
Research Article Open Access

Shah, Int J Swarm Intel Evol Comput 2014, 4:2 
DOI: 10.4172/2090-4908.1000123

Research Article Open Access

International Journal of Swarm 
Intelligence and Evolutionary 
Computation

Volume 4 • Issue 2 • 1000123
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Keywords: Black scholes model; Cuckoo search optimization;
Particle swarm optimization; Genetic algorithm 

Introduction 
F Black and M Scholes formulated a theoretical model to price 

options in 1973 [1]. This model is basically a partial differential 
equation and produces closed form solution for the price of European 
Call and European Put options with assumption that underlying 
security price follows lognormal distribution. According to this model, 
option price (P) depends on various input variables such as S, current 
security price; K, strike price of the option contract; R, risk free rate of 
return; T, expiration time of the option contract; IV, implied volatility 
of the security. In practice, the implied volatility of security can only be 
estimated, and its estimation has been an interesting subject of research 
[2,3]. The objective of the vast research has been to determine ‘good’ 
estimate of implied volatility which can be then used to calculate the 
theoretical price of an option. Subsequently, the investors can then 
lookout for mispriced option in market and generate arbitrage profits.

The complexity is that the implied volatility is a non-linear function 
of other input parameters and hence we need to apply some type of 
optimization technique. Newton-Raphson method, a traditional 
calculus based optimization technique was applied by S Manaster 
and G Koehler [4]. Their study exposes two major drawbacks of this 
application: 

• For many options, no value of implied volatility can justify
the observed option price. 

• It is highly sensitive to the starting point; if one fails to have
a correct starting value, convergence might not occur. 

Also, for calculus based optimization techniques, finding a global 
optimum for nonlinear function for which analytical derivative 
cannot be found is problematic as they tend to hung up on local 
optimum. Later, K. Bruce analyzed with Genetic Algorithm (GA), 
an evolutionary optimization technique, where he demonstrated GA 
can more precisely estimate accurate values of implied volatility than 
calculus based optimization methods [5]. Post that, S Lee, J Lee, D 
Shim and M Jeon applied Particle Swarm Optimization (PSO), another 
evolutionary optimization technique [6]. They proved that implied 
volatilities obtained through PSO are much closer to accurate values of 
implied volatility than GA. 

A new evolutionary search algorithm, called Cuckoo Search (CS), 
based on cuckoo bird’s behavior has been developed by X Yang and S 
Deb [7]. CS algorithm is known to provide more robust and precise 
results than PSO algorithm [8, 9]. In this paper, we apply CS to Black 

Scholes model and compare its performance to PSO and GA. The 
present paper intends to show that CS can more effectively estimate the 
accurate values of implied volatility than PSO and GA. 

The paper is organized as follows: Section 2 briefly describes Black 
Scholes model and CS technique. In Section 3, we apply CS, PSO and 
GA methods to Black Scholes model for European Call option price 
and compare the results. In section 4 and 5, we discuss the results and 
draw the conclusion.

Overview
Black scholes model and implied volatility

Our study considers European Call option only. The Black Scholes 
model for Call option is as follows: 
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where C is the call option price, S is the current security price, X is 
the strike price, T is the time remaining until expiration expressed as a 
percent of a year, rf is the current continuously compounded risk-free 
interest rate, σ is the implied volatility of security price and N(·) is the 
standard normal cumulative distribution function.

The model makes certain assumptions which include:

• The options are European options, i.e., they can be exercised only 
at expiration.
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Black Scholes option pricing model is one of the most important concepts in modern world of computational 

finance. However, its practical use can be challenging as one of the input parameters must be estimated; implied 
volatility of the underlying security. The more precisely these values are estimated, the more accurate their 
corresponding estimates of theoretical option prices would be. Here, we present a novel model based on Cuckoo 
Search Optimization (CS) which finds more precise estimates of implied volatility than Particle Swarm Optimization 
(PSO) and Genetic Algorithm (GA).
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•	The risk free rate and implied volatility remain constant over the 
period of analysis.

•	The underlying security price follows the log normal distribution.

