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ABSTRACT

Nanoparticles have been widely applied in different areas including, medicine, sensor and catalysis. In our study we have 
concentrated our work towards the application of the metal nanoparticles in the field of catalysis. Several reports has been 
found on wide range of application of various supported metal nanoparticles in catalysis including Au, Ag, Pt, Cu, Cd, Ni 
etc. metals in the form of reduced metals and in compounds forms as heterogeneous catalysis. Nanoparticles have potential 
for improving the efficiency, selectivity and yield of catalytic processes. Higher selectivity of the nanoparticles towards reaction 
proceeds through less waste and fewer impurities which could lead to safer technique and reduced environmental impact. In 
this review we have focused on the developments in new types of green nanocatalysts as well as developments in green catalytic 
reactions.
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INTRODUCTION
The last decade has witnessed enormous development in the field 
of nanoscience and nanotechnology. Several reports show the 
amazing level of the performance of nanoparticles as catalysts in 
terms of selectivity, reactivity and improved yields of products. In 
addition, the high surface-to-volume ratio of nanoparticles provides 
a larger number of active sites per unit area, in comparison with 
their heterogeneous counter sites [1,2]. In this review, we focus 
on green nanocatalysts as well as industrially important green 

reactions. This article has two parts. The first part involves green 
nanocatalysts and the second part involves green reactions.

SYNTHESIS OF VARIOUS NANOPARTICLES
Various nanoparticles are shown in Figure 1 and Schemes 1-53 in 
Tables 1-15.

Calcium oxide nanoparticles

Among various nanoparticles, calcium oxide nanoparticles have 

Figure 1: Various Green Nanocatalysts.
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S. No. Reference No. Reaction Nano particles

85

SCHEME 1: Synthesis of Amine-Substituted MCR Scaffolds and Dihydroquinoxalinone Derivatives

N N
H

O
COOMeR1

R2

N
H

N
R1

R2

O

Ag/HMS, NaBH4

O2N

Ag

86

Methylene blue
(Ox.form)

Methylene blue
(Red. form)

SCHEME 2: Reduction of Methylene Blue dye

Ag

87

Au/SnOx
(Ox.form)

Au
(Red. form)

SCHEME 3: Oxygen Reduction Reaction at Gold Nanoparticles

Au

88

CH CH2

O

O OH

AuNP/CeO2

AuNP/CeO2

SCHEME 4:  (i) Synthesis of styrene from 2-phenyl oxirane
                       (ii) Synthesis of cyclohexanol from cyclohexanone

styrene
2-phenyloxirane

cyclohexanone cyclohexanol

89

NO2 N+ N

O-
Au/CeO2

SCHEME 5: Selective reduction of nitrobenzene

1-nitrobenzene

90

NO2 N
N + O2Au/ZrO2

SCHEME 6: Synthesis of 1,2-diphenyldiazine from nitrobenzene

1-nitrobenzene 1,2-diphenyldiazene

91

O2 C
R1 R2

O

C
H

R1 R2

OH

Pt-Cu

SCHEME 7:Synthesis of substituted ketone by substituted alcohol

Pt-Cu alloy

Table 1: Reduction Reactions.

received considerable attention because of their unusual properties 
and potential applications in diverse fields [3]. Calcium oxide (CaO) 
itself as cost effective, highly basic, non-corrosive, environment 
friendly, and economically benign, that can be regenerate and 
reused. Also, they require only mild reaction conditions to produce 
high yields of products in short reaction times, in comparison 
with traditional catalysts [4-6]. Many researchers reported that 

calcium oxide nanoparticles as an active catalyst in many chemical 
transformations such as adsorption of Cr (VI) from aqueous 
solutions [7], biodiesel trans-esterification [8-19], removal of toxic 
heavy metal ions in water [20] and artificial photosynthesis [21] 
and the degradation of bromocresol green [22], purification of 
vehicle gas exhaust [23]. In accordance with the above mentioned 
consequence of nanoparticles in catalysis, and the significance of 
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highly substituted pyridines as privileged medicinal scaffolds.[24] 
Calcium oxide nanoparticles, as an efficient, non-explosive, eco-
friendly, non-volatile, recyclable and easy to handle catalyst, can be 
used in the catalysis of many organic transformations.

Preparation of CaO nanoparticles

NaOH (1 g) was added to a mixture of ethylene glycol (12 ml) and 
Ca(NO

3
)
2
. 4H

2
O (6 g) and the solution stirred vigorously at room 

temperature for 10 min; the gel solution was kept about 5 h at 

Table 2: Oxidation reactions.

