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Abstract

Despite improvements in surgical and chemotherapeutic intervention of ovarian cancer over the recent decades,
ovarian cancer remains the most lethal cancer in women. Notably, after an initial effective response to
chemotherapeutic regimen, therapeutic resistance rises up leading to patient’s death. This scenario highlights the
urgent need to develop novel diagnostic and therapeutic strategies. Recently, several efforts to better understand
the molecular bases of ovarian cancer using integrated multiplatform molecular profiling have revealed an intrinsic
complexity and heterogeneity among ovarian cancers. Concurrently, a growing body of evidences implies fallopian
tube epithelium as the likely site of origin of the majority of ovarian cancers. This fallopian tube hypothesis has
shifted the attention of ovarian cancer research from the ovarian surface epithelium to the fallopian tube epithelium
leading to adjustment of in vitro and in vivo ovarian cancer models. In this review article, we critically summarize
recent advances in ovarian cancer preclinical models that have the potential to accelerate and facilitate the
discovery of more effective biomarkers and target drugs for personalized cancer therapy.
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Introduction
With approximately 22000 new cases diagnosed and 14000 deaths

each year in United States, epithelial ovarian cancer (EOC) is the most
lethal gynecological tumor worldwide [1]. High-grade serous
carcinoma (HGSC) represents more than 70% of all EOCs and it is
responsible of about 90% of EOC-related deaths. Recent clinical-
therapeutic innovations improved the disease free survival of patients
with HGSC, without impacting on their overall mortality rate [2,3].
This is largely due to the complete darkness on HGSC carcinogenesis
and, in particular, on the initial pathogenetic steps. As a consequence,
HGSC is usually diagnosed at advanced stages, while precursor lesions
remain elusive. The current therapeutic approach for HGSC
contemplates surgery either anticipated or followed by the
administration of platinum-taxane combined chemotherapy and is
associated with good immediate response, but high rate of recurrence,
locally and systemically. Notably, HGSC is insensitive to standard
targeted therapy options, such as hormonal therapy and anti-HER2
agents, currently available for breast cancer patients [4,5]. Therefore,
the most daunting challenge in ovarian cancer research is to develop
new effective therapy to prevent and treat HGSC recurrence.

It is emerging that the five main histotypes of EOC (Table 1) must
be considered as distinct diseases based on cell of origin, pathogenesis

and molecular alterations [6-15]. In this respect, the effort of the
scientific community to unravel the molecular alterations of HGSC
(one of the first goal of The Cancer Genome Atlas consortium;
TCGA), has allowed the identification of only few common somatic
mutations, with the only exceptions of TP53 and BRCA1-2 genes, and
none new common “druggable” candidate [16]. In addition, although
the ovarian surface epithelium has been considered for long time the
primary site of origin of all (both benign and malignant) epithelial
ovarian tumors, the origin of EOC is still debated with an increasing
consideration of extra-ovarian origin [6,10,11]. In particular, emerging
evidences indicate the fallopian tube epithelium (FTE) and the
endometrium as the sites of origin of ovarian HGSC and
endometrioid/clear cell carcinoma, respectively [6]. Therefore, this
new conceptual framework has shifted the attention of ovarian cancer
research outside the ovary, from the ovarian surface epithelium to the
FTE, renewing the interests in refining in vitro (cell cultures) and in
vivo (animals) HGSC models (Figure 1). Experimental models used in
ovarian cancer research substantially evolved over the last few years.
As a general concept, the ability of the experimental models to
accurately recapitulate the complexity of human cancer represents a
critical issue in preclinical studies for drug discovery. The high rate of
failure of novel cancer therapeutics during clinical trials highlights the
inadequate predictability of laboratory cancer models currently
available for preclinical studies.