•	The underlying security does not pay any dividends. 

In practice, the supply and demand dynamics for a particular 
option governs it price and gives us the market price of that option. 
Whereas the implied volatility in the equation, as discussed, cannot 
be directly observed and hence should be deduced using numerical 
techniques. 

To explain mathematically, the Black Scholes model determines 
the option price as follows:

( )=c f σ                                                                                                                      (4)

where f is basically the Black Scholes pricing model that depends on 
σ, along with S, X, rf, T. In terms of σ, the function f is monotonically 
increasing, which means higher value of σ leads to higher value of 
option price (C). Hence, using inverse function theorem, there can be 
at most only one value of σ that would result in a particular value of C. 

So now, assuming an inverse function g = f−1 such that:

( ), .=c g cσ                                                                                                                          (5)

where  c is the market price and cσ    is the volatility implied by the 
market price ( )c , or the  implied volatility. As this now cannot be 
expressed as closed form solution, we need to use numerical techniques 
to obtain solution for implied volatility.

Cuckoo search optimization

With recent development, metaheuristic algorithms inspired 
by nature are widely used to solve hard optimization problems. 
These algorithms are based on random Monte-Carlo technique, 
guided by some nature inspired intelligence, particularly evolution 
and swarm intelligence. For all such nature inspired algorithms, the 
rudimentary idea is balance between discovering larger area of search 
space (exploration) and probing a limited region of search space 
(exploitation). 

Cuckoo Search Algorithm, a search based on behavior of Cuckoo 
bird was proposed by X Yang and S Deb [7,10]. It is primarily based on 
brood parasitism exhibited by some Cuckoo species. In this algorithm, 
a pattern (Cuckoo) corresponds to a nest and each single attribute of 
the pattern corresponds to a Cuckoo-egg. A general system equation 
of this algorithm is based on general system equation of random walk 
algorithm as follows:

( )1;i ;i+ = + ⊗g gX X levyα λ                                                 (6)

where α is the step size which depends on the problem in hand, 
although is mostly 1, g denotes the number of current iteration (g=1, 
2, 3… maxcycle), i denotes the ith pattern, the product ⊗ means entry 
wise multiplication and levy flight essentially provides random walk 
where random step length is drawn from Levy’s distribution which has 
an infinite variance with an infinite mean. 

( ), 1 3−= =�  levy u t λ λ                                                                                                                               (7)

The initial value of jth attribute of ith pattern is determined as follows:  

( ); ,= = ⋅ − +g o j i i i iX rand up low low                                                                                                             (8)

where lowi and upi are the lower and upper search-space limits of jth 
attributes, respectively. 

This algorithm detects best solution Xbest at the beginning of each 
iterative step. Also at this point, step scale factor is calculated as follows:
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Where β denotes Levy distribution parameter and Γ  denotes 
gamma function. In the standard implementation of this algorithm 
[10], β=1.5 has been advised. 

The evolution of ith pattern Xi starts with the donor vector v, where 
v=Xi. Then, step size is being calculated as follows:
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where u=φ randn [D] and v=randn [D]. The randn [D] function 
generates a uniform integer between [1 D]. 

In the next step of the CK algorithm, the donor pattern υ is 
randomly mutated as follows:

[ ]:= + ⋅jv v stepsize randn D                (11)

The Xbest pattern is then calculated. The unfeasible patterns are then 
manipulated as follows:
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v

X else
                                                             (12)

Where mutation probability value (p) =0.25 is advised [10].

Numerical Experiments and Results
We present here a comparison between the performance of CS, 

PSO and GA for finding implied volatility for the Black Scholes model. 
For this comparison, we selected 80 different pairs of Strike Price (K), 
Time to maturity expressed as a percent of a year (T), Risk free rate (R) 
for a particular Security price (S) and its implied volatility (σ). With 
this data in hand, we calculated the actual call option price (C) using 
Black Scholes model for all this 80 pairs. Now the main problem of 
Black Scholes model is finding an estimate of σ, cσ with which the 
estimated price of the call should be same as the actual price of call 
option. Thus, now our fitness function is |estimated call value - actual 
call value|, which should be minimized. The Table 1 shows the input 
parameters used for 80 different pairs. 

