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Discussion
Association mapping (with either DNA level variation or gene 

expression data) in pharmacogenomics has been impeded by the 
reliance on clinical trials for samples.

Genetic studies nested within clinical trials face the limited ability 
to enroll enough human subjects, ethical constraints, and the presence 
of uncontrolled confounders all of which may limit the capability to 
identify loci involved in drug-response [1]. To address these limitations, 
in vitro association studies have been proposed as an alternative to 
human-based studies because they address many of these concerns for 
certain types of drugs [1,2]. Cell-based studies offer extremely large 
sample sizes and do not require approval from regulatory agencies, 
resulting improved statistical power while decreasing both time and 
cost needed to conduct a study. Consequently they allow for the rapid 
study of drug response in a highly human relevant system for a fraction 
of the expense of traditional methods. Moreover, these assays can be 
made tissue or disease specific by using cultures of the relevant cell 
type, further increasing in vivo relevancy. A more detailed discussion 
of the advantages and limitations of such in vitro assays has previously 
been reviewed [1,2]. An increasing number of success stories for such 
experiments are emerging [3-9], but the statistical methodologies 
applied in such experiments have not been examined in detail.

Cell-based studies allow for the examination of drug response at 
greater resolutions by measuring cellular response across a spectrum 
of concentrations rather than limited set of concentrations afforded 
by traditional studies. These types of dose-response or concentration-
response studies measure some indication of cellular health or response 
such as total ATP, cell viability/morphology, or transcript expression 
levels as a function of increasing drug concentration. These data points 
are then fit to a statistical model, usually some form of a 4-parameter 
logistic curve (sometimes referred to as the hill equation), to produce 
a dose-response curve. Figure 1 shows an example of anannotated 
concentration-response curve.  The curve is usually summarized by 
a single parameter such as the curve’s inflection point (e.g. the EC/
IC50) [10] or the slope of the curve (called the hill-slope) [11]. Perhaps 
the most widely used summary in pharmacogenomics cell line 
experiments is the IC50, which represents the concentration where the 
response achieves 50% of maximal activity [3-9]. This notion of IC50 
can be generalized further such that ICX is the concentration at which 

the response is X% between minimal and maximal activity. IC50s (and 
their ICX cousins) have been widely used in areas such as toxicology, 
pharmacology/pharmacogenomics, and industrial drug development 
[10]. Its popularity derives from the fact that it is a concise and 
interpretable summary of a drug’s activity, which conveys an indication 
of the drug’s potency. In association studies, this value is treated as a 
quantitative trait and standard QTL methods are then applied to link 
genotype to this derived phenotype [12].

However, traditional analytic and statistical methods are often ill-
equipped to analyze this type of data and subsequent inference based 
on the IC50 poses many challenges. First, the appropriateness of the hill-
slope model from which the IC50 is derived is often unchecked, which 
may have large implications on the resulting conclusions [12]. This 
model is based on ligand-macromolecule binding dynamics [13], which 
may be an appropriate model in some instances, but inappropriate in 
others. Assuming this model is a correct description of the underlying 
biology, accurate calculation of the IC50 may still proves problematic. 
Estimating the IC50 using this model is highly sensitive to observing 
the full dose-response curve in the tested concentration range. If either 
the minimum or maximum asymptote of this curve is not observed 
it can have a very large impacton the estimated IC50 which will have 
a correspondingly large impact on the biological conclusions. Due 
to the non-linearity of this model even the “well-behaved” responses 
may result in unstable IC50 estimates. Two analysts may reach different 
IC50 values because they used different software packages or because 
they usedthe same software with different configuration settings. Such 
differences may cause the software to fail to produce a solution at all or 

Abstract
Cell line cytotoxicity assays have become increasingly popular approaches for genetic and genomic studies of 

differential cytotoxic response.  There are an increasing number of success stories, but relatively little evaluation 
of the statistical approaches used in such studies.  In the vast majority of these studies, concentration response is 
summarized using curve-fitting approaches, and then summary measure(s) are used as the phenotype in subsequent 
genetic association studies. The curve is usually summarized by a single parameter such as the curve’s inflection 
point (e.g. the EC/IC50).  Such modeling makes major assumptions and has statistical limitations that should be 
considered.  In the current review, we discuss the limitations of the EC/IC50 as a phenotype in association studies, 
and highlight some potential limitations with a simulation experiment.  Finally, we discuss some alternative analysis 
approaches that have been shown to be more robust.

Journal of
Pharmacogenomics & PharmacoproteomicsJournal 

of
 P

ha
rm

ac
og

enomics & Pharm
acoproteomics

ISSN: 2153-0645



Citation: Beam A, Motsinger-Reif1 A (2013) Beyond IC50s: Towards Robust Statistical Methods for in vitro Association Studies. J Pharmacogenomics 
Pharmacoproteomics 5: 120. doi:10.4172/2153-0645.1000120

Page 2 of 4

Volume 5 • Issue 1 • 1000121
J Pharmacogenomics Pharmacoproteomics
ISSN: 2153-0645 JPP, an open access journal 

Figure 1: An example concentration-response curve with the 4 parameters (Maximum, Minimum, IC50, and hill-slope) of the hill-slope model labeled. The equation 
is displayed in the upper-right corner.

Figure 2: Distribution of the IC50 under two levels of noise. Note the wide range of estimated IC50s, especially under the slightly higher 5% noise model with many 
estimates being 2-3x larger the true value of 50 µM. Note also that the second histogram is no longer symmetric, implying that these IC50s are not normally distributed.
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may produce very different IC50 estimates, with no clear procedure for 
determining the correct value [14].