S. No. Reference No. Reaction Nano particles

1. 92

 

OH
CHO

O2

AuNPs

SCHEME 8: Synthesis of benzaldehyde by phenyl methanol

phenylmethanol benzaldehyde

Au

2. 93

HO HO HO

O2 O2

AuNP

SCHEME 9: Selective oxidation of benzyl alcohol

phenylmethanol phenylmethanol phenylmethanol

3. 94

HO OH

OH

HO O-

OH OH

OH

O

+ CO2

O

OH

O

HO

OH

OH

O

HO

OH

OH

O

HO

O

Au, O2

Au, O2

Au, O2

Au, O2OH-

SCHEME 10: Synthesis of 2-hydroxymalonic acid

2-hydroxymalonic acid

4. 95

OH O

AuNP/Fe2O3
+

SCHEME 11: Synthesis of cyclohexanol and cyclohexanone from cyclohexane

cyclohexanonecyclohexanolcyclohexane

5. 96

H3C

OH

H3C

OOsNP's

SCHEME 12: Synthesis of sustituted benzaldehyde by substituted alkanol

4-methylbenzaldehydep-tolylmethanol
Os& Ir

6. 97

C
OH

HH
H

C

H

O

H

+ H2

CeO2 NPs

SCHEME 13: Synthesis of Formaldehyde by methanol

Oxidation

methanol formaldehyde CeO
2
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S. No. Reference No. Reaction Nano particles

98

Si
R2

H

R1

Si
R2

OH

R1Pt Nanocluster

H2O/THF

SCHEME 14: Synthesis of Silanols from organosilanes

Pt

2
99

PhMe2Si-H PhMe2Si-OH
Pd/AuNp's

SCHEME 15: Synthesis of Silanols

Pd

3
100

Si
R' R''

R

H +    H2O Si
R' R''

R

OH
AuNPs

SCHEME 16: Synthesis of Silanols

Au

Table 3: Conversion of organosilanes to silanols.

S. No. Reference No. Reaction Nano particles

101 ArX
R

RAr

OCH3

O

OCH3

OPdNPs

SCHEME 17:Synthesis of methyl cinnamate

Pd

102, 103, 104, 105 X

R

(HO)2B

R'

R R'

SCHEME 18: Synthesis  of biaryls

PdNPs

106

R1

X R1

R1

R2

B(OH)2

R2

SnPh3

Pd NPs

(n-C7H15)4NBr

X=Br, Cl

Bu4N OH/600C

SCHEME 19: Synthesis of substituted biaryls 	
•	 107

(HO)2B

H3C

Pd-AuNPs

K2CO3, DMF/H2O

SCHEME 20: Synthesis of substituted biaryls by Phenyl boronic acid

phenylboronic acid

Au–Pd alloy

Table 4: Suzuki cross-coupling Reactions and Sonagashira Reaction.
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•	 108
Ar-X + R RAr

PdNPs

SCHEME 21: Synthesis of substituted Alkyne

Pd

 S. No. Reference No. Reaction Nano particles

1. 109, 110

R
R Rh@TiO2/RhNPs/Rh@SiO2

SCHEME 22: Synthesis of substituted cyclohexanes

R = H, CH3, OCH3

H2
Rh

2. 111

R O
R OH

NO2

R

NH2

R

O R2

R1AuNPs

SCHEME 23: Synthesis of substituted anilines

Au

3. 112

HR
H

H H

RH2

Au25cluster

SCHEME 24 Synthesis of substituted alkenes

CHO
O2N

R

CH2OH
O2N

R
Au nano cluster

4. 113

NO2

NH2

O

OH

PdNPs

SCHEME 25:Synthesis of Aniline and 1-phenylethanol

aniline 1-phenylethanol

Pd

5. 114

NO2 NH2

Au-Pd/TiO2

SCHEME 26: Synthesis of Aniline

Au-Pd

115

COOH COOH

RuNPs

SCHEME 27: Synthesis of cyclohexanecarboxylic acid

H2

cyclohexanecarboxylic acidbenzoic acid
Ru

Table 5: Hydrogenations.
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116

R2R1

R2

HH

R1

Ni-fructose@SiO2-800

SCHEME 28: Synthesis of Alkene derivatives

Ni

117

1-Hexene n-Hexane +  cis-2-Hexene   + trans-2-Hexene
Pd-Ru NPs

SCHEME 29:Synthesis of hexanes

RuPd 

118

NO2

OH

NH2

OH

Fe-Pt CD

SCHEME 29: Synthesis of 4-aminophenol

4-nitrophenol 4-aminophenol

FePt

S. No. Reference No. Reaction Nano particles

119, 120, 121

Cl
R

RPdNPs

SCHEME 30:Synthesis of biaryl derivatives

R

Pd

122

I

SCHEME 31: Synthesis of biaryls

Cu

2000C
Cu

123
I

SCHEME 32: Synthesis of biaryls

Au

mesoporous organo silica Au

Table 6: Ullmann Reaction.

S. No. Reference No. Reaction Nano particles

124

W
+

W

NiNPs

SCHEME 33: Synthesis of 1-((E)-prop-1-enyl)benzene

1-((E)-prop-1-enyl)benzene

Ni

125

W

+

CoNPs

SCHEME 34:Synthesis of 1-((E)-prop-1-enyl)benzene and 1,2-diphenylethyne

CoNPs

1,2-diphenylethyne

1-((E)-prop-1-enyl)benzene

Co

Table 7: Heck cross-coupling Reaction.
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•	 126
Ar X + CO2Bu CO2Bu

