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ABSTRACT

Crop yields have increased substantially during the last 50 years, but the traits that drove these remarkable 
improvements, such as plant architecture, have a little remaining potential for improvement. New traits such as 
photosynthesis, as the ultimate determinant of yield, must be explored to support future demands. However, 
improving photosynthetic efficiency has played only a minor role in improving crop yield to date. Chlorophylls 
are the pigments allowing light to be transformed into carbohydrates, and therefore help to maintain crop yield 
under stress. Chlorophyll content correlates with higher yields in diverse conditions. In this review, we discuss using 
chlorophyll content as the basis of screens for drought tolerance. We review chlorophyll-related responses to drought 
in different plants and summarize the advantages and disadvantages of current methods to measure chlorophyll 
content, with the ultimate goal of improving the efficiency of crop breeding for drought tolerance.

Keywords: Photosynthetic Pigments, Crop Breeding, Spectrophotometry, Spectral Reflectance,Determination 
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INTRODUCTION

The unrelenting growth of the global population leads to an 
ever-increasing demand for food. The average yield of the main 
crops (such as wheat, maize, rice, and soybean) has increased 
substantially in the last 50 years [1], supporting The Green 
Revolution. However, the traits that drove the remarkable yield 
increases, such as optimization of shoot architecture and biomass 
partition to harvested product, appear to have a little remaining 
potential for further improvement [2]. Therefore, new and 
previously unappreciated traits should be (re)evaluated for their 
potential contribution to crop yield. 

Plant biomass is largely derived from photosynthetically captured 
carbon. Variations in the efficiency of photosynthesis can lead to 
variations in growth rate and productivity, which are important 
factors in crop yield [3]. Directly improving photosynthetic efficiency 
has played a minor role in increasing yield to date, most likely due 
to the observation that yield was more limited by the strength of 
the sinks than by photosynthetic capacity itself [4-6]. Then the yield 
is limited by the ability to transport the carbon products to the 
grain more than the light interception capacity and carbon fixation 
rate. However, more recently, researchers have demonstrated that 
increased rates of photosynthesis can lead to higher yields in soybean 
and rice, grown under high CO

2
 concentrations [6-8], supporting 

the possibility to increase photosynthesis efficiency even more in 
those crops. Additionally, it is worth mentioning that other crops 
still have a large potential to improve yields by the optimization of 
light interception capacity, the conversion efficiency to biomass, 
and carbon partition to harvested products [2,6].

Plant stress, such as drought, negatively impacts plant growth 
and yield. For instance, between 1983 and 2009, global harvested 
areas for rice, maize, rice, and soybean were affected by drought in 
a 75, 82, 62, and 91% (respectively) [9], and researches estimate 
further reductions of crop yield in the next century (around 10-
20% in case of moderate to severe droughts for the same crops) 
[10]. In the antenna complex of the chloroplasts, chlorophylls 
are the critical pigments that capture the light to be transformed 
into carbohydrates during photosynthesis. The use of chlorophyll 
content as a trait may contribute to increase light interception 
and efficiency of conversion, and therefore to maintain/increase 
crop yield under stress [11,12]. Photosynthesis-related traits, and 
particularly chlorophyll content, have been studied for decades, 
but they have been under-utilized as traits to screen genotypes 
for drought tolerance. However, a myriad of studies has found 
that chlorophyll content is reduced in response to drought and 
that chlorophyll maintenance correlates with drought tolerance; 
however, only a few of them explicitly calculate the correlation 
between the chlorophyll content with yield under drought [13-38] 
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(Table 1). Here we propose that screening for chlorophyll content 
is a simple and effective strategy to identify drought-tolerant crops, 
to complement other traits.