In the present review, we attempt to summarize the current status
of the art of in vitro and in vivo models of HGSC that better
recapitulate various features of this cancer, focusing on their
advantages and limitations.
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Histotype Grade Frequency

(%)

Pathogenesis Cell of
origin

Precursor lesion Common
somatic
mutations

Type References

Brenner Low-grade <1 Stepwise FTE Benign Brenner tumor KRAS

PIK3CA

I [9,10]

Mucinous 5 Stepwise/

De novo

Unknown Adenoma

Mucinous Borderline tumor

Teratoma

Endometriosis

BRAF

KRAS

RNF43

TP53

I [6,12]

Clear cell 5 Stepwise Endometrium Endometriosis

Borderline tumor

Adenofibroma

ARID1A

KRAS

PIK3CA

PPP2R1A

I [6,8]

Endometrioid Low-grade 10 Stepwise Endometriosis

Borderline tumor

Adenofibroma

CTNNB1

KRAS

MLH1

MSH2

MSH6

PIK3CA

PTEN

I [6,13]

High-grade Stepwise Endometrium Endometriosis

Borderline tumor

Adenofibroma

PPP2R1A

TP53

II [6,13]

Serous Low-grade 5 Stepwise FTE Serous borderline tumor BRAF

KRAS

I [6,7]

High-grade 70 De novo FTE Serous tubal intraepithelial
carcinoma

BRCA1

BRCA2

TP53

II [6,11,16]

Table 1: Principal histotypes of ovarian epithelial tumors.

Cell Models

Primary cell cultures
Short-term cultures derived from freshly isolated cells or tissues,

also designed primary cultures, have many important applications
since they may recapitulate the pathophysiological system closely.
However, primary cell cultures display common limiting
characteristics: the slow growth capacity, the limited overall lifespan
(i.e. they are not able of indefinite serial ex-vivo propagation) and the
occurrence of changes and/or selection over passages, which hamper
the system reproducibility. Other intrinsic limitations of primary cell
culture system are that the tissue histology is lost along with
endocrine, paracrine and neural regulators, gradients of nutrients and
other factors. The cell cultures of interest to study HGSC biology are
those derived from FTE as well as from ovarian cancers.

Primary cell cultures generated from fallopian tube epithelium:
Human fallopian tube is gaining progressive attention, given its
proposed role as the likely site of origin of HGSC. The FTE consists of
a simple columnar epithelium composed of ciliated, secretory and
intercalated cells [10]. During the last three decades methods for the in

vitro expansion of FTE cells have been established [17-20]. The
epithelial cells lining the inner surface of the human fallopian tube can
be cultured in vitro and kept in culture for 6-8 weeks [19,20]. New
epithelial cells appear after 2-3 days of primary cultures and small
clusters after 7-10 days [19,20]. The plating and subculturing efficiency
of FTE cells is very low, and the risk of contamination by fibroblasts is
high [19,20]. Furthermore, serial cell passages result in loss of the
ciliary markers of differentiation and in senescence over time [21]. The
observed phenotypical plasticity depends strictly on culture
conditions. As alternative experimental approach, cultures of FTE
have been recently obtained seeding the isolated cells on the top of
transwell filters coated with human placental collagen [22]. This model
recapitulates faithfully the histological features of normal human FTE,
preserving both morphological and phenotypical cell characteristics,
although still characterized by finite proliferative capacity [23]. In
order to overcome the proliferation limits, two research groups
independently immortalized and transformed ex vivo normal human
FTE cells by using human telomerase reverse transcriptase (hTERT)
plus SV40 large T antigen and by ectopic expression of either
oncogenic H-Ras V12 or c-Myc, alone or in conjunction with inhibition
of p53 and Rb tumor suppressor pathways [23,24]. The transformed
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cells, injected in mice, produced tumor phenotypically and
genotypically resembling human HGSC. In an analogous study,
normal FTE cells were immortalized and transformed by ectopic
expression of oncogenic H-Ras V12 [25]. These cells were tumorigenic
when injected in immunocompromised mice, but at the histological
examination the resulting tumors were mostly poorly differentiated
mucinous adenocarcinoma mixed with undifferentiated carcinoma.

Primary cell cultures generated from ovarian cancer: Several
methods for the isolation and culture of primary EOC cells, derived
from either fresh solid tumor or ascites liquid, have been described
[26,27]. Primary EOC cells usually adhere and tend to reach
confluence quickly [26,27]. They can be kept in culture for 2-3 months
before going into senescence. Short-term proliferative cells can be used
for immediate experiments or cryostored, and represent a unique
model suited for a multitude of applications [26,27]. Previous
chemotherapy may affect cellularity and cell viability, therefore HGSC
cells that have received recent chemotherapy have less growing
efficiency in vitro [26,27].

