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Introduction
Zinc, following iron, is the second most abundant transition metal 

in humans. About 2-3 g of zinc is present in an adult human body [1]. 
Zinc (II) ions play several roles in biological processes such as enzyme 
regulators, DNA binding or recognition motifs, catalytic centres and 
neural signal transmission [2]. The most important role for zinc is as 
a structural cofactor in metalloproteins [3]. The disruption of zinc 
pools, located primarily in muscle and bone [4] can lead to a number 
of diseases such as type I and type II diabetes [5,6], neural malfunction 
[7] particularly Alzheimer’s disease [8] and certain cancers [9]. Zinc is
now recognized as an important factor in the regulation of apoptosis
[10]. Hence, design and synthesis of new chemosensors for the selective
determination of zinc in trace levels is attaining importance. Moreover,
the d10 electronic configuration [10] of Zn (II) makes it inactive and
forbids UV-Vis spectroscopic determination. Therefore, new fluorescent
indicators that show “off-on” signal in response to the presence of zinc
metal ions will be advantageous in the detection and imaging of zinc
sources as well as zinc contamination.

4-amino-1,8-naphthalimide is one of the most attractive
fluorochromes because of its desirable properties, such as an excellent 
photostability, high luminescence efficiency, large Stokes shift and easy 
modification of the molecular structure [11,12]. Several probes for Zn2+ 
and Cu2+ have been reported [13-31] with 4-amino-1,8-naphthalimide 
as the signalling moiety, but none of them are useful for detection of 
both the metal ions on duel “off-on” or “on-off ” modes. Generally, 
the fluorescence of 4-piperazino-1,8-naphthalimide derivatives is 
quenched due to PET arising from the piperazine nitrogen [32-35]. 
In the present study, binding of a Zn2+ ion quenches the PET process, 
resulting in the fluorescence emission from the chemosensor. Since the 
stability of metal complexes are influenced by the solvent composition, 
and solvent medium plays an important role on the metal ion selectivity 

[36-37]. It is imperative to study the effect of solvents while addressing 
metal ion selectivity and designing chemo sensors.

For the present study, we synthesized a 4-piperazino-1,8-
naphthalimide based fluorescent probe 1 for the selective detection 
of Zn2+ ions. The solvatochromic effects of water and the routinely 
used non-aqueous solvent CH3CN on the stability of 1-Zn2+ complex 
were encountered during the investigation. Interference from other 
competing metal ions was also investigated. The paramagnetic ion Cu2+ 
quenched the fluorescence of 1 as expected, even though Cu2+-induced 
enhancement in fluorescence emission were observed with rhodamine 
based chemosensors [37-39]. The effect of the routinely used solvents 
water and acetonitrile on the selective detection of Zn2+ and Cu2+ ions, and 
the mechanistic aspects involved in complex formation were explored.

Experimental Section
General 

Dry acetonitrile and double distilled water were used in all 
experiments. All the materials for synthesis were purchased from 
commercial suppliers and used without further purification. The 
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Abstract
Aim: The chemosensors permitting naked eye detection of toxic metal ions are user-friendly, portable and obviate 

the requirement of sophisticated equipments. The objective of the present study was to develop a PET (Photoinduced 
Electron Transfer) based chemosensor for Zn2+ that changes its color upon binding to Zn2+ allowing naked eye detection.

Methods: A new 4-piperazino-1,8-naphthalimide based fluorescent probe 1 was synthesized and its structure 
was determined using NMR and XRD techniques. The solvatochromic effects on the absorbance and fluorescence 
characteristics of 1 in aqueous and non-aqueous media were explored. Metal ion competition experiements were 
performed to monitor the interference of common ions like Li+, Na+, K+, Cu2+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, 
Zn2+, Cd2+, Hg2+ and Pb2+. 

