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Introduction
Analysis of peristaltic flow has great practical importance in many 

biological and biomedical systems such as the flow of urine through the 
urethra, the swallowing process through the esophagus, the movement 
of spermatozoa in the ducts efferent of the male reproductive tract, 
transport of lymph in the lymphatic vessels and in the vasomotor of 
small blood vessels such as arterioles, venules and capillaries. Latham 
[1] was probably the first to investigate the mechanism of peristalsis
in relation to mechanical pumping. Primary analytical studies of
peristaltic transport for Newtonian fluids were performed by Shapiro
et al. [2] in wave frame and by Fung and Yih [3] in laboratory frame.
Peristaltic flow of a power-law fluid in a channel under long wavelength 
approximation was studied by Radhakrishnamacharya [4]. Srivastava
and Srivastava [5] were investigated the peristaltic flow in blood vessels 
for the Casson fluid. Mernone and Mazumdar studied Casson fluid in
Peristaltic motion by perturbation method [6]. The peristaltic transport 
of a power-law fluid in the male reproductive tract was studied by
Srivastava and Srivastava [7]. Peristaltic pumping of two layered power-
law fluids in cylindrical tube was investigated by Usha and Rao [8].
Eytan and Elad [9] and Eytan et al. [10] have studied the intra uterine
fluid flow in the sagittal cross section of the uterus by an asymmetric
channel under lubrication approach. The lubrication approach assumes 
that the width of the channel is very small compared with length. Mishra 
and Rao [11] have studied the peristaltic flow in asymmetric channels
with asymmetry generated by different amplitudes of the peristaltic
waves in addition to different phases. Takabatake and Ayukava [12]
and Takabatake et al. [13] studied the problem of urine flow through
a channel and a circular cylindrical tube, respectively by employing
finite difference technique and discussed the phenomena of trapping
and reflux. Siddiqui and Schwars studied on trapping for second-order
fluid [14]. Recent investigations focused on numerical simulation of
peristaltic flow in large variety of geometries [15-21].

In this paper, the peristaltic flow of a power law fluid in a cylindrical 
channel is investigated by using a perturbation method in the wave 
frame. The effects of main parameters of flow rate, Reynolds number, 
flow behavior index (n) and amplitude ratio (ε) on the flow regime are 
studied.

Governing equations 

The physical model and related parameters are illustrated in the 
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Abstract
In this paper, the peristaltic flow of a power law fluid in a cylindrical channel is studied analytically. The governing 

equations consist of continuity and momentum equations are solved mathematically by perturbation method. The 
zeroth and first order in amplitude ratio of the stream function is considered for perturbation series. The effects of flow 
behavior index (n) flow rate and amplitude ratio (ε) on the flow field are investigated. The results show that increment 
of power law index predicts more flow rate and less pressure rise in peristaltic motion. Trapping phenomenon is form 
by closed stream line depending on peristaltic motion. 

Figure 1. The dimensionless parameters are defined as follows:
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It is imagined that α2 is in the order of ε and the wave equation 
propagated along the tube is cosine form:

( ) ( )2, cos -π
λ

= +
dG Z t d A Z ct              (1)

In the above equation d is the half non-deformed width of the 
channel, A is wave amplitude, λ is wave length, Z is longitudinal 
coordinate along the tube, c is wave velocity and t is time. Peristaltic 
motion is an unsteady phenomenon instinctively but it can be assumed 
steady if the coordinates travels with the velocity of wave so as it is 
shown in Figure 1, two fixed (laboratory frame) and moving (wave 
frame) coordinate can be defined in the following relation:

Z=z+ct,  R=r (2)

Figure 1: Illustration of peristaltic motion.

Journal of Applied 
Mechanical EngineeringJo

ur
na

l o
f A

pp
lied Mechanical Engineering

ISSN: 2168-9873



Citation: Sadeghi K, Jalali Talab H  (2014) Analytical Investigation of Peristaltic Transport of Power Law Fluid through a Tube. J Appl Mech Eng 
3: 136. doi:10.4172/2168-9873.1000136

Page 2 of 6

Volume 3 • Issue 1 • 1000136
J Appl Mech Eng
ISSN:2168-9873, an open access journal 

= +Z z cv v  R rv v= ,                   (3)

Where (vZ,vz) and (vR,vr) are the velocity component in the 
laboratory and wave frame for axial and radial direction respectively. 
Z-axis is the center line and R is the distance measured radial. 