Ovarian cancer cell lines
Cancer cell lines are the model most commonly used in cancer

research and their use has undoubtedly ameliorated our
understanding of cancer biology [28,29]. An established cell line refers
to a population of cells which has been serially passaged at least 60
times in vitro, and that is easily maintained in vitro and cultured for
long periods of time. The Broad-Novartis Cancer Cell Line
Encyclopedia and the TCGA projects together reported the genomic
profiles of more than 1000 cell lines from various cancer lineages,
including ovarian cancers [30,31]. Generally, cancer cell lines possess
the same spectrum of genetic aberrations as primary tumors, although
each cell line presents only a limited number of genetic aberrations,
given that each cell line represents the intertumoral heterogeneity
observed among primary tumors [30,31]. The cell immortalization
leads to selection of a cell population phenotypically homogeneous
and genetically clonal. Thus, a well-known caveat of cell lines is that
they possess distinctive molecular genetics alterations driven by
immortalization. It is therefore of extreme importance to confirm that
these immortalized cell lines represent faithfully primary tumors with
respect to original genomic alterations, since genomic alterations may
result in molecular characteristics predictive of response (sensitivity vs
resistance) to specific therapeutics. So far, numerous EOC cell lines
have been established, and commercialized, but the histopathological
origin of the most commonly used EOC cell lines, namely A2780,
CAOV3, IGROV1, OVCAR-3 and SK-OV-3, remains unclear. As
reported in a study performed by TCGA network investigators, a
comparison between the molecular alterations of 47 EOC cell lines and
those of 316 primary HGSCs revealed that the EOC cell lines
commonly used by scientists do not recapitulate the molecular
alterations identified in primary HGSC [28]. This may explain the
reason why in vitro studies using EOC cell lines usually fail to correctly
predict clinical response and indicates that several EOC cell lines
cannot be considered reliable in vitro HGSC models. In the same study
[28], EOC cell lines were ranked based on the molecular similarity to
primary HGSCs. The top ranking cell lines, characterized by major
genomic similarity to primary HGSC are: KURAMOCHI, OVSAHO,
SNU119, COV362 and OVCAR4 [28]. Therefore, these EOC cell lines
can be considered the most suitable models for preclinical studies of
HGSC.

Ovarian cancer stem cells
The cancer stem cell or tumor-initiating cell theory states the

existence of a discrete population of tumor cells able to reconstitute
the tumor upon implantation into recipient mice, by virtue of self-
renewal and multipotency abilities [32,33]. This theory holds relevant
implications for cancer therapy since the cancer stem cells sit in a
quiescence status that protects them against various
chemotherapeutics. Hence, cancer stem cells are responsible for
minimal residual disease and cancer recurrence [34].

Many studies have isolated, via fluorescent-activated cell sorting
and characterized alleged human ovarian cancer stem cells from
primary HGSC using surface antigens, such as ALDH1, CD44, CD133
and CD117, that define stem cell-like phenotype in other cancers
[35-38]. The aforementioned isolated cells could fully recapitulate
parental HGSC in xenografts and exhibited enhanced capacity to form
spheroids and chemoresistance to conventional HGSC
chemotherapeutics [35-38]. Interesting, Steffensen et al. found that
HGSC patients with higher percentage of CD44 positive cancer stem
cells had shorter progression-free survival [39]. Similarly, two other
studies have reported that HGSC patients with increased ALDH1
expression showed poor prognosis [40,41]. In the same way, CD133
expression, alone or in combination with ALDH1, is a negative
prognostic factor in HGSC patients [36,42]. Recently, Schwede et al.
have identified a stem-cell line gene expression signature in a subset of
HGSCs with higher propensity to form spheroids in vitro, to
metastasize in vivo and with poorer prognosis [43]. Overall these
findings support the existence of cancer stem cells in HGSC and
emphasize the prognostic impact of cancer stem cells in HGSC
patients.