CHEMICAL AND PHYSICAL PROPERTIES OF 
THE CHLOROPHYLLS 

The predominant chlorophylls found in photosynthetic tissues 
of higher plants are reduced porphyrins (dihydro porphyrins) 
that contain a centrally bound Mg2+ ion and are linked to a 
long hydrophobic phytol tail through the esterification of the 
acid group at C-17 [39,40] (Figure 1). During photosynthesis, 
antenna pigments in chloroplasts absorb solar radiation, and the 
resulting excitation is directed to the reaction center pigments, 
which release electrons and initiate the photochemical process 
[41,42]. Chlorophyll absorbs strongly in the red (650-700 nm) 
and blue (400-500 nm) regions, although absorption in the blue 
by carotenoids often prevents this region from being useful in 
chlorophyll estimation. The most abundant chlorophylls are types 
a and b, which absorb most of the light on the two bands of the 
visible spectrum in a complementary way: chlorophyll a absorbs 
more in the red-orange band (640-670 nm), whereas chlorophyll b 
absorbs more in the blue-purple band (430-460 nm). Besides, the 
presence of a methyl group in chlorophyll a instead of an aldehyde 
group in chlorophyll b shifts the absorption peaks in the red (669 
nm vs. 644 nm) and blue (432 nm vs. 455 nm) [39], which may 
allow for discrimination between these two types of chlorophylls. 
Both chlorophyll types have a minimum of around 550 nm, which 

Leaf total-chlorophyll content (chlorophyll a+b) positively correlates 
with the amount of solar radiation absorbed by the leaves [43] and with 
the photosynthetic rate [44,45]. Additionally, chlorophyll content also 
correlates well with nitrogen content in a wide range of plant species, 
including crops [46-50]. Indeed, about 75% of the total nitrogen is 
found in chloroplasts [51]. These correlations reinforce the idea that 
greener plants will have higher photosynthesis rates [52], and in turn, 
yield.

The steady-state level of chlorophylls is determined by the relative 
rates of anabolism and catabolism in chloroplasts (reviewed in [53] 
Figure 1). Chlorophylls are synthesized via the magnesium (Mg) branch 
of tetrapyrrole biosynthesis [40,54,55]. The first step is the formation 
of 5-aminolevulinic acid. Six enzymes subsequently convert eight 
molecules of 5-aminolevulinic acid into the precursor for chlorophylls, 
protoporphyrin IX. An Mg-chelatase catalyzes the insertion of Mg2+ 

into protoporphyrin IX, followed by a series of reactions that generate 
chlorophyllide. Chlorophyll synthase esterifies chlorophyllide to form 
the hydrophobic chlorophyll a, which can be further converted into 
chlorophyll b by chlorophyllide a oxygenase. Finally, newly synthesized 
chlorophylls a and b are rapidly integrated into the chlorophyll-binding 
proteins of light-harvesting chlorophyll a/b–protein complexes [56].

On the other hand, chlorophyll breakdown is initiated by conversion 
of chlorophyll b into chlorophyll a by reductases and oxygenases in 
the so-called “chlorophyll cycle” (reviewed by [57,58]). Mg2+ is removed 
from chlorophyll a by a dechelatase to form pheophytin a. The phytol 
in pheophytin a is hydrolyzed to generate pheophorbide a, and the 
porphyrin ring is then cleaved to generate a series of fluorescent 
compounds (such as the red chlorophyll catabolite, RCC, and the 

makes plants look green.

Figure 1: Main compounds in the synthesis (A) and degradation (B) pathways of chlorophylls.
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primary fluorescent chlorophyll catabolite, pFCC). These compounds 
are finally isomerized in the vacuole into non-fluorescent products 
(nonfluorescent chlorophyll catabolites, or NCCs) [59-61]. 

Chlorophyll degradation predominates during leaf senescence and 
fruit ripening and is induced by drought and other stress conditions. 
The dynamics of chlorophyll turnover influence plant growth 
and productivity reducing the light interception capacity, but also 
enabling nutrient remobilization during leaf senescence. In addition, 
free chlorophylls and their metabolic intermediates generate singlet 
oxygen and toxic radicals upon illumination, which compromise 
tissue integrity [65]. Therefore, chlorophyll degradation is important 
to detoxify free chlorophylls [53,66]. However, protecting chlorophyll 
from degradation induced by stress (such as oxidative stress) might 
support drought tolerance [67].

MAINTAINING CHLOROPHYLL CONTENT 
PREDICTS DROUGHT TOLERANCE

In most plant species, water deficit due to drought induces the 
degradation of the thylakoid membrane within chloroplasts, negatively 
affecting chlorophyll and other photosynthetic pigments (reviewed 
by [68]). As a consequence of the stress, the photosynthetic rate, leaf 
area, and ultimately yield, are reduced [69,70]. Drought generally 
leads to lower total chlorophyll content and an altered proportion of 
chlorophyll a/b. Increased degradation of chlorophyll a under drought 
led to a reduction of the chlorophyll a/b ratio in barley [28,71] and in 
Vigna radiata [72]. 