PdNPs

SCHEME 35 : Synthesis of butyl cinnamate

(E)-butyl cinnamate

Pd

127
X

R

+

R2

R1
R

R1

R2

1-methyl-4-(2-methylprop-1-enyl)benzene

SCHEME 36: 1-methyl-4-(2-methylprop-1-enyl)benzene

128, 129

+

Br

SCHEME 37: Synthesis of 1,1-diphenyl etane and 1,2-diphenylethane

Pd/TiO2 1,1-diphenylethene

1,2-diphenylethene

130 MeO Br

OMe
O

O
+

OH

MeO

MeO

SCHEME 38:Synthesis of 4-(3,5-dimethoxystyryl)phenol

4-(3,5-dimethoxystyryl)phenol1-bromo-3,5-dimethoxybenzene
4-vinylphenyl acetate

S. No. Reference No. Reaction Nanoparticles

131

O

Ph Ph

Au Catalyst

CO

SCHEME 39: Synthesis of Styrene

styrene Au

132

N

R2

O

O

R1

+ NC R3

N N

X

OO

R5R5

OO

R4 R4

N

N

O

R5

R5

O NH2

R3

N
R2

X O

N

R2

R4

R4

O

O

CuO, Nps
rt, EtOH

CuO, Nps
rt, EtOH

NH2

R1 R1

R3
O

SCHEME 40: Synthesis of Spirooxindoles

CuO

Table 8: Deoxygenation Reaction.
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133

O

R1 R2
R1 R2

Au/HT

alcohols, CO/H2O
   or H2

SCHEME 40 : Synthesis of substituted but-2-ene

Au

 S. No. Reference No. Reaction Nano particles

1 134

R1

H
NR2 R3

Br
R1 NR2 R3

+

PPh2
PPh2

Ph2P
Ph2P

Scheme 41: Synthesis of N,N-dialkyl-3-p-tolylprop-2-yn-1-amine

Pd

Table 9: Alkynylation of Aryl Halides.

S. No. Reference No. Reaction Nano particles

135

Ar SH + Ar' I Ar S Ar'

Cu0

SCHEME 42 :Synthesis of diaryl Sulfane

FeCu

136

Z

N

H

I
R

+
Z

N

R

Z=O, S, NCH3
R=H, CN, Cl, COOEt, OCH3

CuO Nanospindle

K2CO3

SCHEME 43 : Synthesis of 2-phenylbenzo[d]thiazole, 2-phenylbenzo[d]oxazole 
and 1-methyl-2-phenyl-1H-benzo[d]imidazolederivatives

CuO 

137 RO

O

+2Ar

RO

O Ar

Ar

Pd/AP(0.9 mol%)/NEt3

glycerol/1200C

1a-h

SCHEME 44 : alkyl 3,3-diphenylacrylate

Pd

Table 10: Arylations and Diarylations.

S. No. Reference No. Reaction Nanoparticles

1. 138

NO2 NH2 NH2
+

0.25mmol

Ag/HT

> 99% yield Not detected

SCHEME 45: Synthesis of 3-vinylbenzenamine and3-ethylbenzenamine

Au, Ag & Cu

Table 11: Deoxygenation of Epoxides.
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S. No. Reference No. Reaction
Nano

Particles

1. 139

R1

R2
OH + H2N R3

Au/TiO2

1 bar O2, RT

R1
N

R2 R3

98% selectivity

SCHEME 46:Synthesis of N-(propan-2-ylidene)methanamine

Au

Table 12: Oxidative Coupling of Alcohols.

S. No. Reference No. Reaction Nanoparticles

1 140

CN
AgNPs

NH2

O

SCHEME 47 : Synthesis of benzamide

benzamide Ag

2 141

CN
NH2

O

Fe3O4

X X

SCHEME 48: Synthesis of substituted benzamide

Fe
3
O

4

Table 13: Esterification of Alcohols.

S. No. Reference No. Reaction Nano particles

1 142
O

O

O

O

O

O

SiO2-supported gold
 nanoparticle catalyst.

Primary alcohols
Molecular O2

SCHEME 49: Synthesis of methyl esters

methyl benzoate

methyl butyrate

methyl pentanoate

Au

Table 14: Hydration of Nitriles.

S. No. Reference No. Reaction Nano particles

1.	 1. 143 NH2

NH2R1

R2 O

OR3

R4

+

1 2

N

N R3

R4

R1

R2

Nano-Fe3O4

H2O, (r.t)

3

SCHEME 50 : Synthesis of tetraalkylpyrazine

Fe
3
O

4

Table 15: Additional Organic Synthesis Reactions.
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2.	 2.
             80

N
H

O

O

O

+ NH4OAc +

O

N
H

NH

O

X

X

Al/Al2O3NPs

1150C, solvent free

SCHEME 51: Synthesis of 2,3-dihydro-2-phenylquinazolin-4(1H)-one

Al/Al
2
O

3

            144

Y NH2

XH

RO2C CO2R

Y

X

H
N O

X = S, O, NH                                     R = CH3, C2H5 
Y= N, CH

CuO Nps

Ultrasonic Ir.

SCHEME 52: Synthesis of (Z)-2-ethylidene-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one and (Z)-2-ethylidene-2H-benzo[b][1,4]thiazin-3(4H)-one

CuO

145 N
H

R1

R2

+
R H

O

Nano-TiO2

Solvent free, 800C
N
H

N
H

H

SCHEME 53: Synthesis of 2,5-dimethyl-3-(1-(2,5-dimethyl-1H-indol-3-yl)ethyl)-1H-
indole

TiO
2

static state. Afterwards, it was washed using water and dried under 
vacuum drying. Finally, the prepared CaO nanoparticles were 
calcinated at 700°C for 3 h [23].

