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Abstract

The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within
cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent
neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor
growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through
asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the
capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or
environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic
equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the
stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved.
Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of
novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.

Introduction
Physicians and scientists have wondered about the origins of

tumors since the 18th century, when Giovanni Morgagni of Padua
established autopsies as a routine procedure to determine why patients
died. In 1863, the implementation of the microscope as a scientific tool
lead Rudolf Virchow to speculate about the cellular origin of cancer
when he observed that some tumor cells within pathological
specimens seemed less differentiated than others, and in 1889 Stephen
Paget proposed the seed-and-soil hypothesis, which provided an
explanation for how tumors metastasize to distant sites. Discoveries in
the early 1900’s by Peyton Rous and Theodore Boveri established that
cancer can be caused by viruses and chromosomal abnormalities [1],
laying the foundations for modern oncology and the study of cancer
biology.

The concept of stem cells applied to tumor initiation has been
around for quite some time. Building on the breakthroughs of
Morgagni and Virchow, pathologists increasingly recognized the
histopathological heterogeneity within solid tumors. Furth and Kahn
in 1937 and then others, using serial transplantations and limiting
dilutions, showed that a single cell was able to propagate tumor
xenografts that recapitulate the features of the original clinical tumor
[2-4]. Furthermore, Pierce demonstrated that cells isolated from
teratocarcinomas were highly tumorigenic when in an undifferentiated
state, but lost their ability to form tumors upon differentiation [5]. The
cancer stem cell hypothesis really started to take shape as a result of
this early work. Pierce conducted pioneering lineage tracing
experiments and was able to show that labeled undifferentiated
squamous cell carcinoma cells gave rise to fully differentiated cells.
Again, the labeled differentiated cells lost the ability to form tumors
[6]. These experiments provided strong evidence to support a
hierarchical organization within tumors, leading Pierce to propose the
Cancer Stem Cell (CSC) hypothesis [7]. Pierce’s findings changed the
way physicians and scientists looked at cancer treatment and paved the

road for the use of combinatorial therapies to treat tumors as well as
highlighting the idea that targeting the “cell of origin” may be more
efficacious than focusing therapy on the bulk population of the tumor
cells [8].

Beginning in the late 1970’s, the emerging discoveries of tumor
suppressing and tumor promoting genes and their mutations
constituted a conceptual paradigm shift that relegated the CSC
hypothesis to a supporting role. In 1976, Nowell proposed that tumors
are derived from a single cell, and that tumor progression is the result
of acquired mutations that give the tumor cells an advantage [9]. This
view of “clonal evolution” of tumors was modeled in colon cancer [10]
and seemed to provide an iron-clad explanation for how tumors come
to be, how they evolve, and why they become more aggressive. It did,
however, fail to fully explain why some tumors are highly
heterogeneous in nature and did not provide a satisfying answer as to
why tumors recur after prolonged periods of dormancy.

In the early 1990’s, groundbreaking work had been taking place in 
the area of hematopoietic stem cell research, namely the 
characterization of well-defined and validated surface markers that 
allowed for identification of undifferentiated cells as well as different 
lineages resulting from hematopoeitic stem cells [11-13]. In the 
mid-1990’s John Dick took advantage of this technology and studied 
heterogeneity within leukemia. His results showed that a subtype of 
acute myeloid leukemia (AML) was able to reconstitute tumors in 
immune-compromised mice, but most importantly, these cells were 
isolated from a specific fraction (i.e. CD34+CD38-). They further 
showed that only 1 out of 1,000,000 cells had the ability to form tumors 
[14-16]. These studies sparked a renewed interest in the CSC 
hypothesis, which lead to similar studies in solid tumors. Researchers 
showed that breast cancer and glioblastoma are made up of a 
heterogeneous population of tumor cells, but only a certain population 
of cells (CD44+CD24-/low for breast cancer and CD133+ for 
glioblastoma) formed tumors that could be serially passaged and had
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the ability to reconstitute the original tumor morphology [17]. Since
then, cells with the capacity to reconstitute tumors after isolation using
defined markers have been identified in several tumor types [18-20].

