P
lx k t zk

φµ
=

∂ ∂ ∂ = − ∂ ∂ ∂ 
		             (12)

And for fracture two (Secondary fracture)

2

2

2
22

2

f

f ft m m
lz

ff
f

P Pc k P
ly k t zk

φµ
=

∂ ∂ ∂ = − ∂ ∂ ∂  		               (13)

If the fractures are of same length, then

fff lll == 21

First the diffusivity equation for the matrix is given as: 

2
m t m

m

P c P
z k t

φµ∂ ∂ =  ∂ ∂ 
				                 (14)

For the matrix and fracture interflowing period, the diffusivity 
equation is similar for both fractures, therefore the following boundary 
condition BC are applicable

Initial condition: 

( ) im PzP =0,  					                   (15)

Initial boundary: 

O
z

P
oz

m =
∂
∂

=
					                  (16)

Outer boundary

flzm PP f =
= 2

					                (17)

Resolving the matrix diffusivity, equation (14) into dimensionless 
form using equation (2, (3) and (6), we have: 

22

2

1(1 )
4
f flmD lmD

D m mf AD

l kP P
z k A t
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∂ ∂

⇒ −
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			            (18)
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			                  (19)

Therefore
2

2
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D mf AD

P P
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λ
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⇒ −  ∂ ∂

	  			              (20)

Where interporosity flow parameter 2

12 m
mf mf

f f

k
A

l k
λ =  [8]

The fracture solution for the crossform fracture model is formulated 
as follows:

The primary fracture

The diffusivity equation as stated in equation (12) is given as: 

1

2

2
1 2
2

f

f ft m m
l

Zff
f

P Puc k P
lx k t zk

φ
=

∂ ∂ ∂ = − ∂ ∂ ∂ 
		            (21)

Resolving the equation in dimensionless form using equation (2), 
(3) and (6)

[ ] [ ]

2 2 2
2 2

2 22
11

4 coscos φµ θθ
φ φ µ

∂ ∂ ∂ ⇒ − − ⋅ ∂ ∂ ∂   + 

lfD f lfDt m lmD

fD x AD f f Dt t fm f

P k Pc k Pk RR
x k k t k l zc c l

 (22) 

Substitute for θ22
1 cosRl f =  along x axis, we have:

2 2 2

2 2
1

4coslfD lfD m lmD

D f x AD f D

P P k PR k
x l k t k z

θ ω
∂ ∂ ∂
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		             (23)

For secondary fracture resolve in y axis from equation (13)

2

2

2 22
2

f
f ft m m Lz

ff
f

P Pc k P
ly k t zk

φµ
=

∂ ∂ ∂ = − ∂ ∂ ∂ 
		              (24)

Converting the equation dimensionless form using equation (2), 
(3) and (6)

[ ] [ ]

2 2 2
2 2

2 22
22

4 sinsin φµ θθ
φ φ µ

∂ ∂ ∂ ⇒ − − ⋅ ∂ ∂ ∂   + 

fD f fDt m mD

fD y AD f f Dt t fm f

P k Pc k Pk RR
y k k t k l zc c l  (25)

Substituting for θ22
2 sinRl f =  along y axis 

2 2 2

2 2
2

4sinlfD lfD m lmD

D f y AD f D

P P k PR k
y l k t k z

θ ω
∂ ∂ ∂

⇒ −
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		              (26)

Assuming the flux is uniform along the fracture and the pressure 
at the wellbore is a summation of pressure along the fractures segment, 
hence fD  x axis fDP=  y axis

Combining equation (23) and (26)
2 2 2 2

2
2 2 2 2

1 2

8cos sinlfD lfD lfD m lmD

D D x f y f AD f D

P P P k Pk k R
x y k l k l t k z

θ θ ω
 ∂ ∂ ∂ ∂

+ ⇒ + − 
∂ ∂ ∂ ∂  

	              (27)

Resolving in x axis 

2 2 2 2

2 2 2
1 2

8cos sin
2

θ θ ω ∂ ∂ ∂
⇒ + − 

∂ ∂ ∂  

lfD lfD m lmD

D x f y f AD f D

P P k Pk k R
x k l k l t k z

	            (28)

See full detail at the Appendix.

The general solution combining the matrix and fractures differential 
equations with different BCs is given as: 

( )cosh( ) sinh⇒ +lfD D DP A msx B msx 	                             (29)

Resolving the above equation by differentiating and applying BC, 
the final solution for crossform fractures model is given as:
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( )1 cothπ−
⇒ =lwD D

lwD fD

sq msx
P C ms 		              (30)

( )1 3(1 )tanh
3

λ ω ωω
π λ

 − − = +
  

f mf

mf

l sm
h s

 		              (31)

This is general solution for the crossform fractures model 
connecting at the wellbore. This equation can be inverted to obtain 
time dependant solution using Laplace inversion such as Stehfest’s 
inversion algorithm.

Figure 4 shows the flow path and expected flow regions for the 
crossform fracture in a vertical well. The flow geometry phase system 
for crossform is summarized in Figure 5 below. 

At 5.4>x  and 1)coth( =x

Hence 

( )coth 1Dmsx =  If 4.5Dmsx >

Therefore
1

lwD fD

s
q C ms

π−
⇒  				               (32)

Where 
( )1 3(1 )tanh
3

f mf

mf

l sm
h s

λ ω ωω
π λ

 − − = +
  

Case (I) -----bilinear flow:

If ω=0						                    (33)

3tan
3
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l sm
h s

λ
π λ

= 				                  (34)
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3tanh 1.0
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s
λ

 
= 
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3 4.5
mf

s
λ

≥

Therefore 

4.5Dmsx ≥  If ( ) 1.0DCosh msx ⇒

1

lwD fD

s
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⇒  

 The general solution is given as;
1

4

1
4 36.84

fD f mf
lwD

AD

C l
q

ht

λ 
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 
	  		             (35)

This equation is due to bilinear flow period. 