However, not all plants under drought reduce their chlorophyll 
content (Table 1). Some drought-tolerant grasses maintain their 
chlorophyll content under drought [35,73], and this response has 
also been reported in soybean (ADM 5009 RG, [24]) and potato 
(UNICA, [74]). The ability to maintain chlorophyll content may vary 
with the genotype, and stress duration and intensity. Overall, plants 
that maintain a relatively higher chlorophyll content under drought 
use light energy more efficiently [75], which indicates higher drought 
tolerance.

Interestingly, the chlorophyll a/b ratio decreases during leaf 
senescence [67]. Senescence is induced in response to drought and 
might in turn trigger chlorophyll degradation. Delayed-senescence 
crops, also called “stay-green” crops [76], have been screened in an 
effort to increase yield by delaying the normal senescence process 
and prolonging photosynthesis [77,78]. The development of stay-
green genotypes has contributed to increased yield under stressful 
conditions in grasses, such as wheat, maize, rice, sorghum, and barley 
[71,79-84] and in legumes, such as soybean [85], among other crops. 
However, senescence can be delayed by diverse mechanisms, such as 
high cytokinin levels, low ethylene perception, and better maintenance 
of water intake. Thus, stay-green crops may have a “functional” 
phenotype with a high photosynthesis rate or a “cosmetic” phenotype 
with reduced photosynthesis but high levels of non-functional 
pigmented catabolites [80,81]. Therefore, monitoring chlorophyll 
content alone may not ensure drought tolerance, but this limitation 
could be overcome by examining the photosynthesis rate of drought-
tolerant candidates.

In some cases, delayed senescence and chlorophyll maintenance 
might not improve the yield under stress [86]. For example, the drought 
tolerance of some wheat cultivars depends on the remobilization of 
carbon from stems to fill the grain, prioritizing grain fill over plant 
cycle length. In these cases, the stay-green phenotype should be avoided 
because it delays or inhibits the ability to use the vegetative biomass to 

fill the grains [86], and does not result in higher yield under drought. 
We infer that the delay of senescence and chlorophyll degradation 
can be a tolerance response, depending on the genotype. These 
observations reinforce the idea that screening for chlorophyll content 
under specific conditions (such as under drought) could significantly 
contribute to breeding programs.

Overall, diverse mechanisms could protect the chlorophylls from 
degradation under drought. A priori, a relatively higher chlorophyll 
content under stress may directly cause higher photosynthesis rate 
and yield, or it could be the result of another mechanism (such as 
the activation of the antioxidant system). Then the higher (or stress-
insensitive) chlorophyll content would be correlated with, but not 
causing, the tolerance. However, a high correlation exists for some 
species and we support it can be used to easily identify drought 
tolerance.

METHODS TO QUANTIFY CHLOROPHYLLS

Most of the quantification methods are based on chlorophylls’ 
ability to reflect or absorb light. A decrease in chlorophyll content 
reduces the absorbance and, concomitantly, enhances the reflectance 
in the visible and infrared bands. Four of the most frequently used 
methods are described in Table 2.

Both spectrophotometry and High-Performance Liquid 
Chromatography (HPLC) destroy the sample, impeding monitoring 
responses in the same leaf over time. Also, removing or injuring a leaf 
may substantially affect plant performance under certain conditions, 
such as during seedling establishment or under severe stress. Both 
methods involve chlorophyll extraction by a solvent, the determination 
of absorbance by the chlorophyll solution, and conversion from 
absorbance to concentration using standard formulas [12,74]. These 
methods can discriminate between a and b chlorophyll, and therefore 
can be used to calculate the a/b ratio. Different solvents (such as 
acetone, methanol, or ethanol) vary in their ability to extract pigments 
and alter the absorption peaks of both a and b chlorophylls. Increasing 
polarity and/or water content will shift the absorption peaks to longer 
wavelengths [51]. Spectrophotometry is the simpler and more accessible 
method, whereas HPLC is more accurate but expensive. Chlorophylls 
can also be measured by other analytical methods, such as Nuclear 
Magnetic Resonance, with even higher precision and cost. Overall, 
these destructive methods are not amenable to large-scale experiments 
and natural community studies [28,41,87].