Results and conclusion: The significance of the solvatochromic effect in colorimetric and fluorometric detection 
of Zn2+, and turn-off sensing of Cu2+ via metal ion displacement have been emphasized. In non-aqueous environment, 
probe 1 acts as a turn-on chemosensor for Zn2+ and as a turn-off chemosensor towards Cu2+ and thereby, enables the 
detection of Zn2+ and Cu2+ ions in two different modes. In aqueous environment, the probe 1 acts only as a turn-off 
chemosensor for Cu2+ ion.
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solutions of metal ions were prepared from the corresponding chloride 
salts. Absorption spectra were recorded on a SPECORD 200 PLUS 
UV-Visible spectrophotometer. Fluorescence measurements were 
performed on a Cary Eclipse fluorescence spectrophotometer. NMR 
spectra were recorded using a JEOL-ECP500 MHz spectrometer 
operated at 500 MHz. ESI-MS spectra were obtained on a Thermo 
Finnigan LCQ Advantage MAX 6000 ESI spectrometer. Absorption 
and fluorescence measurements were made using a 3.0 mL cuvette.

Synthesis of bromoacetylamino quinoline (o)

The bromoacetylamino quinoline was synthesized in a single-step 
procedure. To a mixture of 8-aminoquinoline (0.72 g, 5.0 mmol) and 
triethylamine (0.60 g, 6.0 mmol) in dichloromethane (DCM) (20 mL) 
at 0ºC, bromoacetylbromide (1.21 g, 6.0 mmol) was added drop-wise, 
and the reaction mixture was stirred at room temperature for 3 h. The 
progress of the reaction was monitored using TLC. After completion, 
the reaction mixture was washed with water and subjected to column 
chromatography (silica gel 100-200 mesh) and eluted using hexane-
ethtyl acetate (98:2) mixture to get 1.06 g (80%) of bromoacetylamino 
quinoline (B) in pure form as pale yellow solid. 

Synthesis of naphthalimide derivative 1

To a solution of 4-bromo-1,8-naphthanoic anhydride (1.0 g, 3.6 
mmol) in EtOH maintained at 80ºC, propylamine (1.0 mL) was added 
slowly. The resulting mixture was stirred for 1h and cooled to room 
temperature. The precipitate formed was filtered and used in the next 
step. To this product, 4-bromo-N-propyl-1,8-naphthanamide, (0.7 g, 
2.2 mmol) in DMSO, piperazine (1.00 g, 11.6 mmol) and K2CO3 (0.42 
g, 3.0 mmol ) were added and stirred at 120ºC for 3h. After completion 
of the reaction, the mixture was extracted with DCM, concentrated and 
subjected to column chromatography (silica gel 100-200 mesh) and 
eluted using ethyl acetate to get 0.50 g (70%) of 4-piperazinyl-N-propyl-
1,8-naphthalimide (p). In order to prepare the desired compound 1, 
4-piperazinyl-N-propyl-1,8-naphthalimide (p) (0.32 g, 1.0 mmol) and 
K2CO3 (0.14 g, 1.0 mmol) were dissolved in DMF. To the resultant 
mixture, bromoacetylamino quinoline (o) (0.30 g, 1.1 mmol) was 
added and stirred at room temperature overnight. After completion of 
the reaction, the mixture was extracted with DCM, concentrated and 
subjected to column chromatography (silica gel 100-200 mesh) and 
eluted using hexane-ethtyl acetate (80:20) mixture to get 0.40 g (80%) 
of probe 1 as yellow solid.

NMR and mass data of napthalimide derivative 1
1]H NMR (CDCl3, 500 MHz), δ (ppm): 1.02 (t, J=7.6 Hz, 3H, 

NCH2CH2CH3), 1.78 (m, 2H, NCH2CH2CH3), 3.05 (s, 4H, Piperazine-
CH2), 3.51 (d, 2H, N-CH2-C=O), 3.49 (m, 4H, Piperazine-CH2), 4.15 
(t, 2H, NCH2CH2CH3), 7.31(d, J = 8.0 Hz, 1H, Ar-H), 7.46 (m, 1H, 
Ar-H), 7.55 (m, 2H, Ar-H), 7.71 (t, J=8.0 Hz, 1H, Ar-H), 8.17 (dd, 
J=1.5 Hz, 1H, Ar-H), 8.44 (d, J=8.0 Hz, 1H, Ar-H) 8.58 (m, 2H, Ar-H), 
8.79 (dd, J=1.5 Hz, 1H, Ar-H) 8.85 (dd, J=1.0 Hz, 1H, Ar-H), 11.49 (s, 
1H, Amide-NH). 13C NMR (CDCl3, 100 MHz), δ (ppm): 11.66, 21.53, 
41.90, 53.43,53.59, 62.49, 115.07, 116.73, 117.10, 121.73, 121.99, 123.42, 
125.91, 126.28, 129.97, 130.25, 131.25, 132.57, 134.26, 136.37, 139.08, 
148.70, 155.86, 164.15, 164.57,168.75. ESI-MS: calcd for C30H29N5O3 
m/z (M+) 507.2, found (M+H)+ 508.3.