Governing equations consist of continuity and momentum 
equations in laboratory frame are in the following form:

Continuity 

 1 1( ) ( ) ( ) 0θ
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Z-Momentum 
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Also the boundary conditions are:

0=Zv ,  ( ), -∂ ∂
= =
∂ ∂R

GG Z t c
t Zv  @ ( ),=R G Z t                (6a)

0=Rv  , 0
∂

=
∂

Z

R
v  @  0=R                                    (6b)

In the above equations for obtaining the stress term for power 
law fluid, (power law fluid is considered as a simple shear fluid) the 
constructive equation is defined as:

( ) ( ). -1

2η γ=
n

DII m  
. .

,
ηγ γτ = =

n

i j ij ij
m                      (7)

Where 2DII  is second invariant of strain rate tensor, n is flow 

behavior index, m is flow consistency and 
.

ijγ  is defined as shear rate: 

.
2γ

 ∂∂
 = = +
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ij

j i

D uu
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Let ui and uj be the longitudinal vR and transverse vz velocity 

components respectively, the stress tensor will be:
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By defining stream function for 2D flow and applying dimensionless 
parameters the non-dimensional governing equations and boundary 
conditions become as follows: 
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∂Z R Rv                    (10)
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And non-dimensional boundary conditions:

0 1
0εψ ψ ψ≈ + =

R R R   @   ( ),=R G Z t                                  (13a) 
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Solution Procedure (Zeroth-Order Approximation): By 
expressing stream function ψ  as a series in terms of amplitude ratio  
ε we have 

( )2

0 1
ψ ε εψ ψ= + + o                  (14) 

The axial pressure gradient is assumed to be zeroth-order and linear. 
Therefore the term   is a function of R only through the domain. 
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By substituting the stream function series in momentum equations 
for   the zeroth-order momentum equations will be:
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The  Z -momentum equations with the boundary conditions (13a, 
13c) can be calculated analytically and 0ψ  and p∆  will be:
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The flow rate is found by the following relation:
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As we had:
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Taylor expansion results:
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It is important to find the flow over a period of time  T  at the fixed 
cross section position that is called time-mean flow as:
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Since the second part of right hand side of above equation is zero 
the pressure gradient is considered as:
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The non-dimension pressure rise over a wave length is defined in 

the following form:

0

λ

∆ = ∫
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And a relation is found for pressure rise in term of time-mean flow:
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Solution Procedure (First-Order Approximation): Assuming 
that there is no horizontal displacement of the tube walls during the 
peristaltic motion, by expanding the equations (13a,13b) about R=1 
vertically, we have:
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Where:

( )cosδ ε α= −Z t

And the results are:
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( ) ( )
1

1 sinα αψ ≈ − −
Z
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These boundary conditions suggest that the solution for 1ψ  can 
obtained in the following form:

( ) ( ) ( ) ( ) ( )
1

, , cos sinα αψ = − + −Z R t h R Z t g R Z t             (32)

Eliminating the pressure gradient using cross-differentiation and 
subtraction of momentum equations then substituting 

0ψ  and 
1ψ  from 

equations (18, 32), afterward neglecting the coefficients of 2ε  and 2εα , we 
will have:
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By collecting the coefficients of sin and cosine in either side, two 
coupled equations are concluded as follows:
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With following boundary conditions based from equations 
(13a-13d):

( )' 0 0=g  ( )' 0 0=h  ( )0 0=g  ( )0 0=h                 (36a)

( )' 1 0=g  ( )' 1 = −h B  ( )1 0=g  ( )1 1=h                 (36b) 

The set of coupled ODE equations (34,35) are very complicated 
therefore the numerical spectral method based on Chebychev series is 

applied to obtain h, g and higher-order derivation of them. 

Result and Discussion
The peristaltic motion of a power law fluid in a tube with a cosine 

wave propagating along the boundary has been considered under the 
assumption that the wave amplitude is small compared to half non-
deformed diameter of flexible tube. The stream function and the velocity 
components are obtained as power series, in terms of the amplitude 
of deformation divided by tube diameter. The Reynolds number is 
arbitrary but the flow remains laminar. It is imagined that the pressure 
changes linearly along the tube and it is uniform in each cross-section.

Figure 2 shows the variations of pressure difference versus time-
mean flow rate over the wave period. As it is shown in Figure 2 the 
pressure rise decreases by increasing flow rate and the maximum flow 
rate is related to zero pressure rise. For Newtonian case (n=1) the 
diagram is linear as indicated by Mernone and Mazumdar [6]. Shear 
thinning fluid (n<1) diagrams are under the Newtonian fluid diagram 
with downward arc shaped as shown by Sirvastava and Sirvastava [7] 
but shear thickening fluid diagrams maintain on top of it with upward 
arc shaped. The diagrams show that in cases (n>1) the flow variation 
has small effect on pressure rise near to zero and it is vice versa for cases 

  
Figure 2: Variations of pressure rise versus flow rate and (Re=50, ε=0.05, 
α=0.5).