Handheld meters, such as SPAD-501/2 (Minolta), CL-01 
(Hansatech), CCM-200 (Optiscience), and Dualex (Force-A) [41], 
measure the absorbance of the chlorophylls in situ, without destroying 
the sample. Actually, they require intact tissue, which limits the 
possibility to pool samples. They measure the chlorophyll absorbance 
in the red peak (~620-650 nm, with a higher contribution from 
chlorophyll a). Also, a reference wavelength in the near-infrared (~760 
nm or ~940-950 nm, according to the instrument) is used to determine 
the contribution of leaf structures such as cell walls [41,67,88]. However, 
some of these leaf structures, such as vein distribution, leaf anatomy, 
or water content, do not scale linearly and therefore chlorophyll 
quantification must be validated with an extractive method [21,85,87-
106]. Table 3 shows correlations between different handheld meters 
and extraction methods in the most important crops. Several of 
those correlations, such as for Poaceae and Solanaceae families, needs 
power or exponential functions due to the non-linear influence of 
leaf structures. Comparing chlorophyll content among species may be 
inaccurate due to heterogeneity, although high correlations were found 
for some grasses, legumes, and green leafy vegetables [95,98,99,105].
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Table 1: Chlorophyll content in crops under drought stress. Handheld and liquid extracts measurements correspond to SPAD and spectrophotometer 
unless specified.

Family Species Common name
Water deficit 

treatment

Chlorophyll 
determination 

method

Chlorophyll 
content response 

to drought

Chlorophylls vs. 
yield correlation

Reference

Amaranthaceae
Beta vulgaris 

subsp. vulgaris var. 
altissima

Sugar beet

Field, 
supplemental 
irrigation for 

controls

Handheld meter
Reduction, less 

reduction in 
tolerant genotypes

n.d. 13

Apiaceae Daucus carota L. Carrot

Greenhouse, 
controlled 
irrigation 
reduction

Liquid extract

Reduction of 
total content 
and ratio a/b, 

less reduction in 
tolerant genotypes

n.d. 14

Arecaceae Elaeis guineensis Oil palm
Greenhouse, 

water withhold
Liquid extract

Reduction of 
total content and 

ratio a/b
n.d. 15

Asteraceae
Helianthus 
tuberosus L.

Artichoke
Greenhouse, 

water withhold
Handheld meter Increase n.d. 16

Brassicaceae

Brassica napus Rapeseed
Greenhouse, 

water withhold
Handheld meter Reduction yes, n.d. 17

Brassica campestris, 
B. carinata, B. 
juncea, and B. 

napus

Sarson, Ethiopian 
mustard, Brown 

mustard, and 
Oilseed rape, 
respectively

Greenhouse, 
water withhold

Liquid extract
Reduction, less 

reduction in 
tolerant genotypes

n.d. 18

Cucurbitaceae

Cucumis sativus L. 
cv. Jinyou No.1

Cucumber
Greenhouse, 

PEG treatment, 
hydroponics

Handheld meter Reduction n.d. 19

C. lanatus var. 
lanatus

Watermelon, 
drought-sensitive 

genotype Y34

Greenhouse, 
controlled 
irrigation 
reduction

Liquid extract Reduction n.d. 20

Fabaceae

Arachis hypogaea Peanut

Field, controlled 
irrigation 
reduction

Liquid extract 
and Handheld 

meter

Reduction of 
total content 

and increase of 
chlorophyll density

n.d. 21

Field, controlled 
irrigation 
reduction

Handheld meter n.d.
r2=0.43, for seed 

size
22

Phaseolus vulgaris
Common bean 

accessions
Growth chamber, 
water withhold

Handheld meter

No reduction in 
the tolerant and 
reduction in the 

sensitive genotype

n.d. 23

Glycine max Merr.
Soybean 

accessions and 
cultivars

Greenhouse, 
controlled 
irrigation 
reduction

Liquid extract

No reduction 
in the tolerant 
and reduction 
in the sensitive 

genotypes

n.d. 24

Glycine max Merr. 
cv. Gongxuan

Soybean
Greenhouse, 

water withhold
Liquid extract

Reduction of a 
and a/b ratio

n.d. 25

Cicer arietinum Chickpea

Field, 
supplemental 
irrigation for 

controls

Handheld meter n.d.
r2=0.34/0.32 
(2005/2006)

26

Lens culinaris ssp.
culinaris Medikus

Lentil Field, Handheld meter n.d.
r2=0.30 for seed 

weight and 
number per plant

27
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Poaceae

Hordeum vulgare 
L. cvv.