However considering the assumptions, the flow regime is limited 
by;

3 4.5
mf

s
λ

≥ 					               (35a)

Therefore equation (35) is limited to: 
3

20.3AD
mf

t
λ

≤  And 
2

20.3
D
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λ

≤

Case (II) ----linear flow:

ω=1 						                 (36)

( ) ( )1 3 1
tanh

3
f mf
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m
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λ ω ω

ω
π λ

 − −
 = +
  

01+⇒m

1m =

Therefore 

1 cothmf
D

lwD fD

s
msx

q C ms

λ
 ⇒ −   			                 (37)

This is the general solution for;

1
25.57

fD
lwD

AD

C
q

t
⇒ 				               (38)

This equation is due to the linear flow period with assumption 
limiting to t.

 
Figure 4: Pictorial view of expected Cross form fracture flow region.

Figure 5: Flow geometry phase system for cross form fracture model.
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Equation (38) is limited to the region: 
2

20.3
D

AD
mxt ≤ 	           (38a)

Case (III)----radial homogeneous flow: For homogenous case, 
0.1)( ⇒sf

Recall that for matrix slab

( )1 3(1 )( ) tanh
3

mf

mf
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Substitute into equation 

1 coth D
lwD fD

s msx
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, 4.5Dmsx ≥
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The general solution is given as;
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−

+
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This equation represents the homogenous phase.

Also this equation is limited by
2

20.3
D

AD
mxt ≤  					              (43a)

Case (IV)----trilinear flow:

If 0)( ⇒sf  and 
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 Asymptons

Recall that for matrix slab
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Substitute equation 44 and the asympton 
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into above equation
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= − 				                 (45)

Substitute into equation 30
1 coth D
lwD fD

s msx
q C ms

π  ⇒ −  

3
4

3
2

D

f
fD

s Coth msx
l

C s s
hs

π

π

−

 ⇒ −   
−  

 

		               (46)

If 

1.0DCoth msx ⇒  , 4.5Dmsx ≥

7 528 4

fD fD f
lwD

C C l
q

s hs ππ
⇒ − − 	  		               (47)

Converting to time dependent function using Laplace inverse
0.125 0.25

20.875 0.75
fD AD fD f

lwD

C t C l t
q

hπ π

− −

⇒ − −
Γ Γ

 			            (48)

Where Γ = Gamma Function

Γ0.875=1.456

Γ 0.75=1.225

Therefore

1 1
8 4

0.0830.22 f
lwD fD

ADAD

l
q C

t ht

 
 ⇒ − −
 
 

			              (49)

This equation is due to Trilinear flow period. Also this equation is 
limited by

2

20.3
D

AD
mxt ≤ 					                 (49a)

Summary of the matrix and fractures diffusivity PDEs and the 
generated equations for each flow regimes is shown in Figures 6 and 7.
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Example 

Numerical simulation is performed with a synthetic rock and fluid 
data. First, the reservoir is discretized into blocks using the Bennett 
et al. [4] empirical guideline for designing the fractures pathway. A 
single layer reservoir is discretized into 10,000 blocks with distribution 
as x:y:z=100:100:1 with the crossform fracture and well modeled 
in such a way that there are no boundary effects (Table 1). Bennett’s 
[4] recommendation for designing x and y grids in a fracture model 
as shown in Table 2 is used to determine the block dimensions and 
fractures aperture. To adhere to the physics of fluid flow, the following 
assumption are considered:

•	 Isothermal condition with no diffusion and dispersion process.
•	 No chemical reactions (thermodynamically equilibrium)
•	 Single phase 

Tables 1 and 3 present a summary of the well and reservoir synthetic 
data used for the build-up and drawdown simulated scenarios with 
additional information given below. It is require generating pressure-
density equivalent and derivative for each fluid phase, comparing 
their diagnostic signatures and also identifying the cross form fracture 
flowing regions. 

Assumption

•	Shale Gas reservoir, completed with one well.

•	Model with Bennett’s [4] recommendation on grid sizes close to 

the well to account for density changes.

•	Only flowing condition is simulated.

Gas, Oil, Water densities and WBHP around the local grid 
refinement (wellbore) are  output using the simulator keywords. The 
following scenarios were evaluated: 

As stated earlier, the fracture blocks are modeled based on Bennett’s 
[4] recommendation in which the fracture’s block dimension in x and 
y axis are increasing to maximum value for each well grid block with 
different block dimensions used to model the x direction. In this case, 
the fracture half length in x direction is the distance between the tip of 
the fracture (minimum x dimension) and the well. Also the adjacent 
grids blocks dimensions are increased until the maximum value, then 
all the next grid blocks are assigned the same dimension. However, the 
well is completed in the minimum dimension of the grid block in y 
direction [7].

As shown in Figure 8, there is an uneven distribution of grid 
block in both x and y directions. The grid block are modeled in such 
a way that the dimensions of the adjacent grid blocks increases to the 
maximum and then have constant dimension. This indicates that there 
is uneven distribution of grid blocks in the reservoir. However, since 
the reservoir is symmetrically related to the fracture position and the 
well, a quarter of the reservoir has been observed. For the crossform 
fracture model, the fractures are reoriented in the x and y direction.