Iron nanoparticles

Iron nanoparticles have been synthesized using polymers as capping 
agents in water as green solvent as well as other types of green 
methods. A green synthesis of iron nanoparticles has been prepared 
by using tea polyphenols without the use of additional polymers 
and surfactants [24]. The iron nanoparticles are used to catalyze the 
hydrogen peroxide for treatment of organic contamination. Iron 
nanoparticles have been used as environmentally benign catalysts 
for alkene and alkyne hydrogenations [14]. Iron nanoparticles that 
have been synthesized used as catalysts for environmentally benign 
alkene and alkyne hydrogenation reactions [25].

Rhodium nanoparticles

CaO and co-workers have reported the catalytic activity of rhodium 
nanoparticles deposited on modified SiO

2
 for hydrogenation of nitrile 

butadiene rubber (NBR) [26]. Kang et al. investigated the morphology 
control synthesis of Rh nanostructures for cancer treatment [27]. 
Rhodium nanoparticles were used in Suzuki-Miyamuri reaction 
and hydrogenation of Benzene by Gniewek and coworkers [28].

Rh nanoparticles can be synthesized using a variety of green 
methods such as the hydrogen reduction method in water as 
solvent, ethanol reduction method in an ethanol water mixture 
in which the ethanol can be rotovaped, and several other green 
methods. Rhodium nanoparticles adsorbed onto titanium dioxide 
supports are synthesized using water as the solvent [29].

Zinc oxide nanoparticles

Zinc oxide nanoparticles (ZnO NPs) are cost effective and relatively 
less toxicity, significant biocompatibility reveal their remarkable 
biomedical applications, such as anticancer, drug delivery, 
antibacterial, diabetes treatment and anti-inflammation [30-35].

Due to the strong UV absorption properties of Zinc Oxide, they 
are used in cosmetics and sunscreen [36-38]. In addition, these 
particles also show excellent luminescent properties and used for 
bioimaging [39,40].

Zinc is the most important component of various enzyme systems, it 

takes part in body’s metabolism and plays essential roles in proteins 
and nucleic acid synthesis, hematopoiesis, and neurogenesis 
[41,42].

Johnson et al. developed a new method for the green synthesis of 
ZnO nanoparticles. In this method, a new leucine-based diamine 
amphiphile was synthesized and self-assembled. In the presence of 
Zn2+ ions, the leucine-based diamine amphiphile assembled into 
nanofibers that efficiently formed ZnO nanoparticles on heating 
with Zn(CH

3
COO)

2 
[43].

Platinum nanoparticles

Platinum nanoparticles (PtNs) possess a wide range of properties 
that can be used for various applications such as catalysts in organic 
catalysis, fuel cells, hydrogen storage, electrical conductivity, optics 
and nonlinear optics, coating, plastics, textile, biosensors and 
biomedicine [44-50]. Engelbrekt and co-workers demonstrated the 
synthesis of PtNPs using a variety of green methods such as the 
hydrogen reduction method in water as solvent, ethanol reduction 
method in an ethanol- water mixture. Monodisperse green Pt 
nanoparticles were synthesized by using glucose as the reducing 
agent and starch as the protective agent [51,52]. This synthesis 
method is environmentally friendly, highly reproducible, and easy 
to scale up. These nanocatalysts were tested for reduction and 
oxidation reactions and were found to have high catalytic activity. 
Moreover, these Pt nanoparticles are stabilized with ionic liquids 
and used as catalysts for four-electron reduction of dioxygen to 
water [53].

Gold nanoparticles

In recent years, AuNPs had attracted an immense interests in 
different fields of science, due to their unique features such as high 
X-ray absorption coefficient, ease of synthetic strategy, enabling 
precise control over the particle's physico-chemical properties, 
strong binding affinity to thiols, disulfides and amines, unique 
tunable optical and distinct electronic properties [54-60]. The 
optical-electronics properties of gold nanoparticles are being 
explored extensively for high technology applications such as 
sensory probes, electronic conductors, therapeutic agents, organic 
photovoltaics, Fuel cells, drug delivery in biological and medical 
applications, and catalysis [61-65].

Itoh et al. investigated the synthesis and functions of gold 
nanoparticles with ionic liquids based on the imidazolium cation. 
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At room temperature green imidazolium-based ionic liquids such 
as 1-butyl-3-methylimidazolium hexafluorophosphate are used as 
liquid media for the synthesis of gold nanoparticles which can be 
used in dyes [66].

The gold nanoparticles were prepared by the addition of HAuCl
4
 

to green tea leaves extract at room temperature. The synthesis of 
the Au nanoparticles does not involve any toxic chemicals/ organic 
solvents so it is a green synthetic process. The gold nanoparticles 
are used as catalysts for the reduction of methylene blue dye 
[67]. Au nanoparticles have been synthesized by a green photo 
catalytic method in which the synthesis is conducted in water 
[68]. Calcium-alginate stabilized gold nanoparticles are prepared 
using a photochemical green synthetic method [69]. Zhan and co-
workers used Au nanoparticles as catalysts for the 4-nitrophenol 
reduction reaction. They have prepared Gold/TS-1 nanoparticles 
using two green routes which are sol-immobilization method and 
adsorption reduction method [70]. This gold nanoparticle catalyst 
show excellent performance for the propylene oxidation reaction.