In all the test, number of evaluations is same 2*104 (CS: population 
20, number of iteration 1,000, PSO: population 20, number of iteration 
1,000 and GA: population 100, number of iteration 200). In GA, we use 
the uniform crossover with 0.6 probability and bit change mutation 
with 0.05/bit probability. While in PSO, fixings are selected as c1=c2=2, 
where c1 and c2 are acceleration constants. As this parameter selection 
is very important, we relied on the values proposed in [11]. Also, the 
inertia weight is decreased from 0.9 to 0.4 over the iterations as advised 
to provide improved results [6]. For CS, Levy distribution parameter 
(β)=1.5 and mutation probability value (p)=0.25 were selected as 
advised [7,10]. All tests were repeated twenty times and the median 
values obtained for 80 different pairs were noted as the result. Table 2 
summarizes its performance

Clearly, we find that GA is the worst performer among the three 



Citation: Shah M (2015) Cuckoo Search Optimization for Black Scholes Option Pricing. Int J Swarm Intel Evol Comput 4: 123. doi: 10.4172/2090-
4908.1000123

Page 3 of 4

Volume 4 • Issue 2 • 1000123
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Sr. No. Security 
Price

Strike Price Time in 
years

Risk free 
rate

Actual Option 
Price

1 100 80 0.25 5.00% 20.99377703
2 100 85 0.25 5.00% 16.05615438
3 100 90 0.25 5.00% 11.13257152
4 100 95 0.25 5.00% 6.41211107
5 100 100 0.25 5.00% 2.66483222
6 100 105 0.25 5.00% 0.69609080
7 100 110 0.25 5.00% 0.10593325
8 100 115 0.25 5.00% 0.00927180
9 100 120 0.25 5.00% 0.00047815

10 100 125 0.25 5.00% 0.00001513
11 100 80 0.5 5.00% 21.97555886
12 100 85 0.5 5.00% 17.10663271
13 100 90 0.5 5.00% 12.30675237
14 100 95 0.5 5.00% 7.83218141
15 100 100 0.5 5.00% 4.19226962
16 100 105 0.5 5.00% 1.81050374
17 100 110 0.5 5.00% 0.61657434
18 100 115 0.5 5.00% 0.16476202
19 100 120 0.5 5.00% 0.03480478
20 100 125 0.5 5.00% 0.00589583
21 100 80 0.75 5.00% 22.94725197
22 100 85 0.75 5.00% 18.15634732
23 100 90 0.75 5.00% 13.47894224
24 100 95 0.75 5.00% 9.15372394
25 100 100 0.75 5.00% 5.54330534
26 100 105 0.75 5.00% 2.93521951
27 100 110 0.75 5.00% 1.34446169
28 100 115 0.75 5.00% 0.53146121
29 100 120 0.75 5.00% 0.18199751
30 100 125 0.75 5.00% 0.05440470
31 100 80 1 5.00% 23.90997789
32 100 85 1 5.00% 19.19968426
33 100 90 1 5.00% 14.62883762
34 100 95 1 5.00% 10.40528429
35 100 100 1 5.00% 6.80495771
36 100 105 1 5.00% 4.04609699
37 100 110 1 5.00% 2.17394516
38 100 115 1 5.00% 1.05419583
39 100 120 1 5.00% 0.46249651
40 100 125 1 5.00% 0.18446286
41 100 80 0.25 10.00% 21.97520733
42 100 85 0.25 10.00% 17.09875304
43 100 90 0.25 10.00% 12.22880790
44 100 95 0.25 10.00% 7.47846671
45 100 100 0.25 10.00% 3.44555060
46 100 105 0.25 10.00% 1.03895204
47 100 110 0.25 10.00% 0.18727956
48 100 115 0.25 10.00% 0.01965625
49 100 120 0.25 10.00% 0.00122041
50 100 125 0.25 10.00% 0.00004646
51 100 80 0.5 10.00% 23.90172625
52 100 85 0.5 10.00% 19.14788092
53 100 90 0.5 10.00% 14.42157126
54 100 95 0.5 10.00% 9.86246020
55 100 100 0.5 10.00% 5.85027298
56 100 105 0.5 10.00% 2.87952287