The vertical well is located in the center of the square reservoir 
and the grid block has both minimum x and y dimensions. Since the 
fracture is modeled along x and y direction, the finite conductivity 
fracture is parallel to the x and y axis and totally intersects the well 
symmetrically.

The best value for modeling the fracture width is 2ft, which is the 
dimension of the smallest grid block with the well. The equivalent 
fracture porosity is calculated from equation 50 below since the fracture 
porosity of 35% corresponds to the fracture width of 0.5ft.

e

f
e w

wφ
φ = 					                (50)

Svjetlana [7] Where:

w – Fracture width

we – Equivalent fracture width

fφ  – Fracture porosity, fraction

Figure 6: Coth(x) definition as x>4.5.

Figure 7: Tanh(x) definition as x>4.5.

Parameters Design Value
Eclipse model Black Oil

Model dimension 100 × 100 × 1
Length by Width ft by ft Bennett (1985) model

Thickness ft 100
Permeability Kx by Ky md 0.1 by 0.1

Porosity % 10
Well diameter ft 0.15

Initial water saturation Swi % 20
Permeability, K, md Bennett (1985) model

Gas Oil contact GOC ft 4100
Oil water contact OWC ft 4100
Initial Pressure, Pi, psia 4000

Formation Temperature, T, °F 200.0

Table 1: Reservoir and fluid data for example (synthetic data).
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A. For All Grid Blocks B. Near the Fracture C. Away From the Fracture

1
1 22 −
+ ∆≤∆≤∆

ii
i xxx

 i=2…. 1−xN

1
1 22 −
+ ∆≤∆≤

∆
jj

j yyy
 j= 2…. 1−xN

1.5
xf

x
L

∆ ≤
, 1

xf

y
L

∆ ≤

210
xf

x
L

−∆ ≤  at the well for

100fDC ≥

310
xf

x
L

−∆ ≤  at the well for

100fDC ≥

21.5 10
xf

x xL
−∆ ≤  at the fracture tip

max 0.15
xf

x
L

 ∆ ≤ 
 

32 2 10i

xfj xf

yb xL L
−∆≤ ≤

1 2 3 4y y y y∆ = ∆ = ∆ = ∆

max 0.20
xf

y
L

 ∆ ≤ 
 

1.5
xf

x
L

∆ ≤ , 1
xf

y
L

∆ ≤

max 0.17
xe

x
L

 ∆ ≤ 
 

max 0.17
xe

y
L

∆  ≤ 
 

Table 2: The Bennett (1985) empirical guidelines for design of x and y grids.

Reservoir Properties
Value

Initial pressure psia 4000
Bottom hole flowing pressure psia 3500
Formation porosity fraction 0.1
Formation permeability 0.1
Reservoir thickness ft 100
Rock compressibility 1/psi 3.0E-06
Skin
Well bore radius rw ft 0.0875
Fracture Properties
Fracture half-length ft 2043
Fracture width w ft 0.5
Fracture porosity fraction 0.35
Equivalent Fracture Properties Adjusted for Numerical Simulation
Equivalent fracture width We ft 2
Equivalent fracture porosity Øe fraction 0.0175
Fluid Properties
Compressibility cf 1/psi 3.0E-06
Viscosity µ cP 1.0
Gas FVF rb/stb

Table 3: Reservoir, fracture and fluid PVT properties (synthetic data).

feφ  – Equivalent fracture porosity, fraction

 Fracture permeability is the function of the dimensionless fracture 
conductivity.

Cd f
f

F kx
k

w
= 					                  (51)

Svjetlana [7] Where:

FCD – Dimensionless fracture conductivity

k – Formation permeability

xf – Fracture half-length

w – Fracture width

Equivalent fracture permeability

e

f
fe w

wk
k = 					                 (52)

[7] Where 

wfe – equivalent fracture width

Summary of all reservoir, fracture and fluid properties used 
for the modeling are listed in Tables 3 and 4. Calculating fracture 
permeabilities, the following input data were used are listed below:

The two approaches for analyzing the transient flow behavior for 
this study include (Table 4);

•	 Constant rate solution

•	 Constant Pressure solution

For the constant rate production, the gas rate is fixed at 500Mscf/
day while for the constant pressure production, the BHFP is assumed 
to be 3500psi. The bottomhole flowing rate and fluid densities are 
determined from the result of the numerical simulation for constant 
pressure and constant rate production respectively.

For constant bottomhole pressure solution, the multiphase fluid 
distribution is triggered at the wellbore in order to capture the density 
changes for each phase and calculate fluid pressures densities equivalent 
at bottomhole flowing conditions. Then the derivative dimensionless 
rate is calculated from the Pressure Equivalent of Density Weighted 
Average (PDENDWA→PDENA) by Biu and Zheng [9]. The pressure 
distribution at each simulated time step along the crossform fracture 
path is shown in Figure 5.

Five flow regions: Linear - Pseudoradial - Transition - Bilinear-
Trilinear were identified with this model. Region 1 which is linear 
due to transient flow only in the fractures. Region 2 is the response 
for a homogeneous reservoir which is dominated by transient matrix 
drainage and is the transient flow regime of interest. At this point, a 
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Dimensionless Fracture 
Conductivity

Real Fracture 
Conductivity

Equivalent Fracture 
Permeability

FCD kf (md) kfe(md)
1 409 102
5 2043 511
10 4086 1022
25 10215 2554
100 40860 10215
500 204300 51075

1000 408600 102150
10000 409 102

Table 4: Calculated equivalent fracture permeability.