Silver nanoparticles

Silver nanoparticles have commercialization applications for 
instance, sterilizing nanomaterials in consuming and medical 
products, textiles, food storage bags, refrigerator surfaces, and 
personal care products [71-74]. Additionally, they show optical, 
thermal, and catalytic properties and antimicrobial ability [75-79].

Silver nanoparticles have been synthesized using several green 
methods such as the seed-mediated growth method, in the presence 
of ionic liquids, and other reduction methods such as hydrazine 
reduction method, and sodium borohydride reduction method. 
Ag nanoparticles have been synthesized by a green photocatalytic 
method in which reaction is conducted in water [68]. Calcium-
alginate stabilized silver nanoparticles are prepared using a 
photochemical green synthetic method [69]. These nanoparticles 
are used as catalysts for the 4-nitrophenol reduction reaction.

Aluminium nanoparticles

Solvent-free methods as well as methods involving the use of 
water as solvent have been used to synthesize aluminum oxide 
nanoparticles. Aluminum oxide nanoparticles are synthesized in 

water as the solvent which makes it a green nanocatalyst [80].

Bimetallic nanoparticles

Bimetallic nanoparticles (Figure 2) have been prepared by the 
ethanol reduction method, hydrogen reduction method, and 
other green methods. These nanoparticles have been used as 
catalysts in several organic chemistry, including, oxidation of 
carbon monoxide in aqueous solutions, hydrogenation of alkenes 
in organic or biphasic solutions and hydrosilylation of olefins in 
organic solutions [81,82].

Nickel platinum nanoparticles

Nickel encapsulated by Pt (NiPt) has been synthesized using a green 
colloidal method [83]. Pt NPs are very expensive as electrocatalysts 
so the remedy for this is to diminish the cost by the synthesis of Ni-
Pt bimetallic nanoparticles.

Gold-palladium nanoparticles

Au-Pd nanoparticles are preared in the absence of organic ligands 
and adsorbed onto TiO

2 
supports and is found to be stable in 

oxidative catalysis conditions [84]. It was investigated that 70% 
gold, 30% Pd composition of the bimetallic nanoparticles show 
the highest catalytic activity for the oxidative catalysis.

Application of various nanoparticles in green reactions

Applications of different nanoparticles in green reactions are brief 
in Figure 3 and summarized in Tables 1-15 [85-145].

Nickel-Platinum nanoparticles 

Ni-Pt NPs 

Bimetallic nanoparticles 

Gold-Palladium nanoparticles 

Au-Pd NPs 

Figure 2: Bimetallic Nanoparticles.

 

Nanoparticle's  Green reactions

Conversion of organosilanes to silanols Suzuki cross-coupling reactions

Hydrogenations
Ullmann 
reaction

Heck cross-coupling reaction

Deoxygenation
 reaction

Alkynylation of aryl halides Reduction Arylations and diarylationsOxidation

Esterification of alcohols

Hydration of nitrilesDeoxygenation of epoxides

Acetylations

Figure 3: Varoius nanoparticles green reactions.

https://en.wikipedia.org/wiki/Alloy
https://en.wikipedia.org/wiki/Hydrosilylation
https://en.wikipedia.org/wiki/Alkene
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CONCLUSION
There been many different types of metal nanoparticles that have 
been used as catalysts for many reactions. In many cases, the metal 
nanoparticles are synthesized in aqueous solution in which water is 
the solvent, or is conducted in the presence of ionic liquids. There 
have also been cases where the nanoparticles are used as catalysts 
for different types of green reactions. Green reaction conditions 
include using water as the solvent, using solvent that is organic-
free, conducting the reaction using ionic liquids, and running the 
reaction at atmospheric pressure. While there has been a lot of 
progress in applying the use of green chemistry to catalysis with 
nanoparticles, there is lot more room to further expand this field. 
In this review article, we have focused on the synthesis of various 
nanoparticles and their use in organic synthesis. Still there is 
need to explore and to synthesize new nanocatalysts with more 
properties. This review provides a comprehensive understanding 
on organic reactions which are catalyzed using environmentally 
friendly nanoparticles and nanocatalysts.
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Lykakis IN. Application of Silver Nanoparticles in the Multicomponent 
Reaction Domain: A Combined Catalytic Reduction Methodology to 
Efficiently Access Potential Hypertension or Inflammation Inhibitors. 
ACS Omega 2018;3:16005−16013.

86.	Saha J, Begum A, Mukherjee A, Kumar S. A novel green synthesis 
of silver nanoparticles and their catalytic action in reduction of 
Methylene Blue dye. Sustan Env Res 2017;27:245-250.

87.	  Ostojic N, Duan Z, Galyamova A, Henkelman G, Crooks RM. 
Electrocatalytic Study of the Oxygen Reduction Reaction at Gold 

Nanoparticles in the Absence and Presence of Interactions with SnOx 
Supports. J Am Chem Soc 2018;140(42):13775-13785.