Barley

Greenhouse, 
controlled 
irrigation 
reduction

Handheld meter

No or less 
reduction in 

the tolerant and 
higher reduction 
in the sensitive 

genotypes

r2=0.67 28

Greenhouse Handheld meter
Increase in most 
of the genotypes

n.d. 29

Triticum aestivum 
L.

Bread wheat

Field, 
supplemental 
irrigation for 

controls

Handheld meter

No reduction 
to reduction, 

according to the 
genotype

r2=0.54 30

Field, 
supplemental 
irrigation for 

controls

Liquid extract
Reduction of 

total content and 
a/b ratio

r2=0.843 31

Triticum durum 
Desf.

Durum wheat

Field, 
supplemental 
irrigation for 

controls

Handheld meter

No reduction 
to reduction, 

according to the 
genotype

n.d. 32

Field, 
supplemental 
irrigation for 

controls

Handheld meter n.d. r2=0.39 33

Zea mays Corn

Field, 
supplemental 
irrigation for 

controls

Handheld meter

No reduction in 
the tolerant and 
higher reduction 
in the sensitive 

genotypes

n.d. 34

Growth chamber, 
controlled 
irrigation 
reduction

Liquid extract Increase n.d. 35

Sorghum bicolor Sorghum

Field, 
supplemental 
irrigation for 

controls

Handheld meter Reduction r2=0.64 36

Saccharum spp. Sugarcane
Field, controlled 

irrigation 
reduction

Handheld meter

No reduction in 
the tolerant and 
higher reduction 
in the sensitive 

genotypes

r2=0.36-0.33 37

Solanaceae
Solanum tuberosum 
var. Désirée, Unica, 

and Sarnav
Potato

Greenhouse, 
controlled 
irrigation 
reduction

Handheld meter Increase n.d. 38

*n.d., not determined or informed by the original report

Table 2: Common methods to determine chlorophyll content in crops.

Method Spectrophotometric HPLC Handheld meters Remote sensors

Principle Absorbance

Separation based on the 
interaction with the fixed 
and mobile phases, plus 

absorbance

Absorbance Spectral reflectance

Sampling method Destructive Destructive
Non-destructive (require 

intact tissue)
Non-destructive

Accuracy High High Intermediate Low

Scale
Sub-leaf to the individual or 

pooled leaf level
Sub-leaf to the individual or 

pooled leaf level
Sub-leaf to the individual 

leaf level
Fraction of individual leaf to 

canopy
Time and cost per sample High High Intermediate Low to very low

Training investment Small Intermediate/Large Small Large

Other characteristics
Possible non-linear 

correlation with Chl content
Several algorithms available

Disadvantages Affected by leaf structure
Affected by leaf structure, 

environment, and 
surroundings

Based on [55,57,61-64]. Chl, chlorophylls; M, Magnesium; Me, methyl; R, side-chain modifications
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Table 3: Correlations between chlorophyll content measured by handheld meters and liquid extract methods among crops under different experimental 
conditions. Handheld and liquid extracts measurements correspond to SPAD and spectrophotometer unless specified.

Family Species Common name
Experimental 

condition
Determination 

method
Function type Reference

Asteraceae

Lactuca sativa cv. 
Lores

Butterhead lettuce
Greenhouse, no 

treatment
Handheld meter/

liquid extract
Linear,
r²=0.92

91

Lactuca sativa L. var. 
longifolia

Romaine lettuce 
‘Green Star’

Field, in tunnels, no 
treatment

Handheld meter/
liquid extract

Linear,
r²=0.97

92

Brassicaceae Raphanus sativus Radish
Greenhouse, no 

treatment
Handheld meter 

(CL-1)/liquid extract
Linear function,

r²=0.65
93

Cucurbitaceae Cucumis sativus Cucumber
Greenhouse, no 

treatment
Handheld meter 

(CL-1)/liquid extract
Linear function,

r²=0.64

Fabaceae

Arachis hypogaea Peanut
Field, limited 

irrigation

Handheld meter/
liquid extract (Chl 

density)

Linear,
r²=0.76/0.94/0.96 
(at 20/40/60 days 
after emergence, 

respectively)

21

Glycine max Merr.