Figure 8: Quarter of the reservoir, grid block distribution. Source: Svjetlana [7].

Figure 9: Crossform fracture model→derivative dimensionless rate behavior 
for constant pressure solution with model limitation constraints.

Figure 10: Cross form fracture model→derivative dimensionless rate type 
curve for range of FCD for constant pressure solution.

small transition region dominated by a mix of linear and bilinear flow 
effect (region 3) [10,11].

Region 4 is bilinear flow and occurs when the matrix drainage 
begins simultaneously with the transient flow in the fractures. 

Region 5 is trilinear flow, accounting for flow from dual fracture 
features. Its response is similar to the bilinear flow response but a 
slight deviation from the bilinear flow curve depicts its presence. This 
Trilinear flow regime is believed to be caused by transient drainage of 
low permeability matrix blocks into adjoining fractures and parallel 
flow into the fractures depending on the length of the fractures and 
permeability distribution. Finally is the flow boundary dominated 
transient response [12]. 

Figure 9 shows the regions with the dimensionless derivative rate 
generated from the developed fracture flow equations (35), (38) and 
(43) with limitation using equation (35a), (38a) and (43a). To visualize 
the effect of the fractures conductivities on the number of flow regions 
on the crossform fracture, FCD ranges from 1.0 to 1000 mD was 
simulated.

Result from Figure 10 support the five flow regions identified 
with the new developed fracture flow mathematical equations and 
flow model. Without the limiting equation of (35a), (38a) and (43a), 
only three flowing regions: Linear-Transition-Linear can be identified 
as shown in Figure 11. Likewise, the result from sensitivities on gas 
production rate as shown in Figure 12 which indicates the log-log 
plot of gas rate versus time depicts three flow regions such as Linear-
Bilinear-Linear for FCD<5 and two flow regions Linear-Linear for 
FCD>25 [13].

For constant flowing rate condition, the fracture conductivity, FCD 
for each dimensionless pressure in Bennett type curves is dependent on 
the fracture porosity. The fracture porosity is calculated from equation 
(50), then the real fracture porosity and its equivalent is recalculated 
due to the change in fracture width. 

First, the density change for each phase at the wellbore is obtained 
and the fluid pressures densities equivalent is calculated at bottom hole 
flowing conditions. Then, the inverse derivative dimensionless pressure 
is calculated from the Pressure Equivalent of Density Weighted Average 
(PDENDWA→PDENA) by Biu and Zheng [9].

In this case, two fracture flow regions: Linear-Bilinear are depicted 
in this model as shown in Figure 13. Region 1 is the linear flow which is 
due to transient flow only in the fractures and Region 4 is bilinear flow 
and occurs when the matrix drainage begins simultaneously with the 
transient flow in the fractures

The fractures apertures were increased from the equivalent 
fracture width we of 2ft to 16ft (incremental of 2ft). In this case, 
it was discovered that for constant rate solution, the smaller the 
fracture aperture, the lower the number of fracture regions to be 
seen. At we>2ft, three flow regions Linear-Bilinear-Linear were 
depicted as seen in gas production rate sensitivity with constant 
bottomhole pressure (Figure 14) [14,15].

Conclusion
The following inferences were drawn from constant rate and 

pressure solutions reviewed;

•	 A new mathematical model was developed for interpreting 
pressures behaviour of a vertical well with crossform fracture in 
shale gas reservoir using numerical density approach. 
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Figure 11: Cross form fracture model→derivative dimensionless rate 
behavior for constant pressure solution without model limitation constraints.

Figure 12: Cross form fracture model→Gas production rate type curve for 
range of FCD for constant pressure solution.

Figure 13: Cross form fracture model→inverse derivative dimensionless 
pressure type curve for range of FCD for constant rate solution.

Figure 14: Cross form fracture model→inverse derivative dimensionless 
pressure versus range fracture aperture for constant rate solution.

Figure 15: Pressure distribution at each time step (cross form fracture model).

•	 A major advantage is that the method simplified the complex 
fracture-matrix flow model applying ordinary laplace transform 
model OLTM to formulate linear, bilinear and tri-linear flow 
mathematical equations.

•	  With the limit of the fracture model developed, five flowing 
region is identifiable

•	 It also indicates that pressure responses and distinctive flow 
regions are influenced by mostly fracture’s dimensions, 
conductivities and reservoir’s boundaries. 

•	 It has been demonstrated that for constant rate solution, the 
smaller the fracture aperture, the lower the number of fracture 
regions to be seen.

•	 The first flowing region which is the linear flow region which is the 
flow along the vertical plane parallel into the wellbore and the second 
as the Bilinear or Trilinear flow region which accounts for flow 
along the vertical plane parallel to the wellbore, then into the fracture 
after the pressure pulse reaches the upper and lower impermeable 
boundaries depending on the ratio of primary and secondary cross 
form fracture lengths and conductivities (Figures 15 and 16). 
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Figure 16: Derived mathematical for four flowing regions (cross form fracture model).

Detail Mathematical Model Derivation
The following dimensionless parameters are defined for the 

formulation (Figure 16).