88.	 Ke X, Sarina S, Zhao J, Zhang X, Chang J, Zhu H, et al. Tuning the 
reduction power of supported gold nanoparticle photocatalysts for selective 
reductions by manipulating the wavelength of visible light irradiation. 
Chem Commun 2012;48:3509-3511.

89.	 Ke X, Zhang X, Zhao J, Sarina S, Barry J, Zhu H, et al. Selective reductions 
using visible light photocatalysts of supported gold nanoparticles. Green 
Chem 2013;15:236-244.

90.	 Zhu H, Ke X, Yang X, Sarina S, Liu H. Reduction of Nitroaromatic 
Compounds on Supported Gold Nanoparticles by Visible and 
Ultraviolet Light. Angew Chem Int Ed 2010;49:9657-9661.

91.	 Devivaraprasad R, Nalajala N, Bera B, Neergat M Pt-Cu Bimetallic 
Alloy Nanoparticles Supported on Anatase TiO

2
: Highly Active 

Catalysts for Aerobic Oxidation Driven by Visible Light. ACS Nano 
2013; 7(10):9287-9297.

92.	Choudhary VR, Dhar A, Jana P, Jha R, Uphade BS. A green process for 
chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol 
with molecular oxygen over a supported nano-size gold catalyst. Green 
Chem 2005;7(11):768-770.

93.	Pereira LNS, Ribeiro CES, Tofanello A, Costa JCS, de Moura CVR, 
Garcia MAS, et al. Gold Supported on Strontium Surface-Enriched 
CoFe

2
O

4
 Nanoparticles: A Strategy for the Selective Oxidation of 

Benzyl Alcohol. J Braz Chem Soc 2019;30(6):1317-1325.

94.	 Ide MS, Davis RJ. The Important Role of Hydroxyl on Oxidation 
Catalysis by Gold Nanoparticles. Acc Chem Res 2014;47(3):825-833.

95.	 Martins LMDRS, Carabineiro SAC, Wang J, Rocha BGM, Maldonado‐
Hódar FJ, Pombeiro, AJ L, et al. Supported Gold Nanoparticles as 
Reusable Catalysts for Oxidation Reactions of Industrial Significance. 
Chem Cat Chem Catalysis 2017;9(7):1211-1221.

96.	Santacruz L, Donnici S, Shafir A, Vallriber A. Fluoro-tagged osmium 
and iridium nanoparticles in oxidation reactions. Tetrahedron 
2018;74:6890-6895.

97.	 Bayahia H. Cerium Oxide Nanoparticles Catalyst for the Oxidation of 
Methanol. Orient J Chem 2019; 35(5):1539-1545.

98.	Chauhan BPS, Sarkar A, Chauhan M, Roka A. Water as green 
oxidant: a highly selective conversion of organosilanes to silanols with 
water. Appl Organomet Chem 2009;23(10):385-390.

99.	Jeon M, Han J, Park J. Transformation of Silanes into Silanols using 
Water and Recyclable Metal Nanoparticle Catalysts. Chem Cat 
2012;4:521-524. 

100.	Gitis V, Beerthuis R, Shiju NR, Rothenberg G. Organosilane oxidation 
by water catalysed by large gold nanoparticles in a membrane reactor. 
Catal Sci Technol 2014;4:2156-2160.

101.	Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, et al. 
Perfluoro-tagged, phosphine-free palladium nanoparticles supported on 
silica gel: application to alkynylation of aryl halides, Suzuki-Miyaura cross-
coupling, and Heck reactions under aerobic condition. Green Chem 
2010; 12(1):150-158.

102.	Pérez-Lorenzo M. Palladium Nanoparticles as Efficient Catalysts for 
Suzuki Cross-Coupling Reactions. J Phys Chem Lett 2012;3:167-174.

103.	 Mandali PK, Chand DK. Palladium nanoparticles catalyzed Suzuki 
cross-coupling reactions in ambient conditions. Cat Commun 
2013;13:16-20. 

104.	 Panchal M, Kongor A, Mehta V, Vora M, Bhat K, Jain V, et al. Heck-
type olefination and Suzuki couplingreactions using highly efficient 
oxacalix[4]arenewrapped nanopalladium catalyst. J Saudi Chem Soc 
2018;22:558-568.

105.	Gaikwad DS, Undale KA, Patil DB, Pore DM. Multi-functionalized 



Khaturia S, et al. OPEN ACCESS Freely available online

J Nanomed Nanotechnol, Vol.11 Iss. 2 No: 543 15

ionic liquid with in situ-generated palladium nanoparticles for Suzuki, 
Heck coupling reaction: a comparison with deep eutectic solvents. J 
Iran Chem Soc 2019;16:253-261.

106.	Calò V, Nacci A, Monopoli A, Montingelli F. Pd Nanoparticles as 
Efficient Catalysts for Suzuki and Stille Coupling Reactions of Aryl 
Halides in Ionic Liquids. J Org Chem 2005;70(15):6040-6044. 