Results and Discussion
Synthesis and structure determination of probe 1

The 4-piperazino-1,8-naphthalimide based fluorescent probe 1 

was synthesized in four convenient steps as outlined in figure 1 and 
characterized using NMR (Figure S1-S2, ESI), ESI-Mass (Figure S3, 
ESI), and single crystal X-ray crystallographic techniques (Figure 2, 
CCDC 888111). The proton NMR spectrum of 1 in CDCl3 displayed 
a triplet at 1.02 ppm, a triplet 4.15 ppm and a multiplet at 1.78 ppm 
arising from the propyl group attached to the naphthalimide moiety. 
The two broad peaks at 3.48 and 3.05 ppm were assigned to the two 
types of methylene protons on the piperazine moiety. The presence of a 
doublet at 3.51 ppm corresponding to the linker moiety (N-CH2-C=O) 
confirms the attachment of 8-aminoquinoline to the 4-piperazino-1,8-
naphthalimide derivative. The signals seen in the 13C NMR spectrum 
are in good agreement with the proposed structure. ESI-Mass analysis 
of the probe 1 also supports the proposed structure. Finally, X-ray 
diffraction analysis of single crystals of the probe 1 confirmed the three 
dimensional structure (Figure 2). 

Metal ion selectivity and sensitivity of probe 1

The fluorescence of 4-piperazino-1,8-naphthalimide derivatives 
are usually quenched either completely or partially due to PET [32-
35]. During our screening experiments involving different solvents 
and metal ions, probe 1 showed significant quantum of fluorescence 
in aqueous and non-aqueous media indicating partial quenching due 
to PET process. The fluorescence emission intensity of probe 1 in neat 
CH3CN was decreased upon addition of incremental quantities of 
water, indicating the ability of water to interfere with the life time of 
the excited state of probe 1, presumably, facilitating the non-radioactive 
decay. Hence, we investigated the probe’s ability for the detection of 
different metal ions in aqueous and non-aqueous media.

A 10 µM solution of probe 1 in CH3CN emits green fluorescence, as 
shown in figure 3. Addition of various metal ions (50 µM) like Li+, Na+, 
K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cd2+, Hg2+ or Pb2+ does not 
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Figure 1: Synthesis of napthalimide derivative 1.
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change either the colour or the fluorescence intensity of the solution. 
Interestingly, addition of 50 µM Zn2+ produces a distinct colour 
change due to fluorescence enhancement, while 50 µM Cu2+ turns 
off the fluorescence signal. This dual performance of probe 1 enables 
the naked-eye detection of both Zn2+ and Cu2+ ions in ‘On’ and ‘Off ’ 
modes, respectively (Figure 3a). However, when the solvent system is 
changed from CH3CN to CH3CN/H2O (1:1) mixture, the probe 1 fails 
to discriminate Zn2+ from other metal ions while retaining the ‘Off ’ 
signal for Cu2+ (Figure 3b). It appears, therefore, that the high polarity 
of aqueous CH3CN (1:1 CH3CN/H2O) medium effectively nullifies 
the Zn2+-induced enhancement in the fluorescence of 1, and thereby, 
permits only Cu2+ selective ‘turn-off ’ sensing.