Dimensionless Pressure:

2
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µ
∆

⇒ ⇒ 			                   (i)
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2
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		               (ii)
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= 					                    (iii)
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= 				                  (iv)
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⇒ 					                 (vii)
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l k kL
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θ θ
⇒ + 			              (viii)

The dimensionless fracture conductivity is defined as: 

f f
fD

mf

k w
C

kλ
= 				                (ix)

Interporosity flow parameter:

2
12 m

mf mf
f f

k
A

l k
λ ⇒ 			                                  (x)

as defined by Warren and Root, 1963

Dimensionless storativity:	

t f
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c
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ϕ
ω

ϕ ϕ

  
⇒
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			                   (xa)

For fracture one (Primary fracture) the diffusivity equation is given as:

1

2

2 21
2

f
f ft m m lz

ff
f

P Pc k P
lk t zx k

φµ
=

∂ ∂ ∂ 
= −  ∂ ∂∂  

		             (xi)

For fracture two {Secondary fracture}

2

2

2 21
2

f
f ft m m lz

ff
f

P Pc k m P
lk t zy k

φµ
=

∂ ∂ ∂ 
= −  ∂ ∂∂  

	               (xii)
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If the fractures are of same length, then

1 2f f fl l l= =

First the diffusivity equation for the matrix is given as: 

2
m t m

m

P c P
k tz

φµ∂ ∂ 
=   ∂∂  

				               (xiii)

For the matrix and fracture interflowing period, the diffusivity 
equation is same for both fractures, therefore the following BC are 
applicable

Initial condition:

( ),0m iP z P= 					             (xiii(a)

Initial boundary: 

m
z o

P
O

z =
∂

=
∂

				              xiii(b)

Outer boundary

2
flm fzP P= = 				              xiii(c)

Resolving equation (xiii) into dimensionless form using equation 
(i), (ii) and (v)

22

2
1(1 )

4
f flmD lmD

m mf ADD

l kP P
k A tz

ω
∂ ∂

⇒ −
∂∂

		            (xiv)
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			              (xv)

Where 2
12 m

mf mf
f f

k
A

l k
λ =   [Warren and Root Interporosity flow 

parameter]

Introducing the boundary conditions xiii(a), xiii(b), xiii(c) into 
equation xv

2

2
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P
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Since dimensionally 

, 0lmD DP Z O =  

Therefore 
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			               (xvii)

The characteristic equation for this differential equation is and its 
roots are: 

( )2 3 1
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The general solution to this differential equation is given as: 
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The constant A and B are obtained by the derivatives of equation 
xvii is given by 
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Taking into consideration the inner boundary condition
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Substitute into equation xviii to obtain B
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Therefore B = 0

Substitute B into equation xvii to obtain A with outer boundary 
condition.

( )3 1
lfD lmD

mf

s
P P ACosh

ω
λ
−

= =

Outer boundary condition

1D
lmD fDZP P= =

Therefore

( )3 1
cosh

lfD

mf

sP
A

ω
λ
−

= 				               (xi)

Therefore the general solution for the matrix flow solution is given as:
( )
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The fracture solution for the crossform fracture model is formulated 
as follows:

The primary fracture

The diffusivity equation as stated in equation (xi) is given as: 
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Resolving the equation in dimensionless form using equation (i), 
(ii) and (v)
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Substitute for lf1 = 4R2cos2θ along x axis, we have:
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For secondary fracture resolve in y axis from equation xxii
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Converting the equation dimensionless form using equation (i), 

(ii) and (v)
2 2 2
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Substituting for lf2 = 4R2sin2θ along y axis 
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Assuming the flux is uniform along the fracture and the pressure 
at the wellbore is a summation of pressure along the fractures segment, 
hence fDP  x axis fDP= y axis

Combining equation (xxii) and (xxiii)
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Resolving in x axis 
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(Spivey and Lee, 1999) provide a solution for multiple arbitrarily 
oriented Infinite fracture system with K anisotropy in an infinite slab 
reservoir. 

The dimensionless variable rescaling the anisotropy system to an 
equivalent isotropic system is given as;
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2 2 2 2

2 2 2
8

2
lfD fD c lfD m lmD

AD f DD f f

P L L P k PR
t k zx l l

ω∂ ∂ ∂
⇒ −

∂ ∂∂

From Warren and Root interporosity flow parameter 

2
12 m

mf mf
ff

k
A

kl
λ =

and
28

1.5
mf fm

f mf

lk
k A

λ
⇒

Therefore 
2 2 2 22

2 2 2 1.52
lfD fD c lfD mf f lmD

AD mf DD f f

P L L P l PR
t A zx l l

λω∂ ∂ ∂
⇒ −

∂ ∂∂

Since the flow region modelling is within the fracture tips, therefore 
from equation vi:

1

1lim
fD

f

cL

l

L
→

=

From dimensionless length coordinate (vi) and (vii) 

2 22

2 2 1.52
lfD lfD mf C lmD

AD mf DD f

P P L PR
t A zx l

λω∂ ∂ ∂
⇒ −

∂ ∂∂
		              (xxiv)

Mathematically

1 cosfl R θ= ---------------Fracture (i) (Primary)

2 sinfl R θ=  -------------- Fracture (ii) (Secondary) 

Invariably 
2 2 2 22 cos sinfl R θ θ ⇒ + 

2 22 fR l=

Substitute into equation (xxiv)
2 2

2 1.5
lfD lfD mf f lmD

AD mf DD

P P l P
t A zx

λ
ω

∂ ∂ ∂
= −

∂ ∂∂

2 2

2 1.5
lfD lfD mf f lmD

AD mf DD

P P l P
t A zx

λ
ω

∂ ∂ ∂
= −

∂ ∂∂

Case a

If the cross-sectional area of the wall face is far away the fracture 
face,

2mf cA L hπ=
2 2

2 1.5
lfD lfD mf f lmD

AD mf DD

P P l P
t A zx

λ
ω

∂ ∂ ∂
⇒ −

∂ ∂∂

2

2 3
lfD lfD mf f lmD

AD fD DD

P P l P
t L h zx

λ
ω

π

∂ ∂ ∂
⇒ −

∂ ∂∂
		           (xxv)