The CSC hypothesis postulates that there is a hierarchy of cellular
differentiation within cancers and that the bulk population of tumor
cells is derived from a relatively small population of multi-potent
neoplastic stem-like cells (CSCs) that play a particularly important role
in maintaining tumor growth through their unlimited self-renewal,
therapeutic resistance, and capacity to propagate tumors through
asymmetric cell division [20-24] (Figure 1).

Figure 1: The CSC hypothesis postulates that there is a hierarchy of
cellular differentiation within cancers and that the bulk population
of tumor cells is derived from a relatively small population of multi‐
potent neoplastic stem‐like cells (CSCs). These cells play a crucial
role in tumor maintenance, therapeutic resistance, and tumor
propagation. The CSC hypothesis predicts that targeting the CSCs
will more effectively treat tumors and prevent recurrence.

At a practical level, this hypothesis predicts that targeting the CSCs
will more effectively treat tumors and prevent recurrence.
Differentiation therapy has emerged as an approach to force tumor
cells into lineages that are less efficient tumor propagators and more
susceptible to treatment.

The CSC Hypothesis: Where Do Tumor-Initiating Cells
Come From

As mentioned earlier, there is a growing body of evidence
supporting the idea that the population of cells with stem-like
potential exists in several types of cancer[13,14,16,17,19,20,25] and as
few as one of these cells is sufficient to propagate tumor growth and
recurrence [5]. Despite the fact that we can isolate these CSCs, we still
do not understand their nature and origin. The CSC hypothesis draws
parallels from the cellular hierarchies of normal tissue development,
where undifferentiated multi-potent cells have the ability to
differentiate and give rise to specialized cells that eventually constitute
heterogeneous tissue. The stem cells serve to support tissue
regeneration and injury repair. What the CSC hypothesis does not
address is whether these cancer initiating cells are normal stem cells
that have gained tumorigenic capabilities, or are tumorigenic cells that
have gained a stem-like phenotype (Figure 2).

So rather than focusing on the cell of origin per se, the CSC
hypothesis proposes a pragmatic approach and offers an “operational”
definition of what constitutes a CSC. Regardless of the cell of origin, a
tumor that conforms to the CSC hypothesis should be heterogeneous
and contain a small population of multi-potent, relatively
undifferentiated cells able to propagate tumors in transplantation
models [26-29] and generate more differentiated progenitor cells with

limited tumor propagation potential. Although the CSC hypothesis
does not directly address the cell of origin issue, understanding how
these tumor-initiating cells arise should provide significant insights.
Paramount to cancer therapy is identifying cancer-specific
characteristics of these cells that can be exploited for treatment to
minimize effects on normal cells.

Great efforts have been put forward into understanding where CSCs
come from. There are instances, such as intestinal cancers, where
hierarchically organized tumors originate from normal cells [30,31]. In
other cases, it appears that the CSC population arises from more
differentiated neoplastic cells that respond to environmental cues or
acquired mutations that activate de-differentiation mechanisms
[32,33]. More recently, the idea that differentiated cells can revert to a
more stem-like state and in doing so contribute to tumor formation,
has added an extra level of complexity to the system [34-37].

Epigenetic Reprogramming
The term reprogramming, in the context of stem cell biology, is

usually directly associated with the Yamanaka [38] experiments and
the transition from fully differentiated cells to induced pluripotent
stem cells (iPSC). Reprogramming is a complex and dynamic process
that occurs in stages and is multi-directional (Figure 3). Each time a
cell takes a step towards differentiation or de-differentiation, we
envision a plethora of molecular events. These include modulating the
expression of transcription factors, modifying the methylation
landscape, adapting histone marks, and differentially regulating
coding and non-coding RNA. It is, therefore, not surprising that
transcriptional networks play important roles in maintaining stem cell
self-renewal, cell lineage determination, and progenitor cell growth in
normal as well as neoplastic tissues. It is now known that expression
changes in defined sets of transcription factors are sufficient to drive
cell reprogramming to different cell types [39,40]. Han et al. [40]
showed that manipulating the transcription network in mouse
fibroblasts generates induced neuronal stem cells (iNSC) that exhibit
no differences in terms of morphology, gene expression, epigenetic
features, differentiation potential, and self-renewing capacity, as well
as in vitro and in vivo functionality when compared to wild type
neuronal stem cells (Figure 4).

