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Abstract

Biofilm represents single species or multi-species communities that interact and cooperate with each other and
their environment to carry out complex processes. One of the most important challenges is to understand
intercellular communications that exist within the community that promote biofilm formation. Biofilm currently
represents a major health problem as it play an important role in device-related infections such as prosthetic valves,
catheters and contact lenses. The present review will focus on the mechanisms that lead to biofilm formation on
surfaces and highlight several medically important pathogens.
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Introduction
In nature prokaryotes occupy diverse habitat as they have ability to

attach and form communities. Once in a community, bacterial species
cooperate, compete and interact with each other and carry out
complex processes. Biofilm represents single species of bacteria or
multispecies communities. They can be found in nature as well as in
industrial and clinical environment. For instance, dental plaque are
known to contain as many as 700 species [1-10] growing in
Extracellular Polymeric Substances (EPS).

Biofilm Formation
The formation of biofilm begins in stages. In stage one, there is

transient binding of planktonic bacteria to a solid surface with
characteristic adhesion. In stage two, there is aggregation and
formation of micro colonies surrounded by protective secreted
molecules known as extra polymeric substance (EPS) matrix. Finally,
there is dispersal that involves shedding from the mature biofilm as
planktonic bacteria or as micro colonies. This dispersal stage may
promote further colonizing the host with biofilms. This may ultimately
benefit the organisms due to limited nutrient availability and waste
accumulation.

Depending on ecological niche, bacteria are exposed to different
stresses such as UV radiation, pH shifts, osmolarity, iron availability,
oxygen tension, temperature, nutrient availability and desiccation [3]
that may obstruct their basic activities such as ability to grow and
survive. These environment signals trigger the transition from
planktonic growth to life on a surface. However, the environmental
cues differ greatly among organisms. For instance, Pseudomonas
aeruginosa will form biofilms under most conditions that allow
growth [11,12]. However, Escherichia coli O157:H7 has been reported
to make a biofilm only under low-nutrient conditions[13]. The genetic
analysis of biofilm formation by many organisms has revealed that
they may utilize multiple genetic pathways to initiate biofilm
development [14]. For instance, Vibrio cholera may utilize different

pathways for initial attachment depending on the surface to which the
organism attaches. For example, the study in vivo has shown that Tcp
pilus is required for colonization of the intestine[15]. However, Tcp
pilus is not important in attachment to abiotic surfaces. Although,
environmental signals may trigger biofilm development, they may vary
from organism to organism. In order to gain stability and ecological
success, bacterial species has developed adaptive strategies. Thus,
bacterial species come together and form biofilm to enhance survival
especially under adverse conditions.

Biofilm Matrix
The major component in the biofilm matrix is water that may

measure up to 97% [16]. The secretion of EPS is linked with the genes
that are up-regulated in biofilms [17]. The EPS may vary in their
composition, chemical and physical properties [16]. The phenotype of
mature film depends on the environment in which it develops. The
studies have shown that the changes in environment results in
phenotypic changes in the biofilm formation [16,18,19]. EPS has also
been reported to provide protection from a variety of environmental
stresses. For instance, the protective role of EPS was demonstrated as it
provided resistance to desiccation in mucoid strains of bacteria such as
E. coli when compared to non mucoid variants of the same [20]. The
EPS helped bacterial species to adapt to stressful and changeable
environmental conditions. The slower growth of bacteria has been
observed in biofilm to enhance EPS production for adaptation. The
mutants that are unable to synthesize the EPS are usually unable to
form biofilms [15]. For instance, E. coli strain that cannot develop
normal biofilm is also defective in colonic acid production. The
colonic acid is a major EPS synthesized by this organism. . However, in
a mixed population, one species producing EPS may provide the
stability to mutant type that are unable to synthesize EPS [16,21].

Intercellular Communication
The biofilm enables cells to live close to each other to facilitate

exchange of plasmids and free DNA that enable them to overcome
different environmental stresses. The bacteria in a biofilm uses
chemical communication known as quorum sensing that help them to
coordinated their metabolism and other complex processes and adapt
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to the ongoing changes in the environment. For instance, Bacillus
subtilis uses intercellular communication during its metamorphosis
into spores to better adapt to changing environmental parameters [22].
The mutant of P. aeruginosa that is unable to synthesize the major
quorum-sensing molecules acylhomoserine lactones (acyl-HSLs) was
able to produce altered biofilm when compared to its wild type. This
demonstrated that these molecules regulate the formation of biofilm
structures in this organism. This data strongly suggest that cell-cell
communication is essential for this bacterium to establish a well
ordered surface community [23,24].

The genetic analysis of Streptococcus gordonii, an oral microbe
suggested that cell-to-cell communication may also be important for
biofilm development in these gram-positive organisms. The
maturation of the biofilm relies on cell-to-cell interactions called co
aggregation. The structural and spatial organization can have a
profound impact on biofilm ecology. The three dimensional
organization of biofilm allow cells to fix their locations with respect to
each other [4] and help in release of distinct environmental signals
within a biofilm that provides additional benefits for metabolic
cooperation and niches. For instance, cells that are situated near the
center of a micro colony are more likely to experience low oxygen
tensions. This may provide better environment for strictly anaerobic
methanogens that are embedded in EPS [11].

Implications of Biofilm Formation
In nature, microorganisms are exposed to harsh environment such

as hydrothermal vents, deep sea vents, acid mine drainage. The
physiological adaption to challenging conditions has many benefits.
Interestingly, biofilms are involved in the processing of sewage,
treatment of groundwater contaminated with petroleum products
[25]. The surface-attached biofilms in form trickling filters are used in
some waste-water treatment plants[17]. Biofilms are able to
accumulate metals and may help in transfer of metals through an
ecosystem. For instance, biofilms in acid mine drainage may
contribute to the cycling of sulfur [26].