Since HGSC relapse remains the major cause of treatment failure,
targeting cancer stem cells offers an intriguing option to eradicate
HGSC [40,41]. In the attempt to kill HGSC cancer stem cells,
monoclonal antibodies and small molecules directed against cancer
stem cell markers have been tested in HGSC preclinical models and
patients. An inhibitor of CD117, Imatinib, is already used as the first-
line chemotherapeutic drug for gastrointestinal stromal tumors and
chronic myelogenous leukemia. Following a study reporting
antiproliferative effects of Imatinib on EOC cell lines, Imantinib was
tested in phase II clinical trials in patients with recurrent HGSC and
demonstrated no efficacy [44-46]. In addition, preclinical studies have
demonstrated the efficacy of both CD44/CD133 antibodies and
ALDH1 inhibitor in EOC cell line xenografts [41,47-50]. The growing
understanding of cancer stem cell biology unveiled alternative
therapeutic approaches to eliminate cancer stem cells [51]. These
latters set out to target features that contribute to cancer stem cell
phenotype: cancer stem cells related pathways, ATP-binding cassette
drug transporters and microenvironment (niche) [52]. Notably, our
knowledge regarding EOC cancer stem cells mainly derives from
either primary tumors or EOC cell lines [41].

Animal Models

Spontaneous and carcinogen-induced models
It is known that hens, some strains of mice, Wistar and Sprague-

Dawley rats and the primate macaques develop ovarian tumors
spontaneously [53-58]. In particular, the laying hen develops EOC that
recapitulate the 4 major histotypes of women (serous, endometrioid,
mucinous and clear cell) [53]. While these strains of mice and rats,
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develop a variety of tumors including tubular adenoma, papillary
cystadenoma, adenocarcinoma, mesothelioma, germ cell tumor,
granulosa cell tumor and sex-cord stromal tumor [54-57]. Finally,
macaques spontaneously develop granulosa cell and sex-cord stromal
tumors, but not epithelial tumors similarly to humans, even if they are
anatomically more similar to humans [58]. In any case, these models
have a relatively late-onset of tumor development and low incidence
rate that make them useless for in vivo studies.

Since the late sixties, ovarian tumors have been induced in
experimental animals by direct application of chemical carcinogens,
although no chemical carcinogen has been consistently associated to
EOC etiopathogenesis [59]. Ovarian tumorigenesis has been induced
using many chemical carcinogens including 9:0-dimethyl-1:2-
benzanthrene, 7,12- dimethylbenz(a)anthracene, 20-
methylcholanthrene, 1,3-butadiene, formic acid 2- [4-(5-nitro-2-
furyl)-2-thiazolyl]hydrazide, a nitrofuran antibiotic, and N-methyl-N'-
nitrosourea, a direct-acting alkylating agent [59-65]. Interestingly, the
initial lesions induced by these carcinogens, when analyzed, were
ovarian surface epithelial proliferations, supporting the cancer origin
from the ovarian surface epithelium. However, the induced
carcinomas were composed by neoplastic cells resembling either
endometrium or oviduct (that corresponds to the human FTE in
mice), and were organized either in glandular or papillary structures
similar to human endometrioid and ovarian serous carcinomas,
respectively. Therefore, it remains controversial whether latter tumors
originate from the ovarian surface epithelium that has undergone
metaplastic transformation and morphologically resembles the oviduct
or derive directly from the oviduct.

Genetically engineered mouse models
Genetically engineered mouse models for HGSC have been difficult

to generate. Recently, the direct introduction of oncogenes and/or
disruption of tumor suppressor genes into the oviduct allowed the
generation of mouse models that recapitulate the new pathogenetic
model of HGSC including the presence of lesions similar to serous
tubal intraepithelial carcinoma, the putative precursor lesion [66,67].
Kim et al. developed an EOC mice model obtained by Dicer-Pten
double knockout [68]. Clinically similar to human HGSC, this EOC
arose from the oviduct, spread to the abdominal cavity and to the
ovary, and led to ascites and death of 100% of mice [68].
Phenotypically and morphologically the developed tumors resemble
HGSC, although differently they harbor unaltered p53 and altered
Dicer [68]. Other investigators have generated de novo mouse model
through the inactivation of Brca 1/2, Pten and Tp53 in fallopian tube
secretory cells, miming the molecular alterations commonly observed
in human HGSC [66]. More recently, Sherman-Baust et al. reported a
transgenic mouse model that develops HGSC from serous tubal
intraepithelial carcinoma through the inactivation of both p53 and Rb
pathways, similarly to HGSC [67]. Notably, both latter mouse models
recapitulated human HGSC from a clinical, histopathological, and
genetic point of view [66,67]. Overall, all these genetically modified
mouse models provide new evidence supporting the “fallopian tube
hypothesis”, i.e. the origin of HGSC from the fallopian tube (Figure 1).
Therefore, they certainly offer a unique opportunity for the
investigation of HGSC early events and carcinogenesis, and the
exploration of new strategies of early detection, prevention and
therapy. Moreover, this kind of syngeneic mouse models are optimal
for the study of tumor microenvironment, angiogenesis, epithelial-
stromal interaction and antitumor immune mechanisms because
preserve intact immune system. The major limitations of these models