This study highlights how under certain conditions cells can be
induced to undergo a complete change of identity. Although the
authors of this study focused on the implications of this plasticity for
regenerative medicine purposes, one can envision a similar process
taking place in tumor cells. By displaying this inherent plasticity,
tumor cells can adapt to multiple environments and dynamically alter
their dependence on specific signaling and metabolic pathways,
features associated with metastasis and therapeutic resistance [41].

As mentioned earlier, expression of a defined set of transcription
factors is sufficient to reprogram mouse and human cells to an
induced-pluripotent state. These iPS cells resemble embryonic stem
cells since they possess the capacity to differentiate into all tissue sub-
types [38]. In cancer, expression of these transcription factors (Oct4,
Sox2, c-Myc, and Klf4) has been found to correlate with poor
prognosis [42-44] and tumor progression[45-47].

The high similarity in gene expression profiles of embryonic stem
cells (ESCs) and high grade tumors [48] further supports the
molecular parallels between the stem cell phenotype, induced
pluripotency, and cancer [48]. This suggests a de-differentiation
mechanism whereby expression and function of reprogramming
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transcription factors influence the tumorigenic potential of cells by 
driving them to less differentiated and potentially more aggressive 
stem-like states. Indeed, expression of one or more of these 
reprogramming factors has been shown to switch tumor cells to a 
more stem-like state and resulted in a more aggressive tumor 
phenotype. For instance, expression of Oct4, Sox2, c-3 Myc, and Klf4 
in gastrointestinal cancer cells results in a more ESC-like state [49]. 
Forced expression of Oct4 and Nanog caused lung cancer cells to 
express the stem cell marker CD133 and grow as spheres in defined 
medium similar to non-neoplastic stem cells, develop drug-resistance, 
and acquire enhanced tumor propagating capacity consistent with de-
differentiation to a more stem-like state [45]. Recent findings from our
laboratory and validated by others have directly linked the stem-like 
phenotype of GBM cells to the oncogenic receptor tyrosine kinase c-
Met [37,50-52]. This work shows that c-Met marks GBM stem cells, 
induces the expression of reprogramming factors, including Oct4, Sox2 
and Nanog and thereby dynamically regulates the degree of GBM cell 
stemness in vitro and in vivo[37,52]. These findings establish 
dynamically-regulated de-differentiation mechanisms involved in 
cancer stem-cell generation and maintenance.

Our findings that Nanog silencing inhibits the reprogramming
capacity of c-Met signaling in GBM cells highlights Nanog’s emerging
role in maintenance of CSCs [37]. These results are in line with those
showing that Nanog serves as a gatekeeper to full de-differentiation
[53]. More recently, Nanog has been shown to accelerate
reprogramming and induce pluripotency of pre-iPS mouse cells [54].
Other studies show that Nanog induction is sufficient to not only
induce de-differentiation of mouse astrocytes in the absence of p53,
but also confers tumorigenic potential to these cells [55,56].
Interestingly, cancer vaccines have been found to induce Nanog
expression resulting in a sub-set of cells that gain stem-like potential
and become resistant to tumor-specific CTLs [57]. These studies stress
the importance of understanding how reprogramming transcription
factors contribute to the CSC phenotype and suggest that tumor cells
can use reprogramming factor expression to their advantage in order
to survive and propagate de‐differentiation and acquisition of stem cell
qualities results in tumor cells with self‐renewal capability, tumor‐
propagating capacity, and treatment resistant. Additionally, they
indicate that combining cytotoxic therapies with approaches that
target the CSC population may be a particularly efficient way to treat
cancer.

