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Abstract
Nature has selected osmolytes to protect intracellular macromolecules against denaturing stress conditions. 

These molecules are accumulated in the intracellular environment at considerably high concentrations. In general, 
osmolytes are known to stabilize proteins. However, under certain conditions, their destabilizing properties have also 
been pointed out. A careful qualitative and quantitative understanding of the mechanism of action of osmolytes with 
proteins from native to different stages of aggregation/fibrillation is extremely important in rational drug design. This 
review highlights the importance of naturally occurring osmolytes in protein folding, stabilization, and prevention of 
fibrillation/aggregation related diseases among others. Continued efforts are required to get quantitative insights into 
osmolyte-protein interactions along with experimental evidences for the much claimed preferential exclusion/preferential 
hydration phenomenon of osmolyte action. Mechanistic insights into the disease associated roles of osmolytes needs 
special attention.
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Introduction
Osmolytes have been fascinating to biochemists as these molecules 

are small solutes which manage cell volume regulation under water 
stress conditions. Such conditions arise due to extremes of temperature, 
pressure, alterations in extracellular osmotic conditions and even 
urea which is a protein denaturing osmolyte [1-4]. There are three 
major classes of organic compounds which are considered as cellular 
osmolytes (Figure 1) [2]. These can be further categorized into (i) 
osmolytes that stabilize proteins raising free energy of both the native 
and denatured states: trimethylamine N-oxide (TMAO), sarcosine, 
sorbitol, sucrose, and trehalose, (ii) osmolytes that only moderately 
change protein stability: glycine betaine, proline, and glycerol, (iii) 
denaturing osmolytes: urea, and (iv) counteracting osmolytes: mixture 
of urea and TMAO. Modulation of activity of molecular chaperons 
(heat shock proteins) due to promotion of local refolding in protein 
molecules has also been observed [5] which points out to linkage of 
chemical chaperons (osmolytes) and molecular chaperones in in vivo 
regulation of protein folding.

Significant efforts have been dedicated in understanding solution 
thermodynamics of protein-osmolyte mixtures [6-15]. Most of the 
experimental work which has led to the calculation of preferential 
interaction parameters is based on density measurements or thermal 
transition temperature of the protein by using differential scanning 
calorimetry or spectroscopic methods [16,17]. These experimentally 
determined preferential interaction parameters have been used to 
address the mode of action of osmolytes on proteins. Based on the free 
energy of transfer of protein backbone models from water to aqueous 
osmolyte solutions, the cause of stabilization/destabilization of the 
unfolded state has been suggested [6,9,10]. Molecular mechanism for 
osmolyte induced protein stability has been discussed extensively in 
literature [11,18], though their mode of action in their different roles is 
still not completely understood.

This mini review focuses on the mode of action of osmolytes on 
proteins, disease associate roles, and DNA associated effects. The 
unanswered questions and need for further experimental evidences on 
action of osmolytes in their different roles has been discussed. 

Known Mode of Action on Proteins

Osmolytes are known to alter the chemical potential of proteins 

in the native and the unfolded states to different extents [19-22]. The 
difference arises due to competing protein-water and protein-osmolyte 
interactions [23]. One of the widely used models to explain osmolyte 
driven protein folding and stabilisation is based on determining free 
energies of interaction between osmolytes and building blocks of 
proteins such as amino acids or peptides [24]. This model is based on 
the principle that the osmolytes undergo unfavourable interactions with 
the peptide backbone in the unfolded state of the protein which leads to 
strengthening of its secondary structure (an intermediate structure in 
the folding pathway) before attaining the folded conformation [7,25].

Gibbs free energy implications of action of osmolytes have been 
considered in understanding mechanism of stabilization of proteins. 
It is believed that preferential exclusion of osmolytes increases the 
standard Gibbs free energy change accompanying unfolding of the 
protein. It is suggested that stabilization of proteins by protecting 
osmolytes is not due to stabilization of the native state, rather it 

Figure 1: Major classes of organic compounds considered as cellular osmolytes.
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arises principally from the destabilization of the unfolded state of the 
protein by raising its Gibbs free energy than that of the native state 
[26,27]. Osmolytes shift the equilibrium towards the native conformation 
of protein by increasing the free energy of the unfolded state. It is 
hypothesised that the osmolyte sequester the water molecules from the 
protein surroundings thus creating a hydrophobic environment which 
causes the protein to fold more compactly, thus driving the equilibrium 
to functionally active conformation [28,29].