Soybean accessions Field, no treatment
Handheld meter/

liquid extract
Linear/power,
r²=0.36/0.93

94

Soybean RILs

Field, no treatment
(different 

developmental 
stages and parts of 

the canopy)

Handheld meter/
liquid extract

Linear,
r²=0.57-0.87

62

Poaceae

Oryza sativa L. 
japonica var. 
Koshihikari

Rice Field, N fertilization
Spectral reflectance/

liquid extract
Linear function,

r²=0.947
95

Oryza sativa / 
Triticum aestivum

Rice/wheat n.d.
Handheld meter/

liquid extract
Power/linear,
r2=0.97/0.93

96

Sorghum bicolor Sorghum
Field, limited 

irrigation
Handheld meter/

liquid extract
Linear,
r²=0.91

97

Triticum aestivum L. 
cv. Isengrain

Winter wheat Field, N fertilization
Handheld meter/

liquid extract
Power,
r2=0.91

98

Triticum aestivum / 
Zea mays

Wheat/Maize
Greenhouse/field 
and greenhouse

Handheld meter 
(SPAD-CCR-

Dualex)/liquid 
extract

Homographic / 
exponential/linear,
r2=0.94/0.91/0.96 

respectively

69

Zea mays Corn
Greenhouse, no 

treatment
Handheld meter 

(CL-1)/liquid extract
Linear function,

r²=0.74
99

Poaceae / Fabaceae
Zea mays / Glycine 

max Merr.
Maize / Soybean Field, no treatment

Handheld meter/
liquid extract

Exponential,
r²=0.94

100

Solanaceae

Licopersicon 
esculentum

Tomato
Greenhouse, no 

treatment
Handheld meter/

liquid extract
Exponential/linear,

r²=0.75/0.74
101

Nicotiana tabacum L. 
cv. Samsun

Tobacco

Growth chamber, 
blue light 

(chloroplast 
movement 
induction)

Handheld meter/
liquid extract

Cubic,
r²=0.86

102

Solanum tuberosum cv. 
Bintje

Potato

Field, open-top-
chamber, high CO

2

Handheld meter/
liquid extract

Quadratic,
r²=0.95

103

Field, no treatment
Handheld meter/

liquid extract
Exponential,

r²=0.58
66

Theaceae
Camellia sinensis L. 

cv. Jiukeng
Tea Field, no treatment

Handheld meter/
liquid extract

Exponential,
r²=0.84-0.88

104

Rosaceae Fragaria sp. Strawberry n.d.
Handheld meter/

liquid extract
Linear,
r²=0.92

105
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In general, a handheld meter can be used in controlled 
environments as well as in field conditions, they measure a 
small area per sample, but the measurements are quick, do not 
require high training to process the data, and can be repeated 
in several leaves of the same plant (such as different parts of the 
canopy), in different plants, or even on the same leaf area to 
assess temporal dynamics. Overall, this method is very useful to 
compare cultivars of the same species, in similar conditions, in 
analogous leaves, and the same part of the leaf (excluding veins). 
This approach has been used to examine different developmental 
stages and different portions of the canopy for rice and soybean 
[87,89,90]. Besides, handheld measurements might be used as a 
proxy for photosynthesis rate, which is effective for primary gross 
productivity in forest communities [107]. In the latter case, the 
same precautions, such as sampling the same leaf and excluding 
veins, are required. While these considerations may imply a higher 
initial time investment, handheld meters require an intermediate 
amount of time per sample.