The evidence presented so far argues that neoplastic cells are 
inherently plastic and transcription factors play critical roles in tumor 
cell fate determination through the process of reprogramming. We 
also proposed the possibility of neoplastic cells taking advantage of 
these capabilities in order to promote and maintain the tumor. But is 
there evidence that tumor cells can hijack this mechanism under 
physiological conditions and use it to their advantage? Under stress 
conditions, several cell types have the ability to de-differentiate in 
order to supplement the stem cell population to support tissue repair 
[58-61]. 

Interestingly enough, it appears that tumor cells can take advantage 
of a similar process of “stress-induced reprogramming” and de-
differentiate to a stem-like state with the capacity to maintain or even 
reconstitute a malignancy.

For instance, glioma stem cells (GSC) are thought to reside in a
hypoxic niche. Hypoxia stabilizes HIF2 , which in turn can activate
stemness genes that contribute to tumor initiation by reprogramming
cells through a de-differentiation mechanism [62-65]. As an example,
this process may be activated by stress resulting from therapeutic

intervention. Legadec et al. [34] found that radiation therapy can cause
fully differentiated breast cancer cells to de-differentiate and become
induced-breast cancer stem cells (iBCSC). These iBSCS re-express
reprogramming factors Oct4, Sox2, Nanog, and Klf4 and this de-
differentiation process was found to partially depend on Notch
signaling. These studies convey the possibility that a fraction of tumor
cells can de-differentiate in response to therapy and potentially
contribute to recurrence and therapy resistance.

Figure 2: CSCs can arise in several manners: (i) from more 
differentiated neoplastic cells that in response to environmental cues 
or acquired mutations activate de-differentiation mechanisms; or 
(ii) in other cases, the CSC population arises from normal stem cells
that acquire tumorigenic potential through mutations. A tumor that
conforms to the CSC hypothesis should be heterogeneous and
contain a subset of multipotent, relatively undifferentiated cells able
to propagate tumors in transplantation models and generate more
differentiated progenitor cells with limited tumor propagation
potential.
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Figure 3: Reprogramming is a process during which cells either
commit to a more differentiated state (i.e. differentiation), or, in the
case of neoplastic disorders, revert to a more stem‐like state (i.e.
dedifferentiation).

Role of the Microenvironment in CSC Reprogramming
and Maintenance

It is well-recognized that the microenvironment plays an important
role in supporting stem cell populations within tissues. It is now well-
established that discrete environmental niches exist (e.g.
subventricular zone in the brain, perivascular niche, hypoxic niche)
that provide molecular cues for maintaining stem-like states in
selected cell populations [30,64,66-68]. As with normal stem cells,
microenvironmental niches seem to play a crucial role in supporting
the CSC population. Communication between CSC and niche appears
to be bidirectional, and stem cells within tumors may even have the
ability to modify their microenvironment with the effect of amplifying
niche-derived signals that support and replenish the pool of tumor-

initiating cells. Therefore, understanding the relationship between
CSC and their microenvironment has great promise in terms of
treating and managing the disease [66,69].

Figure 4:De‐differentiation encompasses molecular changes that
results in cells reverting to a more stem‐like state. This process is
influenced by autocrine and paracrine pathways including
environmental cues that modify the DNA methylation landscape
and histone marks, modulate the expression of transcription factors
and regulate coding and non-coding RNAs all leading to fate-
determining gene expression changes.