Extensive experimental observations on osmolytes-protein 
interactions have been explained in terms of preferential hydration/
preferential interaction phenomenon by Timasheff, Shellman and other 
researchers [8,16,30-33]. The ability of organic osmolytes to stabilize 
and protect intracellular proteins under denaturing environmental 
stresses has been demonstrated by different experiments [2,34,35]. 
Osmolytes exert a dramatic influence on protein folding process 
without making new or breaking existing covalent bonds. Protein 
stabilization is ability of the osmolytes to push the native (N) = 
denatured (D) equilibrium towards left. An increase in the thermal 
unfolding transition temperature up to 22°C has been reported for 
ribonuclease A in the presence of 8.2 M sarcosine which translates to 
45000 fold increase in stability of the native form of the protein over 
that in the absence of the osmolyte. Similarly, the osmolytes led to an 
increase in the thermal unfolding temperature of lysozyme up to 23°C 
[36]. Exceptional increase in the thermal stability of lysozyme up to 
26.4°C and myoglobin up to 31.8°C was obtained in the presence of 
hydroxyproline [17].

The increase in the thermal stability of proteins or refolding of 
unfolded polypeptides by osmolytes also permits the latter to be classified 
as “chemical chaperones”. Regulation of molecular chaperones (Heat 
Shock Proteins or HSP’s) in vitro and in cells by chemical chaperones 
probably by promoting local refolding within chaperone protein 
molecules under combined salt and heat stresses is well documented in 
literature [5]. This suggests a link between the chemical and molecular 
chaperones in supporting protein folding in cells. [28]

Disease Associated Roles of Osmolytes
Role in immunological processes

Several key immunological processes are regulated by osmolytes. 
Specific examples include immunoglobulin assembly and folding, 
immune cell proliferation, immune cell function regulation, 
inflammatory response and also protection against photo-
immunosupression [37]. Therefore osmolytes based therapeutic 
strategies in the treatment of several immunological disorders needs a 
special attention. 

Role in cancer

Specific inhibitory effect of a 240s plasma exposure in the presence 
of osmolytes against T98G brain cancer cells has been observed without 
affecting HEK normal cells [38]. The use of non-thermal plasmas 
has increased recently in the treatment of living tissues [39-43]. It is 
observed that sucrose, glycerol and TMAO exhibit inhibitory effect on 
T98G brain cells only. The importance of work can further be realised if 
we understand the mechanism of action of osmolytes on these cell lines. 
For example, it will be important to understand whether the properties 
of cell lines are changed due to interaction with osmolytes or plasma 
leads to alteration in the properties of osmolytes. 

Role in kidney related diseases

The role of organic osmolytes (such as glycine betaine, myoinositol, 

sorbitol, and glycerophosphoryl) in human and other mammalian 
kidneys has also been reported [44]. The concentration of osmolytes 
was observed to be different in inner medulla and cortex tissue samples 
[44]. Myoinositol, sorbitol, and glycine betaine have been found to 
be components of human urine [45,46]. These results strongly point 
out physiological importance of organic osmolytes in humans and 
need further investigation in understanding a general mammalian 
osmoprotectant strategy.

Role in cardiovascular risk factors and urinary excretion

Deficiency of the osmolyte betaine is a possible cardiovascular 
risk factor [47], and its urinary excretion is increased in diabetes. 
It is reported that almost 30% of patients affected with diabetes 
have unusually higher levels of urinary betaine excretion [48]. The 
correlation of the osmolyte deficiency with fibrate treatment can 
help in designing proper dietary intake supplements for patients. 
The contribution of betaine to transmethylation of homocysteine to 
methionine is reported to be important since BHMT1 pathway is a 
major route for the elimination of monocysteine which has a role in 
the development of cardiovascular disease [49]. Thus betaine is an 
important nutrient in the prevention of chronic disease [50]. Natural 
osmolyte trimethylamine N-Oxide (TMAO) has been shown to correct 
assembly defects of mutant branched-chain α-ketoacid decarboxylase 
in maple syrup urine disease [51]. TMAO has also been recently 
described as risk factor for cardiovascular disease and the mechanism 
of its accumulation in hemodialysis patients has been discussed [52]. 
Glycine betaine and proline betaine are present as osmoprotectants in 
urine. They act as potents for inhibiting growth of bacteria and thus in 
the treatment of urinary tract infections [46]. 

Role in lungs and skin related issues

Several antimicrobial substances which kill constantly deposited 
bacteria in the lungs are present in the thin layer of airway surface 
liquid. The role of osmolyte xylitol in enhanced killing of such bacteria 
and hence in prevention of onset of bacterial infection in cystic 
fibrosis has been hypothesized [53]. It is suggested that delivery of 
xylitol to airway surface may lead to enhancement of innate bacterial 
defence system. The effect of glycerol and urea have been explored 
on permeability of excised skin membranes [54]. It was observed that 
these two osmolytes (glycerol and urea) penetrate the skin membrane 
and retain skin permeability characteristics even at low water activity. 
Being chemical chaperone, the increased uptake of osmolytes by uv-
irradiated keratinocytes was correlated with their defence strategy 
against detrimental effects of such irradiations [55]. The role of taurine 
in prevention of surfactant induced dry and scaly skin by modulation of 
proinflammatory response and stimulation of epidermal lipid synthesis 
has also been reported [56]. Staphylococcus aureus (S. aureus) is a 
major cause of skin and soft tissue infections. Osmolyte transport in 
Staphylococcus aureus and its role in pathogenesis have recently been 
described [57].