Case b

Assuming the cross-sectional area of the fracture wall face 

2mf fA l hπ=

Substitute into equation. Also apply equation (vi) and (vii) 
2

2 3
lfD lfD mf f lmD

AD DD

P P l P
t h zx

λ
ω

π

∂ ∂ ∂
⇒ −

∂ ∂∂
			               (xxvi)

For case a	

Resolving this equation in Laplace form, 

The cross-sectional area of the wall face 

lfD lfD mf f lmD

AD fD D

P P l

t L h z

∂ ∂ ∂
= −

∂ ∂∂

Taking into account the boundary conditions

Initial BC

,0 0lfD DP x =   				           (xxvii)

Inner BC 

(Craig 2006) formulate inner boundary condition describing 
transient flow in a finite conductivity fracture oriented along x axis.

The dimensionless Laplace domain is given as r.
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2

2
2

2 0
D

lfD lfD
wDfD DD

P P
y

C yx =

∂ ∂
+ =

∂∂
			          (xxviii)

For   1 1Dx− ≤ ≤

It is also written as 
2

2 ( ) 0lfD
DD

fDD

P
q x

Cx
π∂

− =
∂

Where the dimensionless variables are defined as

2

2 ( ,5) 2( )
D

D

f lfD
D WD Xw D

L q x P
q x

q xπ =

−
= ⇒

∂

f
D

f

w
w L= and

f f
fD

f

k w
C

kL
=

q (x,5) = Laplace domain flow rate per unit length into fracture

qw = Total well flow rate.

Kf = fracture permeability

Therefore for constant rate, the inner BC for fracture face is given 
as: 

0D

lfD
X

D fD

P

x sC
π

=
∂ −

⇒
∂

				              (xxix)

and the outer BC for no flow through the fracture hp in Laplace form 
is given as: 

0
, 0

D

lfD

D c X

P x s
x L =

∂  
⇒ ∂  

				             (xxx)

Substitute the initial BC into equation   (xxv)

2 2,0
3

lfD f lmD
lfD lfD D

fDD D

P l P
sP P x

hLx z

λ
ω

π

∂ ∂ ⇒ − −   ∂ ∂

2

2 23
lfD mf f lmD

lfD
fDD D

P l P
sP

hLx z

λ
ω

π

∂ ∂
⇒ −

∂ ∂
			               (xxxi)

Recall equation (xx)

( )

( )

3 1
cosh

3 1
cosh

lfD D
mf

lmD

mf

s
P z

P
s

ω
λ

ω
λ

−

=
−

Differentiate w.r.t ZD

( ) ( )
2

3 1 3 1
tanhlmD

lfD D
mf mfD

s sP
P z

x

ω ω
λ λ
− −∂

⇒
∂

Substitute into equation (xxxi)

( ) ( )2

2
3 1 3 1

tanh
3

mf flmD
lfD lfD

fD mf mfD

l s sP
sP P

hLx

λ ω ω
ω

π λ λ

 − −∂  ⇒ −
 ∂  

( )2

2
3 1

(1 ) tanh
3

mf f mflmD
lfD

fD mfD

l sP
SP

hL sx

λ λ ω
ω ω

π λ

 −∂  ⇒ − −
 ∂  

( )2

2

(1 ) 3 1
tanh

3
f mflmD

lfD
fD mfD

l sP
sP

L h sx

λ ω ω
ω

π λ

 − −∂  ⇒ − +
 ∂  

Where 
( )3 1

(1 ) tanh
3

f mf

fD mf

l s
m

hL s

λ ω
ω ω

π λ

 −
 = + −
  

2

2
lmD

lfD
D

P
msP o

x
∂

− =
∂

			            (xxxii)

The characteristic equation for this differentiate equation and its 
roots are 

2 0V ms− =

V msi=

The General solution for this differential equation is given as: 

( )cosh( ) sinhlfD D DP A msx B msx⇒ + 		          (xxxiii)

Differentiate w.s.t. XD

' sinh coshlfD D DP A ms msx B ms msx⇒− + 		           (xxxiv)

Applying the inner BC,

D

lfD
X o

D fD

P

x sC
π

=
∂ −

⇒
∂

     Where    
f f

fD
f

k w
C

kh
=

 Substitute into equation above;

cos(0)
fD

B ms
sC
π−

⇒

fD
B

sC ms
π−

=

Apply outer BC;

, 0
D

C

lfD

xD x L

P x s
x h =

∂   = ∂  

Introduce into equation xxxiv

0 sinh cosh
C CfD

x xA ms ms msL LsC ms
π − = − +

  

cosh

sinh

c

fD
c

xms L
A

sC ms xms L

π
 
 −  ⇒
 
 
 

Substitute A and B into equation xxxiii

( ) ( )
cosh

cosh sinh
sinh

c
lmD D D

fD f
c

xms L
P msx msx

sC ms sC msxms L

π π
 
 −  = −
 
 
 

All the Wellbore condition XD = 0

cosh

sinh

c
lmD

fD
c

xms L
P

sC ms xms L

π
 
 −  =
 
 
 

1

tanh
lmD

fD
c

P
sC ms xms L

π−
=

 
 
 

cothlmD
cfD

xP ms LsC ms
π−  =  

 
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Also in Laplace domain, the constant pressure case at the Wellbore 
can be obtained from the solution of the constant rate using the 
equation.