are that they are labor-intensive, expensive and time-consuming and
do not fully replicate the genetic and epigenetic complexity of a
spontaneous HGSC. Finally, being murine these tumors own species-
specific characteristics and do not necessary behave as human HGSCs
(Figure 2).

Figure 1: Fallopian tube hypothesis on the origin of high-grade
serous carcinoma (HGSC). Fallopian tube epithelium (FTE) cells of
the fimbriated ends undergo initial neoplastic transformation,
becoming serous tubal intraepithelial carcinoma (STIC). STIC cells
possess resistance to anoikis that favors settlement and invasion of
the ovarian surface. The ovarian microenvironment, rich in
hormonal and inflammatory factors, drives the full neoplastic
transformation to invasive HGSC (A). Alternatively, the normal
FTE cells are entrapped in the ovary favored by their anatomical
proximity and physiological ovulation process. Entrapped FTE cells
undergo progressive neoplastic transformation inside the ovary
through the accumulation of molecular alterations (B).

Figure 2: Comparison among the most common animal models
used in ovarian cancer research. A summary of the major
advantages (PRO) and limitations (CONTRA) of the different
animal models used in ovarian cancer research is reported.

Human xenograft models
Heterotransplantation of cells is possible exclusively in

immunounresponsive environment that prevents transplant rejection.
However, engraftment rate of human tumor in immunocompromised
rodents is low, likely due to residual adaptive and/or innate immunity,
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tumor intrinsic characteristics and experimental approches employed.
Nowadays, human xenografts are generated by engrafting human
tumor from either primary tumor or cancer cell line into
immunodeficient mice, such as: i) athymic nude mice deficient in
functional T lymphocytes, ii) severe combined immunodeficient
(SCID) mice lacking both B and T lymphocytes, and iii) the nonobese
diabetic (NOD)/SCID/IL2Rγnull mice which defect in adaptive and
innate immunity due to lack of mature lymphocytes and natural killer
T cells. The three main routes of implantation used for EOC
xenografts are subcutaneous (ectopic), intraperitoneal and intrabursal
(orthotopic) [69]. Subcutaneous implantation facilitates manipulation
and serial measurements, but it does not recapitulate clinical tumor
progression, since rarely malignant ascites and peritoneal
carcinomatosis develop [70]. Intrabursal implantation consists in the
injection of cells into the bursal membrane that envelops the mouse
ovary and oviduct. This implantation site reproduces the physiological
environment in which HGSC grows, so that tumor and ovary
microenvironment can reciprocally interact and be modulated [71,72].
Therefore, intrabursal and intraperitoneal implantations best
reproduce the clinical manifestations of human HGSC, recapitulating
the early and late stage of the disease, respectively [69,71]. Moreover,
the advent of noninvasive imaging instruments designed specifically
for small animals allows monitoring of in vivo intraperitoneal tumor
growth over time. Noteworthy, intraperitoneal and intrabursal sites
require more time and major technical skill for successful
implantation as compared to subcutaneous [70].