Hypoxia is a hallmark of the cancer microenvironment and plays an
important role in inducing and maintaining neoplastic stem-like
phenotypes in cancer [70]. The hypoxic environment of the tumor
induces expression of HIF, which in turn activates reprogramming
factors that drive cancer cell de-differentiation [62-65]. Studies in 11
different cancer cell lines found that HIF, when combined with core
reprogramming transcription factors, enhances cell de-differentiation
and tumor propagating potential [71]. Heddleston et al. [65] found
that hypoxia promotes self-renewal of glioma stem cells (GSC) as well
as non-stem cells through a process regulated by HIF2 and attribute
this de-differentiation response to the increased expression of Oct4,
Sox2, Nanog, and c-Myc. Many paracrine signals, in addition to
hypoxia, have been found to influence tumor cell stemness. For
instance, IL-6 secreted by tumor-infiltrating macrophages can increase
the tumor-initiating capacity and drug resistance capability of
neoplastic stem-like cell populations by inducing Stat3 and Hedgehog
signaling. IL-6 was found to enhance the conversion of breast cancer
progenitor cells to a more stem-like state via a positive feedback loop
involving NF-kB, Lin28, and miRNA Let-7 [72]. Stromal cells
influence the cancer stem-like phenotype of cells through paracrine
signaling. In colorectal cancer, myofribroblasts in the tumor
environment were found to secrete hepatocyte growth factor (HGF),
which can support the stem cell population, at least in part, by
activating Wnt signaling [73]. Relevant findings in our lab
demonstrate that HGF/c-Met signaling drives brain CSC phenotype by
inducing reprogramming transcription factors [37] and that inhibiting
this axis in vivo depletes tumors of their tumor-initiating capacity [52].
These findings highlight that stem-like tumor-initiating cells are
dynamically regulated by their microenvironment in vivo and that c-
Met pathway inhibition can deplete tumors of their tumor-
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propagating stem-like cells [52]. 
        The perivascular niche has been found to play a particular role in 

supporting the tumor-initiating cell population of brain tumors 
[74,75]. Callabrese et al. [67] found that endothelial cells interact 
closely with brain cancer stem cells and support the self-renewal 
capability of this cell population. This study found that endothelial cell 
and blood vessel numbers were directly proportional to the ability of 
tumor cells to propagate xenografts in mice. Brain CSCs respond to 
endothelial-derived nitric oxide with activation of Notch signaling, a 
known driver of cancer cell stemness. Cross talk between endothelial 
cells and tumor cells serves to maintain and expand the CSC pool. In 
cutaneous papilloma, CSCs have been found to preferentially localize 
within a perivascular niche where vascular-endothelial growth factor 
(VEGF) acts upon endothelial and tumor cell receptors to both induce 
angiogenesis and expand the cancer stem cell pool by stimulating 
symmetric cell division [68]. Understanding the bidirectional 
relationship between CSCs and their microenvironment niches should 
identify novel targets and strategies for therapeutic intervention.

Contribution of Epigenetic Modifications to the Stem
Cell Phenotype

The evidence presented so far strongly supports the function of
Yamanaka transcription factors induced by oncogenic signaling and
microenvironmental cues as “drivers” of cancer cell reprogramming
and stemness. These fate-determining transcriptional events are
constrained by promoter accessibility which is determined by the
influences of histone modifications on chromatin architecture and by
promoter DNA methylation [76].

DNA methylation is established by the de novo DNA methyl-
transferases (DNMTs) Dnmt3a and Dnmt3b, and is maintained
through cell division by Dnmt1 [77] in a process involving the
addition of methyl groups to cytosine residues [78,79]. Hyper-
methylation of tumor suppressor genes and de-methylation of
oncogenes may play a role in tumor initiation and progression [80,81].
If these changes happen early enough during tumor formation, it is
thought that neoplastic cells may even become addicted to these
epigenetic changes [82]. Furthermore, changes in DNA methylation
regulate genes involved in angiogenesis and metastasis [83]. Changes
in methylation patterns are associated with the transition of stem cells
from pluripotent to a more differentiated state [84]. DNA methylation
is an important mechanism by which differentiation programs are
silenced in stem cells as a pre-requisite to maintaining self-renewal
and multi-potency [85-87]. Forced expression of Dnmt3b promotes
tumorigenesis of colon cancer cells in vivo by silencing a specific set of
tumor suppressor genes [88]. Other studies in glioma have associated
high expression of Dnmt1 and Dnmt3b with hyper-methylation of
tumor suppressor genes that regulate genomic stability and cell cycle,
and influence cell tumorigenicity [86]. Additionally, deregulation of
DNMTs has been associated with the tumor cell phenotype and stem
cell compartment in glioblastoma [87], linking DNMT deregulation
with the tumor-initiating cell population. Interestingly,
reprogramming factors (i.e. Oct4 and Nanog) can directly induce
DNA methyl-transferase expression (i.e. Dnmt1) and control the fate
of mesenchymal stem cells [89]. However, whether specific DNA
methylation signatures play a role in cancer stem-like phenotype
acquisition and/or maintenance remains unclear. DNMT inhibitors
have emerged as a promising option for treating cancer, especially in