Influence of solvent on Zn2+ and Cu2+ complex formation

The absorbance characteristics of probe 1 (10 µM) in CH3CN and 
CH3CN/H2O (1:1) mixture containing equimolar quantities of different 
metal ions are shown in figure 4. In neat CH3CN, probe 1 exhibits two 
absorbance maxima, one corresponding to quinoline moiety (~242 
nm) and the other arising from naphthalimide moiety (~408 nm). 
Addition of various metal ions (10 µM), excepting Zn2+ and Cu2+, does 
not induce any changes in the absorption pattern of 1 (Figure 4a). The 
addition of Zn2+ (10 µM) causes a red shift in the absorbance maximum 
of quinoline moiety (from ~242 to ~255 nm). However, no significant 
changes are observed in the absorbance maximum of naphthalimide 
moiety (Figure 4a). This marked red shift in the absorbance maximum 
of quinoline moiety and the absence of any significant changes in the 
absorbance maximum of naphthalimide moiety clearly indicate that 
Zn2+ is bound to the probe 1, but not to the piperazine ‘N’ attached 
to the naphthalimide moiety. A similar titration in CH3CN/H2O (1:1) 
mixture (Figure 4b) shows the absence of any red shift in the absorbance 
maximum of quinoline moiety, and indicates the destabilizing effect of 
water in the formation and stability of 1-Zn2+ complex.

A similar study with Cu2+ provides a different picture of the 
destabilizing effect of water on the stability of 1-Cu2+ complex (Figures 
4a and 4b). The addition of Cu2+ (10 µM) shifts the absorbance 
maximum of quinoline moiety (red shift: from ~242 to ~255 nm) and 
that of naphthalimide moiety (blue shift: from ~408 to ~399 nm) in 
neat CH3CN. The blue shift is more pronounced in CH3CN/H2O (1:1) 
mixture (from ~399 to ~389 nm). These shifts in absorbance clearly 
indicate that Cu2+ is bound to the piperazine ‘N’ attached to the 
naphthalimide moiety, and thereby, decreases the electron donating 
capacity of the latter in both the solvents.

The variations in the absorbance pattern of probe 1 (10 µM) in neat 
CH3CN, in response to the addition of serial concentrations of Zn2+ 
and Cu2+ are shown in figure 5. In both the cases, the absorbance at 

~255 nm reached the maximum at 20 µM concentrations of metal ions. 
However, the incremental increase in the peak intensity at ~255 nm is 
more pronounced on the addition of Cu2+ ions (Figure 5b) than on the 
addition of Zn2+ ions (Figure 5a). This observation sheds light on the 
relative stabilities of the respective complexes formed.

In a similar experiment carried out in 1:1 CH3CN/H2O medium, 
significant variations in the absorbance of probe 1 (10 µM) are observed 
only upon addition of serial concentrations of Cu2+ ions. Upon addition 

Figure 2: ORTEP diagram of probe 1.
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of one equivalent of Cu2+, the absorbance maximum at ~255 nm 
reaches the maximum level (Figure 6b) suggesting the formation of a 
1:1 complex with probe 1. Such a complex formation with Zn2+ is not 
observed even after the addition of 30 µM Zn2+ ions as indicated by the 
absence of the red shifted peaks at ~255 nm arising from the absorbance 
maximum of quinoline moiety (Figure 6a).

Solvent assisted dual mode sensing of Zn2+ and Cu2+

Since the fluorescence of probe 1 is quenched by water, all 
fluorescence measurements were carried out in 100% CH3CN for dual 
detection of Zn2+ and Cu2+ ions. The effect of different metal ions on the 
fluorescence emission intensity of probe 1 (10 µM) is shown in figure 
7a. Whereas the addition of Zn2+ (10 µM) enhances the fluorescence to a 
significant level, the addition of Cu2+ (10 µM) quenches the fluorescence 
emission intensity almost completely. Confirmation of the opposing 
contributions of Zn2+ and Cu2+ is seen in the fluorescence spectra of 1 
in the presence of serial concentrations of Zn2+ and Cu2+ ions (Figures 
7b and 7c). Other common metal ions do not affect the fluorescence 
emission spectrum of probe 1. These results reveal that probe 1 could 
be used to detect Zn2+ and Cu2+ from normally co-existing metal ions, 
albeit, at two different modes. 