Finally, remote sensors quantify chlorophylls based on the 
changes in spectral reflectance. Overall, these methods detect 
the wavelength range between ~400 to 2500 nm, varying in 
spectra resolution (the highest current resolution is ~0.5 nm). 
Chlorophyll peaks can be analyzed in combination with other 
regions to decipher reflectance affected by other factors mentioned 
above, such as leaf structures. There are four main remote sensing 
techniques, classified according to the operating spectral regions: 
optical, thermal, radar, and Light Detection and Ranging (LIDAR) 
(reviewed by [77,108]). Optical remote sensing is the most well-
established approach for vegetation and chlorophyll mapping 
[94]. In general, spectral reflectance measurements can be made 
in controlled environments as well as in field conditions, across 
a broad range of spatial scales from sub-leaf to the whole canopy 
in the field. These kinds of measurements are quick, can be 
repeated on the same sampling area to assess temporal dynamics, 
and substantially reduce the time per sample, but require more 
training to process the data. The sensors can be carried on different 
instruments, from airborne (e.g., satellites, planes, drones) to 
portable spectroradiometers, which makes them very versatile and 
allows for high-scale data acquisition, but also can add errors that 
need to be considered and corrected. The reflectance spectrum 

is influenced not only by the leaf but also by variations in soil 
background reflectance, light scattering by surrounding objects, 
3-D canopy and plant architecture, atmospheric conditions (such 
as clouds and dust suspension), as well as by the angles of the 
sensor and the incident sunlight, which varies with the hour and 
the season of the measurement [109,110].

Spectral data analysis is usually simplified by the calculation 
of indices that use only a discrete band combination (often 2 to 
4 bands) and aim to cancel the internal reflection effects. Several 
spectral indices and models have been developed to assess the 
chlorophyll content. Most of the currently available models were 
reviewed by [25] and the indices are listed in several reviews such 
as [111,112]. Those indices consider one or two bands that vary 
under the studied condition (e.g. 690-700 nm) and an extra strong 
quantitation band that is invariable (e.g. near-infrared, NIR) 
[39,113,114], in a similar way that the handheld meters do. One 
of the most frequently used indices to characterize chlorophyll 
content is the Normalized Difference Vegetation Index (NDVI). 
NDVI is based on the reflectance contrast between the red and the 
NIR bands [115]. Although broadband NDVIs can discern broad 
differences in vegetation conditions [116,117], they are not effective 
in assessing detailed chlorophyll content of the canopy due to their 
saturation at a high leaf area index [111]. Most indices vary with 
the specific environmental and developmental conditions for each 
species and therefore need to be calibrated and validated with 
previously established methods for that condition [108,118].

Overall, the use of indices has a cost in accuracy [118]. Some 
researchers have proposed that using the whole spectrum could 
increase the validity of the correlations under a wider range of 
conditions, but this approach would require much more time, 
training, and informatic resources for the data analysis (which 
could be worth it for high throughput projects). Nevertheless, 
remote monitoring of chlorophylls under drought stress by 
spectral reflectance is achievable and will likely be more accessible 
in the near future. The potential of remote sensing to capture 
simultaneous and massive data on the field may be a turning point 
for the conventional techniques and thus contribute to increasing 

Green leaf species

Brassica oleracea var. 
alboglabra Bailey, 
Brassica rapa L. 

var. parachinensis, 
Amaranthus spinosus 
L., Ipomoea aquatica 

Forsk, Manihot 
utilissima Pohl, 

Lactuca sativaL., 
Brassica rapa L.subsp. 

chinensis, Ocimum 
citriodorum Vis., 

Lactuca sativa L. var. 
augustana, Brassica 

oleraceaL. var. 
capitata

Chinese kale, 
Chinese flowering 
cabbage, spinach, 

water spinach, 
cassava, green leaf 
lettuce, Chinese 

cabbage pak-choi, 
basil, sword-leaf 

lettuce, head 
cabbage, respectively

n.d.
Handheld meter/

liquid extract 
(HPLC)

Linear,
r²=0.74 (all species 

together)
106

Various crop species

O. sativa L. japonica, 
T. aestivum L., Z. 

mayz L., G. max (L.) 
Merr., B.vulgaris L.

Rice, wheat, corn, 
soybean, sugarbeet

Field, no treatment
Spectral reflectance 

(Ratio Spectral 
Index)/liquid extract

Linear function,
r²=0.89

95

*n.d. not determined or reported in the text or supplemental material

the genetic gain efficiency [77].
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BREEDING FOR DROUGHT TOLERANCE BY 
MONITORING CHLOROPHYLL CONTENT

After considering the chlorophyll responses to drought, they 
indicate that plants which maintain relatively higher chlorophyll 
content than plants under optimal water availability will be more 
tolerant. We expect that those plants with higher chlorophyll 
contents will be more likely to have a higher photosynthesis rate 
and yield. However, that correlation needs to be demonstrated for 
most of the crops. Additionally, some experimental aspects may 
affect the final relevance of the screening to monitor chlorophyll 
content. 