107.	 Li P, Wang L, Li H. Application of recoverable nanosized palladium 
(0) catalyst in Sonogashira reaction. Tetrahedron 2005;61(36):8633-
8640.

108.	Xiao Q, Sarina S, Jaatinen E, Jia J, Arnold DP, Liu H, et al. Efficient 
photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles 
under visible light irradiation. Green Chem 2014;16:4272-4285. 

109.	Hubert C, Denicourt-Nowicki A, Beaunier P, Roucoux A. TiO
2
-

supported Rh nanoparticles: From green catalyst preparation to application 
in arenehydrogenation in neat water. Green Chem 2010;12(7):1167-1170. 

110.	Hubert C, Bile EG, Denicourt-Nowicki A, Roucoux A. Rh(0) colloids 
supported on TiO

2
: a highly active and pertinent tandem in neat water for 

the hydrogenation of aromatics. Green Chem 2011;13:1766-1771.

111.	Mitsudome T, Kiyotomi K. Gold nanoparticle catalysts for selective 
hydrogenations. Green Chem 2013;15: 2636-2654.

112.	Zhao J, Ge L, Yuan H, Liu Y, Gui Y, Zhang B, et al. Heterogeneous 
gold catalysts for selective hydrogenation from nanoparticles to atomically 
precise nanoclusters. Nanoscale 2019;11:11429-11436.

113.	Guo M, Li H, Ren Y, Ren X, Yang Q, Li C. Improving Catalytic 
Hydrogenation Performance of Pd Nanoparticles by Electronic 
Modulation Using Phosphine Ligands. ACS Catal 2018;8(7):6476-6485.

114.	Qu R, Macino M, Iqbal S, Gao X, He Q, Hutchings GJ, et al. 
Supported Bimetallic AuPd Nanoparticles as a Catalyst for the 
Selective Hydrogenation of Nitroarenes. Nanomaterials 2018;8(9): 
6901-11.

115.	Ren X, Guo M, Li H, Li C, Yu L, Liu J, et al. Microenvironment 
Engineering of Ruthenium Nanoparticles Incorporated into Silica 
Nanoreactors for Enhanced Hydrogenations. Angew Chem Int Ed 
2019;41:14483-14488.

116.	Murugesan K, Alshammari AS, Sohail M, Matthias BM, Jagadeesh 
RV. Monodisperse nickel-nanoparticles for stereo- and chemoselective 
hydrogenation of alkynes to alkenes. J Catalysis 2019;370: 372-377. 

117.	 Johnson BFG, Raynor SA, Brown DB, Shephard DS, Mashmeyer T, 
Thomas JM, et al. New catalysts for clean technology. J Mol Catal A 
Chem 2002;182- 183:89-97.

118.	Mori K, Yoshioka N, Kondo Y, Takeuchi T, Yamashita H. Catalytically 
active, magnetically separable, and water-soluble FePt nanoparticles 
modified with cyclodextrin for aqueous hydrogenation reactions. Green 
Chem 2009;11(9):1337-1342. 

119.	Cheng J, Tang L, Xu J. An Economical, Green Pathway to Biaryls: 
Palladium Nanoparticles Catalyzed Ullmann Reaction in Ionic 
Liquid/ Supercritical Carbon Dioxide System. Adv Synth Catal 
2010;352 (18):3275-3286.

120.	Cheng J, Zhang G, Du J, Tang L, Xu J, Li J, et al. New role of graphene 
oxide as active hydrogen donor in the recyclable palladium nanoparticles 
catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical 
carbon dioxide system. J Mater Chem 2011;21(10):3485-3494.

121.	Monopoli A, Calo V, Ciminale F, Cotugno P, Angelici C, Cioffi 
N, et al. Glucose as a Clean and Renewable Reductant in the Pd-
Nanoparticle-Catalyzed Reductive Homocoupling of Bromo- and 
Chloroarenes in Water. J Org Chem 2010;75(11):3908-3911.

122.	Samim M, Kaushik NK, Maitra A. Effect of size of copper 
nanoparticles on its catalytic behaviour in Ullman reaction. Bull 
Mater Sci 2007;30:535-540.

123.	Karimi B, Esfahani FK. Unexpected golden Ullmann reaction catalyzed 
by Au nanoparticles supported on periodic mesoporous organosilica 
(PMO). Chem Commun 2011;47:10452-10454.

124.	Zhang W, Qi H, Li L, Wang X, Chen J, Peng K, et al. Hydrothermal Heck 
reaction catalyzed by Ni nanoparticles. Green Chem 2009;11(8):1194-1200.

125.	 Hajipour AR, Fatemeh RF, Khorsandi Z. Pd/Cu-free Heck and 
Sonogashira cross-coupling reaction by Co nanoparticles immobilized on 
magnetic chitosan as reusable catalyst. Green Chem 2017;19:1353-1361. 

126.	Calò V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, et 
al. Heck Reaction Catalyzed by Nanosized Palladium on Chitosan in 
Ionic Liquids. Organometallics 2004;23(22):5154-5158.

127.	Senra JD, Malta LFB, da Costa MEHM, Michel RC, Aguiar LCS, 
Simas ABC, et al. Hydroxypropyl-α-Cyclodextrin-Capped Palladium 
Nanoparticles: Active Scaffolds for Efficient Carbon-Carbon Bond 
Forming Cross-Couplings in Water. Adv Synth Catal 2009;351(14-
15):2411-2422.