The metal ion competition experiments exemplifies that Zn2+ (10 
µM) induced fluorescence enhancement of probe 1 is unaffected by 
even five-fold excess amounts of other metal ions like Li+, Na+, K+, 
Mg2+, Ca2+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cd2+, Hg2+ and Pb2+. However, 
complete quenching of fluorescence is observed by the addition of an 
equimolar quantity of Cu2+, indicating the higher binding affinity for 

Cu2+ as compared to Zn2+ (Figure S4, ESI). The higher binding affinity 
of probe 1 for Cu2+ over Zn2+ is confirmed by the binding constants 
calculated [40] for 1-Cu2+ (5.8×105 M-1) and 1-Zn2+ (3×105 M-1) 
complexes. Further, addition of Cu2+ (10 µM) to probe 1 equilibrated 
with the other metal ions (50 µM) also results in complete quenching of 
fluorescence (Figure S5, ESI).

It appears, therefore, that upon addition of Cu2+ to the fluorescent 
1-Zn2+ complex, Cu2+ replaces Zn2+ in the complex leading to the 
formation of a non-fluorescent 1-Cu2+ complex (Figure 8). Moreover, 
addition of EDTA to 1-Cu2+ complex restores the fluorescence 
characteristics of probe 1. This indicates that the formation of 1-Zn2+ 
and 1-Cu2+ complexes is reversible and that the changes in the 
fluorescence characteristics of probe 1 in response to the addition of 
Zn2+ and Cu2+ ions are due to complex formation (Figure S6, ESI) and 
not due to any catalytic action.

Thus, the UV-Visible and fluorescence experiments clearly establish 
Zn2+ induced red shift of the absorbance of quinoline moiety in probe 1. 
This red shift in the absorbance could be attributed to the change in the 
electronic delocalization of the quinoline moiety upon Zn2+ binding. 
Further insight into the reason as to why these changes occur in the 
absorption and fluorescence emission upon addition of Zn2+, could be 
gained using NMR and ESI-MS techniques.

Binding sites for Zn2+ and Cu2+ on probe 1 are different

Analysis of the 1H-NMR spectra of the probe 1 alone, and in the 
presence of serial concentrations of Zn2+ (Figure S7, ESI) clearly show 
that the piperazine protons labelled as ‘a’ in figure 9, shift to down 
field, and that the intensity of the amide proton decreases while the 
intensity of the other protons remain unchanged. The deshielding effect 
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experienced by the piperazine protons labelled as ‘a’ is not observed 
with the piperazine protons labelled as ‘b’ in figure 9.

The 13C-NMR spectra recorded under identical conditions (Figure 
S8, ESI) show the disappearance of the amide carbonyl resonance at 
~170 ppm, indicating its involvement in complex formation. Taken 
together, the NMR data confirm the involvement of the piperazine ‘N’ 
and carbonyl ‘O’, in 1-Zn2+ complex formation and the induction of 
extended conjugation with the quinoline moiety. This also explains the 
red shift in the absorbance maximum of quinoline moiety upon 1-Zn2+ 
complex formation. Since the piperazine ‘N’ has the ability to quench 
the fluorescence of the naphalimide moiety by PET process, the 1-Zn2+ 
complex formation would decrease the electron density at piperazine 
‘N’, reduce the effect of PET process on napthalimide moiety, and 
thereby, enhance the fluorescence intensity. This proposition is further 
supported by ESI-MS spectrum (Figure S6, ESI). The ESI-MS spectrum 
of 1-Zn2+ complex also confirms the 2:1 ligand:metal geometry of the 
fluorescent complex with subsequent deprotonation of amide ‘NH’ as 

shown in figure 9. Further, addition of Cu2+ to the fluorescent 1-Zn2+ 
complex, leads to the formation of a non-fluorescent 1-Cu2+ complex 
via metal ion displacement (Figure 8). 

Conclusion
The synthesis, structure determination and physicochemical 

properties of a chemosensor that emits fluorescence only upon 
complex formation with Zn2+, are described. Probe 1 selectively detects 
Cu2+ in aqueous environment by fluorescence “on-off ” mechanism. 
In non-aqueous medium, it acts as a dual sensor for Zn2+ and Cu2+, 
albeit, in two different modes. The mechanistic aspects involved in 
metal ion detection are demonstrated. Water plays a significant role in 
colorimetric and fluorometric detection as well as metal-ligand complex 
formation. The observations of this study emphasize the importance of 
solvent screening during the development of new fluorescent probes for 
the selective detection of specific metal ions.
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