57 100 110 0.5 10.00% 1.14072077
58 100 115 0.5 10.00% 0.35904362
59 100 120 0.5 10.00% 0.08990118
60 100 125 0.5 10.00% 0.01808986
61 100 80 0.75 10.00% 25.78106792
62 100 85 0.75 10.00% 21.14888416
63 100 90 0.75 10.00% 16.55674254
64 100 95 0.75 10.00% 12.12604497
65 100 100 0.75 10.00% 8.11634938
66 100 105 0.75 10.00% 4.85749642
67 100 110 0.75 10.00% 2.55885849
68 100 115 0.75 10.00% 1.17713973
69 100 120 0.75 10.00% 0.47242634
70 100 125 0.75 10.00% 0.16607396
71 100 80 1 10.00% 27.61440702
72 100 85 1 10.00% 23.10065239
73 100 90 1 10.00% 18.63085853
74 100 95 1 10.00% 14.30401155
75 100 100 1 10.00% 10.30815093
76 100 105 1 10.00% 6.88268631
77 100 110 1 10.00% 4.21674484
78 100 115 1 10.00% 2.35762781
79 100 120 1 10.00% 1.20124683
80 100 125 1 10.00% 0.55871636

Table 1: Input parameters.

Performance Genetic 
Algorithm

Particle 
Swarm

Cuckoo 
Search

Mean Percentage Error 2.26E-03 1.41E-11 1.34E-11
Root Mean Square Error 3.30E-05 1.08E-12 1.03E-12

Table 2: Performance.

methods under study. To further observe and study the difference in 
performance between CS and PSO, we conducted the same test but 
with less number of iterations and increased them subsequently. Table 
3 shows the comparison of performance for CS and PSO as we increase 
the number of iterations from 50 to 500, in step of 25.

We can see that with number of iterations being less than 200. CS 
travels more space and performs less efficiently than PSO. But as we 
increase the number of iterations, the Root Mean Square Error as well 
as Absolute Percentage Error for CS falls down quickly and beyond 200, 
it remains significantly lower than PSO. Figure 1 and Figure 2 shows 
the convergence of two methods as we increase the iterations. Figure 1 
is the analysis with less number (<250) of iterations while Figure 2 is 
with greater number (>250) of iterations.

Discussion
CS optimization is a relatively recent search heuristic method. 

Similar to other evolutionary optimization techniques like PSO and GA, 
they move from one set of point to another with likely improvement 
using combination of nature based deterministic and probabilistic 
rules. For all such nature inspired algorithms the elementary concern 
is balance between exploration and exploitation. Here, we discuss these 
fundamentals for CS and PSO. 

As we see in our study, CS technique explores larger search space 
and then exploits good found solutions more efficiently than PSO, 
estimating a more accurate value. Hence, the CS algorithm supplies more 
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robust and precise results [8]. As analyzed in [12], guaranteed global 
convergence, controlled global search and local search capabilities and 
global search using Levy’ flights, are the reasons for better performance 
of cuckoo search. The randomization feature via Levy’ flights and the 
controlled global search lead to better exploration and exploitation 

respectively. Also, CS technique is more computationally efficient than 
PSO as it uses less number of parameters [12]. The drawback of CS 
technique is that its convergence rate depends on parameter selection 
[13]. 

Conclusion

This paper demonstrates the usefulness and efficiency of CS 
optimization method in estimating implied volatility for option 
pricing. We first showed that CS and PSO estimated value of implied 
volatility is much closer to the actual values than those by GA. When 
CS was further compared with PSO, we observed relatively greater 
error for less number of iterations, however significantly lower error 
as the number of iterations were increased. This paper signifies high 
potential for widespread use of CS method in field of Finance, where 
accuracy is of highest importance.
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