128.	 Nyangasi LO, Andala DM, Onindo CO, Jane C, Ngila JC, Makhubela 
BCE, et al. Preparation and Characterization of Pd Modified TiO

2
 

Nanofiber Catalyst for Carbon-Carbon Coupling Heck Reaction. J 
Nanomat 2017;Article ID 8290892:1-13.

129.	 Ghorbani-Choghamarani A, Norouzi M. Suzuki, Stille and Heck cross-
coupling reactions catalyzed by Fe

3
O

4
@PTA-Pd as a recyclable and efficient 

nanocatalyst in green solvents. New J Chem 2016;40:6299-6307. 

130.	García CS, Uberman PM, Martín SE. An effective Pd nanocatalyst in 
aqueous media: stilbene synthesis by Mizoroki-Heck coupling reaction 
under microwave irradiation. Beilstein J Org Chem 2017;13:1717-1727.

131.	Mitsudome T, Noujima A, Mikami Y, Mizugaki T, Jitsukawa K, 
Kaneda K, et al. Room‐Temperature Deoxygenation of Epoxides with 
CO Catalyzed by Hydrotalcite‐Supported Gold Nanoparticles in 
Water. Chem Eur J 2010;16(39):11818- 11821.

132.	Moradi L, Ataei Z. Efficient and green pathway for one-pot synthesis 
of spirooxindoles in the presence of CuO nanoparticles. Green Chem 
Lett Rev 2017;10:380-386.

133.	Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Gold 
Nanoparticle-Catalyzed Environmentally Benign Deoxygenation of 
Epoxides to Alkenes. Molecules 2011;16(10):8209-8227.

134.	Lemhadri M, Doucet H, Santelli M. Alkynylation of Aryl Bromides 
with Propargylamines Catalyzed by a Palladium-Tetraphosphine 
Complex. Synthesis 2005;(8):1359-1367.

135.	Gonzalez-Arellano C, Luque R, Macquarrie DJ. Microwave efficient 
S-arylation of thiols with aryl iodides using supported metal nanoparticles. 
Chem Commun 2009;(11):1410-1412.

136.	 Zhang W, Zeng Q, Zhang X, Tian Y, Yue Y, Guo Y, et al. Ligand-Free 
CuO Nanospindle Catalyzed Arylation of Heterocycle C-H Bonds. J 
Org Chem 2011;76(11):4741-4745.

137.	Delample M, Villandier N, Douliez JP, Camy S, Condoret JS, 
Pouilloux Y, et al. Glycerol as a cheap, safe and sustainable solvent for 
the catalytic and regioselective β,β-diarylation of acrylates over palladium 
nanoparticles. Green Chem 2010;12(5):804-808. 

138.	Kaneda K, Mitsudome T, Mizugaki T, Jitsukawa K. Development 
of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for 
Environmentally Benign Molecular Transformations Based on the 
Surface Properties of Hydrotalcite. Molecules 2010;15:8988-9007.

139.	Kegnaes S, Mielby J, Mentzel UV, Christensen CH, Riisager A. 
Formation of imines by selective gold-catalysed aerobic oxidative 
coupling of alcohols and amines under ambient conditions. Green 
Chem 2010;12(8):1437-1441.

140.	Kim AY, Bae HS, Park S, Park KH. Silver Nanoparticle Catalyzed 



Khaturia S, et al. OPEN ACCESS Freely available online

J Nanomed Nanotechnol, Vol.11 Iss. 2 No: 543 16

Selective Hydration of Nitriles to Amides in Water Under Neutral 
Conditions. Catal Lett 2011;141(5):685-690.

141.	 Polshettiwar V, Varma RS. Nanoparticle‐Supported and Magnetically 
Recoverable Ruthenium Hydroxide Catalyst: Efficient Hydration 
of Nitriles to Amides in Aqueous Medium. Chem Eur J 2009; 
15(7):1582-1586.

142.	Oliveira RL, Kiyohara PK, Rossi LM. Clean preparation of methyl 
esters in one-step oxidative esterification of primary alcohols catalyzed by 
supported gold nanoparticles. Green Chem 2009;11(9):1366-1370. 

143.	Lu H-Y, Yang S-H, Deng J, Zhang Z-H. Magnetic Fe
3
O

4
 Nanoparticles 

as New, Efficient, and Reusable Catalysts for the Synthesis of 
Quinoxalines in Water. Aust J Chem 2010;63(8):1290-1296. 

144.	Sadjadi S, Hekmatshoar R. Ultrasound-promoted greener synthesis 
of benzoheterocycle derivatives catalyzed by nanocrystalline copper(II) 
oxide. Ultrason Sonochem 2010;17(5):764-767.

145.	Rahimizadeh M, Bakhtiarpoor Z, Eshghi H, Porde M, Rajabzadeh G. 
TiO

2 
nanoparticles: an efficient heterogeneous catalyst for synthesis 

of bis(indolyl)methanes under solvent-free conditions. Monatsh. 
Chem 2009;140(12):1465-1469.


