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Letter to the Editor

Chemical tools have been extensible used to probe complex
biological processes [1]. A variety of small molecules (<500 Da) like
Brefeldin A, Tyrphostin A23, Wortmannin have been intensively
utilized to study endomembrane protein trafficking and have
illustrated corresponding biological functions [2-7]. After the
application, bioactive small molecules can be rapidly permeated or
transported into cells to create observable effects. These molecules can
be washed out to reverse their effects, permitting a return to a normal
state. This rapid and reversible behavior along with precise
concentration and time of treatment provides a high degree of control,
permitting dynamic processes to be studied in vivo.

In the past decade several academic and company research
initiatives undertook the systematic design and synthesis of small
molecules (<500Da) and their subsequent use as probes for different
biological processes in diverse organisms. As a result several
collections of bioactive compounds, chemical libraries, became
available for the research community. These libraries consist of low-
molecular weight compounds synthesized by combinatorial chemistry
with defined properties according to the Lipinski rule of five [8,9].
These rules outlines favorable physicochemical properties to get

bioactive compounds, molecular weight (Da) <500, logP (octanol/
water partition coefficient) < 5, Number of H-bond donor <5, Number
of H-bond acceptor <10, Rotatable bonds <12 [8]. Application of small
bioactive molecules as a strategy to systematically screen for novel
modifiers of a biological phenomenon of interest have gained
increasing attention [10]. These approach, named chemical genomics,
combines chemistry and biology along with bioinformatics which is
required for data mining, structure analysis, data sharing and the
extraction of useful data [11]. In principle, a chemical genomic screen
can be performed in any system.

A chemical genomics high throughput screening (HTS) in
Saccharomyces cerevisiae allowed to identify compounds that interfere
with the delivery of the vacuolar resident protein carboxypeptidase Y
(CPY) [12]. Among those compounds was selected Sortin2. Structure-
activity relationship (SAR) studies identified active and inactive
homologs of this compound (Norambuena et al.,). Sortin2 contains a
chlorobenzene, a furan, a thiazolidine ring, and a sulphite group. The
sulphite group was essential to the activity of the compound. The data
suggest that the interaction between Sortin2 and its target most likely
requires a dense electron cloud to affect the target activity and
function [13].
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Figure 1: A compound identified by chemical genomics modifies root system architecture in carrots. 7 day-old carrot seedlings were
transferred to Control and different concentrations of Sortin2 (10 to 75 pug/mL). A. Whole plant images of carrot seedlings after seven days of
Sortin2 treatment. B. Lateral root density quantification of control and Sortin2 treated plants. mean + SEM. N=6.
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Sorting2, was also capable to interfere with the delivery of the
vacuolar of CPY in the model plant Arabidopsis [12]. Interestingly in
this plant Sortin2 modifies the root architecture increasing lateral root

occurrence and inhibiting principal root growth increasing overall
lateral root density (LRD) [14]. An increase in LRD is a desirable trait
in crops as it optimizes water and nutrient uptake. Thus, translating all
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the chemical and biological information available for Sortin2 could be
effective to improve crop yields. We examined Sortin2 effect in carrot
(Daucus carota). Carrots are characterized by a strong, deep, well-
developed root system. Lateral root development throughout is very
poor [15]. A dry surface soil tends to promote a vigorous development
of strong laterals roots from the deeper portions of the root. Thus,
generating more lateral root would be a desirable trait to overcome
stress. We tested the modification of carrot roots by means of chemical
stimulation with Sortin2. Roots of seven day-old seedlings were
exposed to Sortin2 for additional seven days. Aerial organs of Sortin2-
treated plants did not showed color or turgor differences from control
plants (Figure 1A). Meanwhile, root was strongly modified (Figure
1A). Figure 1B shows that the lateral root density was increased in a
dose-dependent manner in Sortin2 treated plants. The highest Sortin2
concentration tested, 75 pg/mL, trigger a two-fold increase in lateral
root density.

These results indicates that chemical information and action can be
translated from yeast through model plants as Arabidopsis and
ultimately to crops. We emphasizes on the critical role that chemistry
is playing in unraveling physiological processes in plants, and how
these new insights allow to suggest novel approaches to improve yield
in crops.
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