Cell line xenograft models: Despite many shortcomings, EOC cell
line xenografts are the most utilized animal model in EOC research,
providing a multifaceted toll to explore EOC biology and treatment
[29,69-71,73]. Only selected EOC cell lines develop tumors when
injected into immunocompromised mice, and the tumor engrafted
usually acquires an indistinct undifferentiated morphology and
displays complex genetic makeup since usually derives from patients
with advanced stage [72,74,75]. The EOC cell line xenograft models
commonly used are obtained by intraperitoneal injection of cell lines
A2780, OVCAR-3 and SK-OV-3. Among these cell lines, OVCAR-3
genetically correlates to primary HGSC, whereas A2780 and SK-OV-3
do not harbor the typical genetic alterations of HGSC and are probably
derived from endometrioid carcinoma [28]. As a consequence, such
models do not accurately predict the clinical response of HGSC to
novel anticancer agents, nor do they properly anticipate drug
resistance and adverse reactions [4,45,76]. Nevertheless, some
preclinical studies, using EOC cell line xenografts, correctly predicted
anticancer drug response and effectively contributed to guide HGSC
therapy. Specifically, antiangiogenic agents effectively reduced the
formation of ascites in OVCAR-3 and SK-OV-3 cell line xenografts
and in combination with paclitaxel synergically reduce tumor growth
as well [77-79]. Clinical trials with bevacizumab, a monoclonal
antibody to human vascular endothelial growth factor, confirmed its
efficacy in HGSC patients, both as a single agent and in combination
with paclitaxel [80,81]. Another example of successful use of cell line
xenograft model includes the preclinical efficacy of PARP inhibitors in
BRCA-deficient cells in vitro and in vivo [82,83]. PARP inhibitor
monotherapy demonstrated favorable response in phase II/III clinical
trials in patients with HGSC harboring BRCA1 and BRCA2 germline
mutations, confirming the preclinical observations [84,85]. Latter
studies demonstrated the ability of EOC cell line xenografts in parallel
with in vitro studies in predicting drug efficacy, anticipating drug
toxicity, identifying biomarkers related to drug response [79-82,86].
Therefore, the ability to successfully translate preclinical findings to

HGSC patients largely depends on the selection of appropriated EOC
cell line or cell line panel, that must take into account the molecular
drivers that better capture the underlying biology of primary HGSC
and the likely key features of drug sensitivity.

In conclusion, the advantages of cell line xenografts include the
rapidity of tumor formation, easy predictability, reproducibility,
synchronization and the need of only few mice in drug response
studies. On the other hand the primary limitations result from the use
of EOC cell lines (above-mentioned) and immunocompromised mice,
that are unable to fully represent the complex interaction between
EOC and its microenvironment (immune system, stroma,
inflammation, vasculature) (Figure 2).

Patient-derived murine xenograft models: The first patient-derived
cancer xenograft (PDX) models were established in 1969, but only in
the last decade its use became mainstream practice in cancer research
[87]. In contrast to cell line xenografts, these emergent models feature
direct transfer of tumor/ascites from patients into NOD/SCID mice,
thus avoiding possible tissue culture artifacts. Mice bearing patient’s
ascites tumor usually do not survive after 8 weeks and necropsy
findings show peritoneal effusion and multiple tumor nodules in the
peritoneal wall and mesentery, a characteristic feature of advanced
stage HGSC in patients. Of note, the morphological and molecular
genetic features (TP53 mutation and DNA copy number alterations)
of the PDX tumors are virtually indistinguishable from the tumor
obtained from the patient, suggesting that the PDX model can
faithfully simulate human HGSC [88-91]. Additional key
characteristics of the PDX models in contrast with cell line xenografts
are: i) the tumors in PDX maintain the human intratumoral stroma
and the vascularization recapitulating the physiological
microenvironment; ii) PDX xenografts allow the propagation and
expansion of human tumors maintaining significant morphologic and
genetic concordance with the parental primary HGSC over multiple
murine generations. Thanks to their characteristics, PDX models are
able to reflect/predict the therapeutic responsiveness observed in
clinic, showing concordance with the original patient’s treatment
response [90,92], thus representing a unique opportunity toward
personalized therapy for HGSC. However, some limitations affect this
model. First, it requires a large amount of human fresh tumor and
variable period of time to engraftment (2 to 4 months) [93]. Second,
the tumor engraftment rate varies significantly in different studies
depending on tumor characteristics, mice strain and implantation site
[94]. Third, PDXs do not allow to study the role of immune system
and, in the long run, also the tumor-stromal interactions since human
stroma is eventually replaced by murine stroma [94]. Finally, the
development, propagation and maintenance of PDX are time-
consuming, labor intensive and expensive.