Therefore 
1 coth

clwD fD

s xms LP C ms
π−  ⇒  

 

Where 
c

D L
xx =

( )1 coth D
lwD fD

s msx
P C ms

π−
= 			          (xxxv)

This is general solution for 2w fracture connecting at the Wellbore. 
This equation can be inverted to obtain time dependant solution using 
Laplace inversion such as Stehfest’s inversion algorithm. 

( )1 coth D
lwD fD

s msx
q C ms

π−
=

At    5.4>x coth( ) 1x =

Hence  

( )coth 1Dmsx = if 4.5Dmsx >

Therefore   

1

lwD fD

s
q C ms

π−
⇒

Where  

( )1 3(1 )tanh
3

f mf

fD mf

l sm
L h s

λ ω ωω
π λ

 − − = +
 
 

case i 

If  0=ω

3tan
3

f mf

fD mf

l sm
L h s

λ

π λ
=

3 4.5
mf

s
λ

≥     If   3tanh 1.0
mf

s
λ

 
  =
  

Therefore 

4.5Dmsx ≥   If  ( ) 1.0DCosh msx ⇒

1

lwD fD

s
q C ms

π−
⇒

And  3 4.5
mf

s
λ

≥
3tanh 1.0
mf

s
λ

 
  =
  

Hence 

3
f mf

fD

l
m

L h s

λ
π

=

Therefore 

1

*
3

lwD f mf
fD

fD

s
q l

C s
L h s

π

λ
π

⇒ −

1 1 12 4 2

1
4

1

3

lwD
f mf

fD
fD

s
q l sC

L h s

π

λ
π

⇒ −
                  

3
4

1 12 4

1

3

lwD
f mf

fD
fD

s
q l

C
L h

π

λ
π

⇒ −
   
   
    

Converting to time dependent function using Laplace inverse

1
0.25 41

3

* 0.75

f
fD AD

fD
lwD

l
C t

L h
q

π

π

−  
 

⇒
Γ

Where Γ = Gamma Function

Γ 0.75 = 1.225

1
4 0.25

3

*1.25

f mf
fD AD

fD
lwD

l
C tL h

q

λ
π

π

− 
 
 ⇒

1
4 0.25

36.82
fD f mf

lwD AD
fD

C l
q t

L h
λ − 

⇒  
 

1
4

1
4

3
6.84

fD f mf
lwD

fD
AD

C l
q

L ht

λ 
⇒  

 
 		         (xxxvii)

This equation is due to bilinear flow period. 

However considering the assumptions, the flow regime is limited by;

3 4.5
mf

s
λ

≥

3 20.3
mf

s
λ

≥

2
3 20.3

mf

s
s sλ

≥

Converting by Laplace inverse function 

3 20.3 AD
mf

t
λ

≥ , 
3

20.3 AD
mf

t
λ

≥

Therefore

3
16AD

mf
t

λ
<   ---- Condition (1)

Also   

4.5Dmsx ≥ , 2 20.3Dmsx ≥

2

2
20.3Dmx

s s
≥ 2 20.3D ADmx t≥
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2

16
D

AD
mx

t≥

Therefore equation (xxxvi) is applicable if 

3
20.3AD

mf
t

λ
≤ and

2

20.3
D

AD
mf

mx
t

λ
≤

Case (ii) 

1ω =

( ) ( )1 3 1
tanh

3
f mf

fD mf

l s
m

L h s

λ ω ω
ω

π λ

 − − = +
 
 

1 0m⇒ +

1m⇒

Therefore 

1 cothmf
D

lwD fD

s
msx

q C ms

λ
 ⇒ −  

Where 

coth 1.0Dmsx ⇒  if 4.5Dmsx ≥

1
21

lwD fDfD

s s
q CC ms

π π
⇒ − ⇒−

1
2

fD fD
lwD

AD

C C
q

ts π ππ
⇒ ⇒

1
25.57

fD
lwD

AD

C
q

t
⇒ 			                       (xxxviii)

This equation is due to the linear flow period with assumption 
limiting to t.

4.5Dmsx ≥ , 2 20.3Dmsx ≥

2

2
20.3Dmx

s s
≥

2 20.3D ADmx t≥ ,  
2

20.3
D

AD
mx

t ≤

Equation (xxxviii) is limited to the region  
2

20.3
D

AD
mx

t ≤

Case (iii)

( ) 1.0f s ⇒ , This is for homogenous case.

Recall that for matrix slab

( )1 3(1 )( ) tanh
3

mf

mf

sf s
s

λ ω ωω
λ

− −
= +

( )1 3(1 )tanh 1
3

mf

mf

s
s

λ ω ω ω
λ

− −
⇒ −

Therefore 

( )1 3(1 )tanh
3

f mf

fD mf

l sm
L h s

λ ω ωω
π λ

− −
= +

( )1f

fD

l
m

L h

ω
ω

π

−
= +

Substitute into equation (xxxv)
1 coth D
lwD fD

s msx
q C ms

π  ⇒ −  

( )1
D

f
fD

fD

s Coth msx
l

C s
L h

π

ω
ω

π

 ⇒ −   −
 +
 
 If 

1.0DCoth msx ⇒ 
, 4.5Dmsx ≥

1
21

(1 )lwD f
fD

fD

s
q l

C
L h

π
ω

ω
π

⇒−
−

+

1
2

(1 )f
fD

fD
lwD

l
C

L h
q

s

ω
ω

π

π

−
+

⇒ −

Converting to time dependent function using Laplace inverse 
function.