combination with other established approaches [90]. The use of 5-
azacitidine (5-Aza) [91], a pan-DNA methyl-transferase inhibitor,
proved to be an effective way to treat AML [92] and it worked as an
adjuvant in prostate cancer when combined with bicalutamide [93].
DNA methyl-transferase inhibition can induce differentiation of stem
cells [89,94]. Interestingly, DNMT inhibitors have been shown to
enhance differentiation of leukemia-initiating cells [95] as well as
hepatic cells [96]. Treatment of melanoma cells with decitabine, a
Dnmt1 inhibitor, induced differentiation of these cells and inhibited
tumor growth in vivo in a mouse melanoma model [97]. This evidence
suggests that modulating DNA methylation can be an effective way of
depleting the CSC population. These studies emphasize the need to
better understand how changes in the methylation landscape
contribute to the CSC population in order to target tumor-initiation
and propagation more efficiently.

Many transcription factors bind DNA regions containing CpG
sequences. It is thought that DNA methylation interferes with this
process by changing the recognition sites at the cytosine residue. This
process has been described for several transcription factors, including
transcription factors with reprogramming capability [98-100]. These
data support the current dogma wherein DNA methylation
determines whether a transcription factor binds DNA or not. It has to
be recognized, however, that there are some exceptions to the rule. For
instance, the SP1 consensus sequence contains a CpG island and
studies indicate that this transcription complex can bind DNA
regardless of methylation status [101]. This may suggest that the
methylation of some promoters modulates rather than shuts off target
gene expression, thus offering a new and elegant way of regulating
gene networks which could have important implication on
reprogramming and other processes.

The nucleosome is a fundamental building block of chromatin,
consisting of DNA tightly associated with histone proteins [102]. As
mentioned earlier, chromatin architecture regulates accessibility of
transcription factors to DNA and in doing so, controls several
biological processes. Chromatin structure is regulated by epigenetic
mechanisms including histone modifications, DNA methylation,
histone variants, and nucleosome remodeling complexes [103].
Nucleosome positions are dynamic and correlate with gene expression
changes and cell fate [104]. Histone modifications destabilize
nucleosomes resulting in chromatin configurations that support
transcription. For instance, tri-methylation of lysine 4 on histone3
(H3K4me3) and histone variant H2A.Z are associated with open
chromatin structures amenable to gene transcription, and H3K36me3
is thought to positively regulate transcriptional elongation[105].
Histone marks have also been found to play a role in activating
enhancer regions (e.g. H3K4me1 and H3K27ac) [106]. The same way
open chromatin promotes gene transcription, closed chromatin
configurations are thought to repress gene expression. Repressive
histone marks include H3K9me2 and H3K9me3, as wells as
H3K27me3 [107].

Reprogramming takes place in a step-wise manner in a process 
involving a dynamic interplay between transcription factor binding, 
changes in genetic signatures, and changes in the chromatin landscape 
during the transitions [108-110]. A recent study by Suva and 
colleagues compares the epigenetic landscape of GBM stem-like cells 
to their differentiated counterparts and identified a subset of 
neurodevelopmental transcription factors sufficient to de-differentiate 
GBM cells to a stem-like state. Expression of these transcription factors 
(POU3F2, Sox2, SALL2, and OLIG2) was found
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to be sufficient to recapitulate the epigenetic landscape and phenotype
of the original tumor initiating cell population, [111]. This study
promotes the growing view that tumorigenesis results from both
genetic and epigenetic changes [112]. The current dogma maintains
that binding of transcription factors to DNA requires an open and
accessible chromatin configuration, but recent studies indicate that
core reprogramming factors Oct4, Sox2 and Klf4 are an exception to
the rule. Soufi et al. [113] found that during the process of fibroblast
de-differentiation to iPSCs, Oct4, Sox2, Klf4, and c-Myc (OSKM) can
bind DNA in regions of closed chromatin configuration, allowing
them to access their target genes very efficiently. The authors propose
that these transcription factors are able to bind DNA in the context of
the nucleosome by interacting with only one strand of the DNA helix.
These findings may explain why these factors are so efficient at
inducing de-differentiation of cells. During differentiation, lineage-
specific genes are activated and pluripotency genes are inactivated via
mechanisms that depend, at least in part, on chromatin state. If OSKM
bind promoter regions of pluripotency genes in a closed chromatin
configuration or induce changes in chromatin architecture to activate
gene expression, these factors would be powerful drivers of de-
differentiation.