Role in prevention of aggregation/fibrillation of protein
Osmolytes have also found important role in the prevention of 

fibrillation/aggregation of proteins. They can be utilized as therapeutic 
targets for diseases mainly related to protein misfolding. Protein 
fibrillation is responsible for several amyloidogenic disorders including 
diseases such as Alzheimer’s, Parkinson’s, mad cow, diabetes type 
II, cystic fibroisis, and dialysis related amyloidosis [58,59]. Though 
there have been several studies describing the effects of osmolytes on 
fibrillation/aggregation of proteins [60-66], quantitative understanding 
in terms of energetics of interaction has only recently been addressed 
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[67,68]. Trehalose has been currently used for the treatment of 
Huntington’s disease in transgenic animal mice [69]. Such studies allow 
identification of functional groups on potential inhibitors of fibrillation/
aggregation and hence in deriving guidelines for novel drug synthesis.

Role in intrinsically disordered proteins (IDPs)

Many domains or regions in proteins are intrinsically disordered 
(ID) under native conditions. Such ID proteins or IDP’s are found 
disproportionately in cell signalling proteins and transcription factors. 
These regions in signalling proteins tend to promote molecular 
recognition by binding specific protein partners [70,71]. The effect of 
osmolytes on IDP’s is known to be opposite to that of globular proteins. 
For instance, several types of osmolytes induce aggregation/fibrillation 
in intrinsically disordered protein α-synuclein which is associated with 
Parkinson’s disease [72-74]. Other intrinsically disordered proteins 
which undergo aggregation/fibrillation by some osmolytes include tau 
protein [75], the prion protein [76], Alzheimer’s amyloid β-peptides 
[77,78] and glucagon hormone peptide [64].

Osmolytes and DNA

The destabilization of DNA by osmolytes has also been observed 
[79] and role in modulating protein-DNA interactions has been 
discussed [80]. For example, mitigation of the binding of ERG1 to 
DNA in a differential manner has been reported. The mechanism 
proposed involved interaction of osmolytes with the DB domain of 
ERG1 instead of its conjugate DNA. The negative modulation of ERG1-
DNA interaction can have important therapeutic implications. The role 
of osmolytes in the regulation of biological activity of transcription 
factors needs to be seriously examined. The effect was observed to 
be concentration and/or solvent condition dependent. Potential of 
osmolytes in trapping DNA-protein binding reactions with natural 
osmolytes has been reported [81]. The reason for this trapping has been 
assigned to slowing down of the rate of dissociation of the complex of 
the nucleic acid with the protein.

Even though we understand the effect of osmolytes on the overall 
conformation of protein, the mechanism of the osmolytic effect 
has mostly been attributed to preferential hydration or preferential 
exclusion phenomenon [82]. In general, contrasting theories of direct 
interaction mechanism [83-86] and indirect mechanism [82,87-90] 
have been proposed. Synergy in osmolyte mixtures has potential 
applications in medicinal and agricultural fields. It is important to 
understand whether the counteraction of chemical denaturing stress by 
osmolytes is due to synergy between additive molecules or due to direct 
interaction with the protein. Thus the counteraction mechanism needs 
extensive experimental and theoretical proof [91]. Experimental proofs 
for these direct or indirect mechanism are lacking and there is a need to 
focus more in this direction.

Conclusion and Future Perspectives
The important role of osmolytes not only in the counteraction of 

stress conditions for proteins, but the disease associated roles require 
a thorough understanding of the related mode of action. It will be 
important to know if the known preferential exclusion phenomenon 
is able to explain all the observed effects or the mode of action changes 
depending upon the role of the osmolyte. There is a still lot more to be 
done to understand the effect of osmolytes on protein conformation, 
fibrillation and many other processes specifically quantitatively. 
This requires extensive experimental approaches which can help 
in establishing whether the mechanism of action of osmolytes on 
proteins in the native, denatured, and fibrillar/aggregated state is direct, 

indirect, or a combination of the two processes. Establishing nature 
of interactions with the protein at different stages from nucleation to 
fibrillation can possibly provide more information on the mechanism 
of action of osmolytes under such conditions. 

The mode of action of osmolytes on DNA has been not been 
addressed to the extent as it has been done for the proteins. The 
questions which still need to be completely understood are as to whether 
the protein models with respect to osmolytes can also be extended to 
nucleic acids or not. Further experimental investigations on osmolytes-
nucleic acids interactions, especially addressing the energetics of 
interactions, can perhaps throw more light on the commonality shared 
by proteins and nucleic acids with respect to the mode of action of 
osmolytes on these biological macromolecules.

A thorough understanding of these mechanisms can lead to 
development of osmolytes as effective therapeutic molecules and hence 
rational drug design for the prevention and cure of diseases which 
result due to protein misfolding/fibrillation/aggregation among other 
factors. Thus extensive efforts are needed in complete understanding of 
these biological wonders of osmolytes.
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