Humanized-xenograft models: A critical shortcoming of xenografts
is the lack of lymphocyte-mediated response as a consequence of
immunodeficient mice used as recipients. Therefore, xenografts
preclude the pathophysiological interaction between cancer cells and
immune system that plays a key role in EOC initiation, progression
and therapy response [95-98]. To overcome this issue,
immunocompromised mice may be engrafted with peripheral CD34
positive blood cells, isolated from human umbilical cord or fetal liver,
that are enriched for hematopoietic stem cells [99]. This strategy
restores almost completely the human immune system in mice,
renamed hematolymphoid humanized [100], and allows to study the
immunological response to HGSC as well as the biology of HGSC
preserving cancer immunoediting [101].
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Another shortcoming of EOC xenografts is its inability to efficiently
mimic epithelial/stromal interactions during tumor initiation due to
the absence of normal human ovary. Dates back to 2001 the first study
in which normal human ovarian tissue has been implanted into mice
to test the morphological and functional preservation following
cryostorage used to restore fertility in prepubertal children and women
undergone to gonadotoxic treatment for cancer [102-104]. This
approach can also have interesting applications in ovarian cancer
research since allows to recreate in mice the human ovarian
microenvironment where HGSC develops.

Conclusions
HGSC still represents an insurmountable challenge in gynecological

oncology mainly because of late diagnosis and chemoresistance onset.
Experimental cell and animal models are of pivotal importance to
study human disease since allow: i) to understand the natural history
and pathogenetic steps that lead to a fully developed disease; ii) to
identify potential therapeutic targets; iii) to enable preclinical testing of
novel therapeutics, alone or in combination with standard therapies.

To this day, we lack good inbred laboratory animals that develop
HGSC. This is largely due to our limited understanding of the
initiating factors that trigger HGSC. Moreover, anatomical,
physiological and pathophysiological differences between animals and
humans female reproductive system, including short lifespan, seasonal
mouse reproduction, estrous cycle instead of menstrual cycle, and lack
of menstruation may contribute to explain the difficulty in developing
a representative laboratory animal model. It has to be underlined that
the emerging “fallopian tube hypothesis” has given a new momentum
to ovarian cancer research (Figure 1). As a consequence, new
preclinical models, in which FTE cells undergo neoplastic
transformation in vitro and in vivo, have been generated [23,24,66,67].
The use and spread of these pioneering models portend new
opportunities to investigate the molecular and cellular alterations
associated with HGSC initiation and may allow the development of
novel prevention, early detection, and screening strategies.
Nevertheless, EOC cell line xenografts are still commonly used in
preclinical drug development [80,81,84,85]. Recent studies highlighted
that, in order to increase the possibility to translate preclinical findings
to clinic, the choice of EOC cell line (as biological surrogate of HGSC)
should keep into account the molecular characteristics crucial to the
biology of primary HGSC and to drug sensitivity[28].

As yet, the animal model that most closely mirrors human HGSC is
PDX since it offers the relevant advantage of faithfully maintaining the
characteristics of patients’ parental tumor, preserving both stromal
microenvironment and molecular alterations. Therefore, PDX holds
the promise for personalized anticancer treatment and discovery of
determinants of drug response [93]. In theory, PDXs allow for a rapid
in vivo screening of targeted drugs and for the assessment of the
chemosensitivity of patients’ cancer. In particular, since different
PDXs can be generated implanting tumor fragments obtained at
different time points from the same patient, they potentially allow to
capture the timeline of molecular alterations, i.e. tumor evolution,
through exposure to therapy and development of chemoresistance,
and, furthermore, to pre-test the response to new targeted therapies.
Another prospective application of PDX models is represented by the
screening of new anticancer compounds in a repertoire of HGSC PDX,
that allows to capture HGSC interpatient heterogeneity [105].
Therefore, PDX provides a powerful experimental platform for
treatment decision-making and for guiding targeted therapy in the

clinic. In addition, it has been reported that PDX preserves cancer
stem cells through multiple generations and chemotherapy, making
PDX an excellent model to study the biology of cancer stem cells
[38,89]. In this respect, the emergent picture of HGSC as a “cancer
stem cell disease” is extremely appealing for its diagnostic and
therapeutic implications, although further studies are necessary in
order to better characterize stem cells in HGSC. In particular, the
generation of stable models of HGSC stem cells seems an essential
experimental tool needed to gain deeper knowledge and to allow the
discovery of specific drug to target HGSC stem cells.

In the opening era of personalized medicine, the optimal choice of
experimental cell and/or animal models remain fundamental to broad
our knowledge on HGSC. For this purpose, experimental platforms
must keep abreast of the ever-increasing molecular, pharmacological
and clinical information from human disease in order to enhance their
translational potential.
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