As alluded to earlier, the balance between open and closed
chromatin structures determines genome-wide gene expression states,
and altering this balance can result in transcriptional deregulation that
leads to disease (e.g. cancer) [114]. In fact, defects in histone
methylation have been reported to play a role in tumor progression
[115-119]. Studies found that mutations in EZH2 correlated with the
onset of myelodysplastic tumors [115,116]. EZH2 encodes the catalytic
subunit of polycomb repressive complex 2 (PRC2), the enzyme
responsible for tri-methylation of histone 3 at lysine 27 (i.e.
H3K27me3). Interestingly, EZH2 has been reported to enhance
tumorigenicity by blocking differentiation of cancer cells in solid as
well as hematopoietic tumors [120-122]. Furthermore, histone
deacetylase (HDAC) inhibitors reduce stemness of multiple cancer cell
types [123,124] and pharmacological inhibition of EZH2 has been
found to induce apoptosis of cancer stem cells but not normal ES cells
[125]. These indicate that histone modifications play a role in
supporting the cancer stem cell phenotype and that therapeutic
strategies focused on targeting epigenetic mechanisms could be a novel
strategy to preferentially disrupt the cancer stem cell population.

MicroRNAs (miRNAs) are short non-coding RNAs that inhibit
gene expression by targeting mRNA for degradation or by blocking
translation of target genes [126]. These molecules control a wide range
of biological processes and can function as both tumor suppressors
and oncogenes as well as determinants of tumor cell stemness
[127-131]. Expression of a defined set of miRNAs is sufficient to
induce de-differentiation of human and mouse cells [132-134],
highlighting that these factors can act to determine cell fate and
suggesting an important role in CSC generation. In fact, expression of
miR-302 is sufficient to reprogram skin cancer cells into a multipotent
stem-like state. These cells not only re-expressed ES cell markers (e.g.
Oct4, Sox2, Nanog, SSEA-3/4), but were also found to differentiate
into different tissue cell types [129].

Given the potential implication in diagnosis and prognosis of
cancer, several studies have focused on a cancer-specific miRNA
signature [135] and, more recently, CSC-specific miRNA signature
[136-139]. miRNA expression profiling in prostate cancer identified
miR-34a to be under-expressed in the stem-like cell sub-population
[136]. When re-introduced into tumor-initiating cells, miR-34a

inhibited tumor growth and metastasis in vivo as well as sphere 
formation and migration in vitro. Although the authors did not 
comment on the ability of miR-34a to induce differentiation of these 
cells, other studies have shown that expression of this miRNA is 
sufficient to differentiate stem-like cells [140,141]. Similar to the 
effects of miR-34a in prostate cancer, forced expression of miR-let7a 
decreased cell proliferation, sphere-formation, tumor formation and 
metastasis of breast cancer tumor-initiating cells [137]. Differential 
miRNA expression has been also reported in glioblastoma (GBM)
[142-144]. Interestingly, loss of miR-124 was found to enhance 
stemness and invasion of glioma cells [145] and miR-124 re-
expression induced cell cycle arrest and differentiation of neuronal 
stem cells as well as tumor-derived stem cells [144]. These findings 
support the idea that a subset of miRNAs plays an important role in 
supporting the stem cell phenotype, not only in normal cells but also 
in tumor cells, and that targeting these factors could be a suitable way 
to deplete the tumor-initiating cell population and better manage 
cancer as a disease.