First, if the goal is to map QTLs for drought tolerance, it was 
proposed that the screenings and heritability calculation need to 
be done under the specific conditions (drought, in this case). For 
instance, chlorophyll content in barley exhibited high heritability 
when mapped independently for well-water and water-restricted 
conditions, but the heritability was reduced when calculated for 
both conditions altogether [71]. These differences in heritability 
suggest that different biochemical mechanisms contribute to 
chlorophyll content under the specific environmental conditions.

Second, most of the secondary characteristics (characteristics 
correlated with yield, such as chlorophyll content) used for 
phenotyping in breeding programs may vary with the duration and 
intensity of water shortage, the phenological stage when the crop 
is exposed to the stress, among other factors [119], as mentioned 
before. Therefore, it is critical to define and plan the experimental 
conditions and the phenological stage of the crop, to carry out an 
effective screening. 

The experimental conditions will limit the kind of drought 
that the genotype will experience in the screening. The screening 
can be carried out in the field (in a dry region or under a rain-
exclusion shelter) or some analogous treatment in greenhouse or 
growth chambers. Different options have been carefully analyzed 
for rice by [120], which could be easily extrapolated to other crops. 
There are some mimicking strategies of water restriction, like 
treatments with osmotic agents such as sorbitol or polyethylene 
glycol (PEG) [121,122], in vitro or hydroponic systems. PEG 
treatment has been proposed to be useful to study the physiological 
effects of some components of drought stress [121]. However, 
drought is more complex stress, e. g. the water in the soil has a 
gradient of availability, and the plant responds accordingly to it. 
Then, the use of mimicking systems will require validation with a 
soil-based water deficit treatment. Therefore, each scale has their 
own advantages. Field experiments are highly variable and require 
the repetition in several years, but it could be done in a similar or 
the same environment where the crop will be cultivated. In vitro 
and hydroponic systems are the least variable and allow very fast 
screenings, however, they are the least comparable to fields. In 
between, greenhouses and chambers, allow a fast selection with a 
controlled drought, excluding most of the environmental variation, 
and ensure to study the tolerance responses to the specific stress. 
Depending on the crop cycle, those semi-controlled conditions 
allow to carry out the screening process in several cycles per year 
which reduce the time to identify tolerant genotypes and reduce 
the time required for breeding. 

Then, to choose the phenological stage when the plant will 
be exposed to the stress, we can try to mimic the moment when 
the stress more often happened on the fields for that crop. The 

screening design needs to be different for one crop exposed to 
drought during the seedling establishment than other crops that 
are exposed at the flowering stage. In particular, chlorophylls may 
be more useful for leafy crops or for grain crops suffering the stress 
at vegetative or flowering stages, in contrast with crops exposed to 
post-flowering stress when most of the chlorophylls were already 
degraded. 

Lastly, it is essential to consider the chlorophylls are not 
homogeneously distributed across the leaf blade or along with the 
plant shoot [39,87,123]. This variability needs to be monitored, 
and equivalent samples (same leaf or in a similar developmental 
stage) can be collected to compare genotypes. In all cases, it is 
recommended to sample fully expanded (mature) leaves excluding 
veins, grown under the stress. These considerations are valid for 
measuring chlorophyll content by using extractive methods or 
handheld meters, as well as when sampling to validate spectral 
reflectance approaches.

CONCLUSION

Monitoring chlorophyll content, together with other traits, 
is a promising but underexplored strategy to breed for drought 
tolerance, and adaptable to economic availability depending on 
the approach. High-throughput technologies to monitor crop 
traits (such as chlorophyll content) are key to increase productivity 
and meet the increasing worldwide demand for plant products. 
However, for low-income countries, which tend to be the most 
affected by food scarcity and in need of accessible solutions, 
affordable technologies are critical and some of the methods 
presented here may be useful to increase yield at a low cost. Lastly, 
studies that validate different instruments and methods are needed 
to obtain comparable and robust results for most of the crops. 
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