 
Figure 3: Variations of pressure rise versus flow rate of a shear thinning fluid for 
different Reynolds and (n=0.7, ε=0.05, α=0.5).



Citation: Sadeghi K, Jalali Talab H  (2014) Analytical Investigation of Peristaltic Transport of Power Law Fluid through a Tube. J Appl Mech Eng 
3: 136. doi:10.4172/2168-9873.1000136

Page 5 of 6

Volume 3 • Issue 1 • 1000136
J Appl Mech Eng
ISSN:2168-9873, an open access journal 

(n<1). In both shear thinning and shear thickening fluid increasing 
power law index brings more pressure rise for the fixed time-mean flow 
rate.

Figures 3 and 4 show the pressure rise in term of time-mean flow 
rate for two different power law index (n=0.7 and n=1.5), in both 
diagrams increasing Reynolds number concludes higher pressure rise 
for the same time-mean flow rate therefore the definition of Reynolds 
indicates more pressure rise by increasing wave velocity, tube diameter 
and fluid density and also by decreasing power law index and fluid 
consistency.

Figure 5 shows the axial velocity profile in a fixed position for 
Newtonian and different non-Newtonian fluid. As it is shown all axial 
velocity profiles are parabolic form with zero tangent in the center line 
and the velocity reach to zero beside the wall. Increasing power law 
index results in higher velocity in the same radius of tube so there will 
be more flow rate for higher power law index fluid.

In Figures 6 and 7 the schematic of stream function ratio ψ ψ Wall
 is 

depicted in half upper-section of flexible tube in the wave frame for two 
different kind of fluid. There is a region where the stream lines are closed 
and make the torus-shaped eddy in the hyperspace of the tube. This 
phenomenon is called trapping. On increasing power law index these 
eddies change in shape, eddies are longer and thinner in shear thinning 
case compared to shear thickening case. Also boluses become smaller 
by increasing flow rate through the tube in both case and they disappear 
when flow rate reaches to infinity which refers to Stokes flow in the 
rigid cosine form tube (non-peristaltic flow). Siddiqui and Schwars 
[14] show the trend of eddy disappearance for second order fluid by 
increasing flow rate. The existence of eddies effects on flow behavior 
and make a bit phase shift on upper stream functions, especially for 
higher flow rate. The affection of eddy existence on stream line bend 
decrease to zero for the lower stream line and completely depends on 
the form and size of eddies.

Figures 8 and 9 shows the perturbation parameter affection on 
stream function and eddies made by closed stream lines for (n<1). It 
is clear that more amplitude of wave or less tube diameter made bigger 
torus-shaped eddy and the smaller perturbation parameter make 
straighter stream line. In case (b) and (c) the central stream functions 
are not completely straight whereas in case (a) these stream lines are 
straight and also there is no eddy because of less amplitude ratio. The 
similar results are shown in Figure 9 for (n>1). The comparison of Figure 
8 and Figure 9 show that increasing power law index (n) make the bolus, 
shorter and wider and it is said before.

 
Figure 4: Variations of pressure rise versus flow rate of a shear thickening fluid 
for different Reynolds and (n=1.5, ε=0.05, α=0.5).

 
Figure 5: Axial velocity profile for a fixed position, different power law index and 
(ε=0.05, α=0.5, Re=50).

 
(a) 

 
(b) 

Figure 6: Schematic of stream function ratio ψ ψ Wall
  for (n=0.7, ε=0.05, α=0.5, 

Re=50) and (a) Lower flow rate; (b) Higher flow rate.

 
(a) 

 
(b) 

Figure 7: Schematic of stream function ratio ψ ψ Wall
  for (n=1.5, ε=0.05, α=0.5, 

Re=50) and (a) Lower flow rate; (b) Higher flow rate. 
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Conclusion
In this paper, the peristaltic flow of a power law fluid in a cylindrical 

channel is investigated by using a perturbation method in the wave 
frame. The effects of main parameters of flow rate, Reynolds number, 
flow behavior index (n) and amplitude ratio (ε) on the flow regime are 
studied. The results show that increment of power law index predicts 
more flow rate and less pressure rise in peristaltic motion. Trapping 
phenomenon is form by closed stream line depending on peristaltic 
motion. 
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Figure 8: Schematic of stream function ratio ψ ψ Wall
  for (n=0.7, α=0.5, Re=50) 

and (a) ε=0.01; (b) ε=0.05; (c) ε=0.1.

(a) 

(b) 

(c) 

Figure 9: Schematic of stream function ratio ψ ψ Wall
  for (n=1.5, α=0.5, Re=50) 

and (a) ε=0.01; (b) ε=0.05; (c) ε=0.1.
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