Syntrophic Relationships
Biofilms provide an ideal environment for the establishment of

syntrophic relationships that enables two metabolically distinct types
of bacteria to depend on each other to utilize certain substrates for
energy production [27,28]. The study done by Bryant et al. showed
that two different organisms interacted syntrophically to convert
ethanol to acetate and methane by interspecies hydrogen transfer [27].
These relationships have gained more importance as they may
promote pathogenicity of virulent organisms and promote their
colonization and survival [29].

Antibiotic resistance
Biofilms are associated with an emergence of antibiotic resistant

bacteria. Horizontal gene transfer promotes evolution and genetic
diversity of natural microbial communities. The study of gene transfer
in natural environments has gained importance by emergence of
multidrug-resistant bacteria [5,30-32]. The EPS matrix prevents access
of certain antimicrobial agents restricting diffusion of compounds
from the surrounding into the biofilm. The classes of antibiotics that
are hydrophilic and positively charged, such as aminoglycosides are
more obstructed than others.

There may be inactivation of the antibiotics by extracellular
polymers or modifying enzymes. The bacteria in a biofilm are 1,000-
fold more resistant to antibiotic treatment than the same organism
that are grown planktonically [19,33]. The extensive use of antibiotics
to promote growth in domestic animals, livestock and agriculture has
resulted in selection of antibiotic resistant bacteria [6,34-39]. The
prevalence of plasmids in bacteria from diverse habitats and gene
transfer by conjugation has resulted in dissemination of genetic
information [40,41]. As most of the bacteria in natural settings reside
within biofilms, conjugation is one of the most likely mechanisms by
which bacteria in biofilms transfer genes within or between
populations [42-46]. The study of microcosm dental plaque have
shown that Bacillus subtilis strain that harbored a conjugative
transposon with tetracycline resistant cassette was able to transfer
conjugative transposon to Streptococcus species in biofilm bacteria
[47]. These results proved that non oral bacteria have the potential to
transfer genes to oral commensals [47]. Clinical biofilm infections
have shown that treatment with antibiotics is not a complete solution
as symptoms usually recur even after repeated treatments. The
antibiotic therapy eliminates the planktonic cells, but the sessile forms
are resistant and continue to propagate within the biofilm [19].
However, there is continuous release of antigens and production of
antibodies that eventually causes more damage to the surrounding
tissue [19,48].

Biofilm and Nosocomial Infections
Biofilms play a prominent role in the contamination of medical

implants by residing on abiotic surfaces [49,50] such as prosthetic
valves, catheters and contact lenses. The bacterial biofilms on
prosthetic valves are the leading cause of endocarditis in patients that
have undergone heart valve replacement [51,52]. The biofilm
formation on urinary catheters is also reported as a leading cause of
urinary tract infections [53,54]. Biofilm formation can also occur on
contact lenses that may lead to keratitis[55-57].

Biofilm plays a remarkable role in cystic fibrosis (CF) patients that
are infected by Pseudomonas aeruginosa. The inherited genetic
disorder increases the susceptibility to chronic P. aeruginosa infections
although the basis is not yet known. The infection causes hyperactive
inflammatory response in the lung that may eventually destroy the
functioning of the lung and leads to the death of the patient [12,58,59].
P. aeruginosa species isolated from the CF patients were mucoid with
overexpression of EPS called alginate. The aligate may promote
biofilm formation and enhance resistance to antibiotics.

The chronic ear infections are also related to biofilm bacterial
species [60,61]. However, biofilm bacteria can be difficult to culture by
routine methods [11,62].

Periodontitis is an important case of a biofilm-mediated disease.
The main bacterium associated with this disease is Porphyromonas
gingivalis [63] that colonizes in the oral cavity to invade mucosal cells
and release toxins. The chronic inflammation may even lead to tooth
loss. The bacterium may colonize mucosal and tooth surfaces directly
or via interactions with primary colonizers. The primary colonizers are
S. gordonii, Streptococcus sanguis, and Streptococcus parasanguis that
add up to 60-80% of the early bacterial population [64,65].

Can Antibiotic Stimulate Biofilm Formation?
The current antibiotic treatment guidelines do not consider the

difference in the ecological dynamics that exist between different
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bacterial species [66]. Antibiotics when administered at concentrations
below the minimum inhibitory concentration can induce biofilm
formation in a variety of bacterial species [48,67]. This is of major
concern as cells that are deep inside the biofilm may be exposed to
sub-MIC level of antibiotic. Instead of inhibiting the biofilm, the
antibiotic may promote biofilm formation [68]. The other concern is
dosing regimen as bacteria are exposed to sub-MIC concentrations of
antibiotics at the beginning and end of a dosing regimen [69]. The
extensive use and misuse of antibiotics in agriculture, livestock and
aquaculture may further exposure of bacteria to low levels of the drugs
[5,70,71].

Discussion
The discovery of surface-attached bacteria happened almost 70

years ago [72]. However, we are still trying to understand the
significance of biofilm communities. Interestingly, to understand
bacteria as a community takes us away from our traditional view of
microbiology. The major challenge is to understand intercellular
communications that promote stability in biofilms and usage of
models that can mimic natural communities in the laboratory.
However, there is some success in this area such as development of
model to study catheter- induced bladder infections [73]. The
discovery of confocal scanning laser microscopes (CSLM) has further
helped to examine the three-dimensional structure and function of
biofilms. However, application of modern techniques with the
collaborative efforts from scientists from various fields will help to
better understand this continuous evolving dynamic world of biofilms.
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