For example, assume a study measures total ATP across 8 
concentrations using five technical replicates. Some summary statistic 
of these replicates, such as the mean or median ATP level at each 
concentration may then be fit to the hill-slope model to obtain an IC50 
value. The amount of uncertainty introduced from sampling the response 
at each concentration can have a considerable impact on the estimated 
IC50. To highlight this issue and give some sense of how it can affect the 
IC50, we performed a small simulation experiment.  For a concentration 
set of {0.0001,0.001,0.01,0.1,1,10,50,100} µM, we simulated 5 technical 
replicates for 2 levels of noise. Each technical replicate was generated 
from the hill-slope model plus a small amount of random noise with 
a true IC50 value of 50 µM. The noise was a random value of +/- X% 
of the true response value, where the values for X we tested were 1% 
and 5%. This is a ‘heteroskedastic’ noise model and is consistent with 
our experience the amount of variation in a response is proportional 
the size of the response itself. We then took mean of the 5 technical 
replicates and fit a curve using the nls() function in the R statistical 
language [15] to this mean response and recorded the estimated IC50. 
Note that we supplied the algorithm with true parameter values as 
starting values so as to minimize the amount of IC50 variation coming 
from the fitting process. We repeated this process 10,000 times for both 
levels of noise. Figure 2 shows histograms for the 1% and 5% noise level 
models. Even in the presence of a small amount of noise (1%), the IC50 
estimates span a range of 40-70 µM and inspection of the estimated 
confidence interval for one such response yields a similar estimated 
range of variability. The situation for higher noise model is much worse 
with the IC50 estimate ranging from 40-212 µM, which was outside of 
the tested concentration range. This amount of uncertainty results in an 
IC50 measure that is not very useful in practice because it is statistically 
indistinguishable from a potentially wide range of other IC50values. In 
the context of association studies, this could be of great harm. Imagine 
that there are two populations where one population has an estimated 
IC50 that is 2-3x that of the reference population, indicating that this 
population may be highly tolerant to the drug under study. It would be 
of great interest to locate any genetic loci that may be involved in this 
process. However, as the Figure 2 implies, these two populations may 
in fact have the same tolerance for the drug, but the noise introduced 
through sampling and estimating the IC50 has obfuscated our ability to 
see this, resulting in wasted time and effort looking for the underlying 
causes of a phantom difference.

This leads to yet another issue with IC50 based inference, namely 
that once all of the proper variation is accounted for, IC50s may show 
little meaningful variation in the statistical sense. This may result in 
two compounds, which by other measures would be considered to 
have different activity, to fail to be declared distinct, because their IC50s 
are not statistically separable. Statistical models are built to explain 
variation, but in the absence of meaningful variation, they will be 
unable to detect any genetic signal that may be present. This will be 
of increasing importance if pharmacogenomics, and genomics more 
generally, is to unravel complex traits that do not have large, single gene 
effects.

A somewhat larger point worthy of consideration is just how 
relevant an IC50, even one estimated with highprecision, is to the 
underlying scientific question. Statistical methods are only valid to the 
extent to which they mapback to the research question being asked. 
Even in the absence of all the issues discussed so far with IC50 based 
inference, it may be that a “true” statistically significant difference is not 

very meaningful from a biological perspective. Why might we assume 
a priori that this parameter from this model is the best representation of 
a compound’s activity? In this sense, it is not clear that IC50s are always 
a relevant measure or summary of a compound’s activity, if potency is 
not a meaningful proxy for the latent biological difference. If the IC50 
is a poor proxy, then methods that take the full dose-response into 
consideration should be considered.

With both the promise of in vitro studies and the analytic challenges 
they present in mind, we hope to draw attention to some of the issues 
that must be addressed to maximize the utility of these types of assays. 
There are alternatives to the IC50 based significance testing approach 
that have been and continue to be developed. The area under the curve 
(AUC) statistic computes the area between the dose-response curve and 
the x-axis and is a global measure of compound’s activity [12]. This type 
of summary is potentially more robust than an interpolated parameter 
such as an IC50. Determination of statistical difference between two 
compound’s AUC relies on a permutation testing based procedure and 
may be very computationally expensive for large datasets. However, 
since permutation testing can be readily parallelized, the availability 
of computing clusters can reduce the time needed for this type of 
analysis. Multivariate ANOVA Genome-Wide Association Software 
(MAGWAS) [16] was shown to be a very attractive approach with many 
desirable properties including high statistical power and computational 
efficiency. However, MAGWAS is sensitive to changes that occur only at 
one concentration, which may not be desirable in some instances. Both 
AUC and MAGWAS incorporate the full dose response curve into the 
association tested.

Each of these concerns is only exaggerated by the increasingly high 
throughput nature of these experiments.  As robotics has enabled rapid, 
high-throughput phenotyping for such experiments, investigators are 
now able to readily assay dozens or even hundreds of chemicals across 
hundreds of cell lines for dose response [17]. This makes it less likely that 
all assumptions are met or checked across such large numbers of results.  
This magnifies the importance of considered statistical approaches that 
minimize the impact of violations from these assumptions.

It is our hope that this discussion can help further the continued 
consideration on best practices for in vitro association studies. While we 
acknowledge that that IC50s can be of great utility when used properly 
and in the correct context, we hope to raise awareness of potential issues 
with these approaches and highlight alternatives that could further our 
understanding of gene based drug response.
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