Reprogramming factors have been shown to promote expression of
miRNA subsets in ES cells, implicating miRNAs in controlling ES cell
identity [146]. Interestingly, reprogramming factors have been linked
with miRNA regulation of oncogenic potential. For example,
transcription factor c-Myc, one of the core reprogramming
transcription factors, induces expression of miR-9 that primes breast
cancer cells for epithelial to mesenchymal (EMT) transition and
induces angiogenesis [147]. Myc can also inhibit the expression of
tumor-suppressor miRNAs, resulting in increased cell survival of
tumor cells [148]. Oct4, Sox2, and Nanog can induce expression of
miR-302, which results in increased self-renewal and resistance of
squamous cell carcinoma cells [149]. Conversely, miRNAs have been
shown to regulate expression of reprogramming factors resulting in
decreased tumorigenicity. For example, miR-145 inhibits lung cancer
[150] as well as promotes differentiation of endometrial carcinoma
cells by decreasing levels of Oct4 [151]. miR-7 can inhibit breast
cancer metastasis to the brain, in part, by modulating Klf4 levels [152].
We recently described a novel molecular circuit by which the core
reprogramming transcription factors Oct4 and Sox2 regulate stem-like
phenotypes and tumor propagating capacity in glioblastoma through
DNMT-dependent regulation of microRNA networks. We show that
miRNA-148a is repressed by Oct4/Sox2 in a DNA methylation-
dependent manner and this miRNA functions as an inhibitor of GBM
cell stemness and tumor-initiating capacity [153]. Our study highlights
a cross-talk between DNA methylation events, miRNAs, and
reprogramming transcription factors that work together to regulate
GBM tumorigenesis. These studies suggest a delicate interplay between
miRNA expression and reprogramming transcription factors, and
highlight how deregulation of either faction can result in expansion of
the tumor-initiating cell compartment resulting in tumor formation
and propagation.

Concluding Remarks
There is a growing body of evidence that associates stem cell

properties with the tumor-initiating cell population in human cancers.
This CSC population is highly relevant to the biology of tumors and
understanding their contribution to tumorigenesis holds great
promise in terms of cancer treatment. Identifying and developing ways
to target the tumor-initiating population will improve the way we treat
cancer. One caveat of this approach is that CSCs and normal stem cells
have similarities, therefore it is very important to understand the
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differences between normal stem cells and CSC in order to design
cancer-specific therapies. With the growing number of studies looking
at CSC-gene signatures, one can’t help but wonder if in the near future
we will be able to merge these data to identify CSC-specific
mechanisms that are common among all the cancers with the hopes of
identifying a “primordial tumor-initiating network”. This “ideal”
situation would provide us with potential “magic bullets” to treat
cancer.

Our current knowledge of cell reprogramming mechanisms also
opens the possibility that therapeutic approaches may inadvertently
drive a subset of tumor cells toward a more stem-like and treatment-
resistant state. This potential for “stress-induced de-differentiation”
further highlights the importance of understanding the effects of
current therapies not only when considering cytotoxicity, but also
effects on de-differentiation and tumor-initiating potential. This
hypothesis creates a new level of complexity and provides a plausible
explanation for why tumors become resistant to therapy and recur.
Understanding the specific microenvironments where these tumor-
initiating cells reside will give us the option to target their niche as well
as the specific cells themselves. Emerging data indicate there is a cross-
talk between epigenetic modifications, miRNAs, and reprogramming
transcription factors. Understanding the bidirectional regulation
between these factors is becoming a new and interesting area of
research. Identifying the components and circuitries that contribute to
the generation of CSCs will allow us to design more rational therapies
not only to target tumor-initiating cells, but to prevent them from
appearing in the first place (e.g. cancer vaccines or therapies that block
dedifferentiation). CSCs are extremely dynamic entities capable of
adapting to different situations in order to maintain and propagate
tumors, and although it appears that tumors arising in different tissues
may have different cells of origin, one thing remains: understanding
how transcription factor networks regulate tumor-initiating
populations holds great potential for understanding tumor biology
and advancing cancer therapy.
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