(1 )f
fD

fD
lwD

AD

l
C

L h
q

t

ω
ω

π

π π

−
+

⇒ −

1
2

(1 )

5.57

f
fD

fD
lwD

AD

l
C

L h
q

t

ω
ω

π
−

+

⇒ −
			  	          (xxxix)

This equation represents the homogenous phase.

Also this equation is limited by

1.0DCoth msx ⇒  if 4.5Dmsx ≥

2

2
20.3Dmx

s s
≥ , 

2

20.3
D

AD
mx

t ≤

Case (iv)

If ( ) 0f s ⇒  and ω is a function of the Laplace parameter as defined 
below:

3
4

2

3
2

1

1

1

ω





= 





s

s

s

Asymptons

Recall that for matrix slab
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( )1 3(1 )( ) tanh
3

mf

mf

sf s
s

λ ω ωω
λ

− −
= +

( )1 3(1 )tanh
3

mf

mf

s w
s

λ ω ω
λ

− −
⇒ −

 If

3tanh 1.0
mf

s
λ

 
  =
  

( )1

3
mf

s

λ ω
ω

−
⇒ −

Therefore 
231
mf

sωω
λ
−

− = 					              (xxxx)

Recall

( )1 3(1 )tanh
3

f mf

fD mf

l sm
L h s

λ ω ω
ω

π λ

− −
= +

Substitute equation 35 and the asympton

into above equation

3 3
4 2

1 f

fD

l
m

s L hsπ
= − 			                           (xxxxi)

Substitute into equation 
1 coth D
lwD fD

s msx
q C ms

π  ⇒ −  

3
4

3
2

D

f
fD

fD

s Coth msx

l
C s s

L hs

π

π

−

 ⇒ −   
 − 
 
 

	         (xxxxii)

1
4

1
2

D

f
fD

fD

s Coth msx

l
C s

L hs

π

π

 ⇒ −   
 − 
 
 

1
8

1
4

D

f
fD

fD

s Coth msx
l

C s
L hs

π

π

 ⇒ −   
 

− 
 
 

If 

1.0DCoth msx ⇒  ,  4.5Dmsx ≥

7 528 4

fD fD f
lwD

fD

C C l
q

s L hs ππ
⇒ − −

Converting to time dependent function using Laplace inverse

0.125 0.25

20.875 0.75
fD AD fD f

lwD
fD

C t C l t
q

L hπ π

− −

⇒ − −
Γ Γ

Where Γ = Gamma Function

Γ 0.875 = 1.456

Γ 0.75 = 1.225

Therefore

1 1
8 4

0.0830.22 f
lwD fD

fD

l
q C

t L ht

 
 

⇒ − − 
 
 

			       (xxxxiii)

This equation is due to trilinear flow period. Also this equation is 
limited by

2

20.3
D

AD
mx

t ≤

For case b

Assuming the cross-sectional area of the wall face 

2mf fA l hπ=

And from equation xxvi

2

2 3
lfD lfD mf f lmD

AD DD

P P l P
t h zx

λ
ω

π

∂ ∂ ∂
⇒ −

∂ ∂∂

Taking into account the boundary conditions as in case aand 
applying the same steps  from  equation  xxvi  to xxxvii, the resolve 
equation is given as :

( )2

2

(1 ) 3 1
tanh

3
f mflmD

lfD
mfD

l sP
sP

h sx

λ ω ω
ω

π λ

 − −∂  ⇒ − +
 ∂  

Where ( )3 1
(1 ) tanh

3
f mf

mf

l s
m

h s

λ ω
ω ω

π λ

 −
 = + −
  

2

2 0lmD
lfD

D

P
msP

x
∂

− =
∂

The general solution for this differential equation is given as: 

( )cosh( ) sinhlfD D DP A msx B msx⇒ +

Differentiate w.s.t. XD

' sinh coshlfD D DP A ms msx B ms msx⇒− +

Applying the inner and outer BC, the Laplace solution is given as:
( )1 coth D

lwD fD

s msx
q C ms

π−
=

This is general solution for 2w fracture connecting at the Wellbore. 
This equation can be inverted to obtain time dependant solution using 
Laplace inversion such as Stehfest’s inversion algorithm. 

At    4.5x > 1)coth( =x
Hence  

( )coth 1Dmsx = if 4.5Dmsx >

Therefore   
1

lwD fD

s
q C ms

π−
⇒

Where  

( )1 3(1 )
3

f mf

mf

l sm tanh
h s

λ ω ωω
π λ

 − − = +
 
 
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Case i 

If  ω = 0

3 4.5
mf

s
λ

≥     If 
3tanh 1.0
mf

s
λ

 
  =
  

Therefore 

4.5Dmsx ≥   If  ( ) 1.0DCoth msx ⇒

1

lwD fD

s
q C ms

π−
⇒
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Converting to time dependent function using Laplace inverse
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This equation is due to bilinear flow period. The flow regime is        
limited by;
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Equation (xxxxv) is limited to the region  
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Case (iii)

( ) 1.0f s ⇒ , This is for homogenous case.

Recall that for matrix slab
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Converting to time dependent function using Laplace inverse 
function.
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This equation represents the homogenous phase.

Also this equation is limited by
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Case (iv)

If 0)( ⇒sf  and w is a function of the Laplace parameter as defined 
below:
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Asymptons

Recall that for matrix slab
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Converting to time dependent function using Laplace inverse
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This equation is due to trilinear flow period. Also this equation is 
limited by
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