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DESCRIPTION 

We provide a short communication on our previously published 
article titled “Accumulation of “Old Proteins” and the Critical 
Need for MS-based Protein Turnover Measurements in Aging 
and Longevity” which highlighted the need to measuring protein 
turnover and protein half-lives in the context of aging and 
longevity. We specifically focused on Long-Lived Proteins (LLP), 
such as the nuclear pore complexes, extracellular matrix 
proteins, and protein aggregates. We discussed the role of these 
LLPs during aging and disease and presented relevant mass 
spectrometric workflows how to measure protein turnover and 
gain insights into the systems biology of proteostasis and aging 
[1]. 

 
LONGEVITY IS CORRELATED WITH LONGER PROTEIN 
HALF-LIVES IN MAMMALS 

Dysfunctional proteostasis is a hallmark of aging and age-related 
diseases, such as Alzheimer’s disease, cardiac dysfunction, type 2 
diabetes, among others. The rise of mass spectrometry-based 
workflows that enable the direct measurement of in vivo protein 
turnover rates across hundreds of proteins in a single experiment 
have resulted in remarkable discoveries about the potential role 
of protein turnover in mammalian longevity. In nearly all studies 
estimating protein turnover rates in mouse models of longevity, 

whether conferred by dietary interventions [2-4], 
pharmacological interventions [2-4], or genetic interventions 
[4,5], increased maximal lifespan is correlated with longer 
proteome half-lives across multiple tissues [6]. Comparative 
studies between laboratory mice and the long-lived naked mole 
rat have confirmed this phenomenon across rodents [7,8]. A 
recent study from the Ghaemmaghami group surveyed protein 
half-lives across species with diverse lifespans, including humans 
and the longest living mammal–the bowhead whale-and they 
have shown a stunning correlation of maximal lifespan and 
protein half-lives across many species [9]. 

These observations raised interesting possibilities with regard to 
the relationship between the turnover of the proteome and 
longevity of mammalian species. First, these findings suggest 
slower global protein turnover may be an indicator of a healthy 
proteome and a requirement for longevity. Second, these 
observations suggest that slower rates of global protein turnover 
may be biomarkers for longevity. Going forward, it will be 
important to utilize Mass Spectrometry (MS)-based strategies to 
test these possibilities in an experimental setting. For example, it 
will be of high interest to assess whether longer proteome half- 
lives can be used to screen for interventions that will extend 
lifespan in mammalian models. Critically, MS-based approaches 
provide the granularity to determine the half-lives of individual 
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ABSTRACT 
Mass Spectrometry-based protein turnover studies have shed light on the remarkable relationship between protein 

turnover and longevity. Here, we discuss the potential implications of the strong correlation between protein 

longevity (longer soluble protein half-lives) and longer mammalian lifespan, and conversely, the accumulation old 

insoluble proteins with age. We propose several strategies that can be employed in future studies to address the 

interesting questions raised by these observations-which protein half-life best correlate with longevity? Is protein half- 

live a biomarker for interventions that extend lifespan? How do post-translational modifications affect protein 

turnover? 
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proteins for hundreds of proteins across the proteome, and it 
will be important to determine whether specific subsets of 
proteins are the best predictors of whether an intervention will 
extend lifespan. Given the wide range of protein half-lives 
measured in a single experiment (ranging from hours to 
months) and the range of responses of individual proteins to 
treatments, it will be crucial to identify a set of specific proteins 
with responses to treatment that most closely correlates to 
increases in lifespan. Ideally, this biomarker panel may consist of 
relatively abundant proteins with shorter half-lives, which can be 
more easily measured in a short stable isotope labeling 
experiment. 

 
A BETTER STRATEGY FOR PROTEOME MAINTENANCE 

The critical question still remains-why does longevity require 
longer protein half-lives? The reason remains unclear, but there 
are several hypotheses that may explain these observations. 
Swovick et al. proposed that long-lived species have developed 
more selective and energy efficient mechanisms to select and 
degrade damaged proteins, thus on the bulk level, protein 
turnover is reduced [9]. Another explanation is that long-lived 
animals synthesize proteins with less ‘errors’ and better maintain 
proteins-thus requiring fewer turnovers. Indeed, longer-lived 
animals tend to produce less reactive oxygen species [2,9] and 
have improved translational fidelity [10]. Improving translational 
fidelity and maintenance of proteins may be a better strategy to 
maintain proteins that are difficult to degrade and replace, such 
as highly insoluble protein aggregates and Extracellular Matrix 
(ECM). 

 
UNDERSTANDING THE ACCUMULATION OF OLD AND 
INSOLUBLE PROTEINS WITH AGE 

Yet another hallmark of aging and indicator of dysfunctional 
proteostasis is the accumulation of old and damaged insoluble 
proteins, such as highly modified ECM proteins and protein 
aggregates [1,11]. Unlike the long-lived soluble proteins 
traditionally measured by protein turnover studies discussed 
above, these long lived insoluble, aggregated, or otherwise 
sequestered proteins indicate a deficiency in the cells ability to 
turn them over. By nature of ‘existing’ longer, long-lived proteins 
have more opportunity to accumulate Post-Translational 
Modifications (PTMs) that may alter their structure and 
function. Interestingly, we have previously observed the 
accumulation of “old” ubiquitinated proteins in aged mice [12], 
suggesting a failure of a subset of highly modified proteins to 
turn over. Conversely, it is possible that the accumulation of 
specific PTMs sequesters proteins from being turned over by 
increasing insolubility or aggregation propensity. In future 
studies, it will be worthwhile to better examine the relationship 
between the PTMs, protein solubility, and protein turnover in a 
more systematic and comprehensive way using MS-based 
approaches. Methodological advancements in the identifying 
and quantification of PTMs [13] have enabled the 

 
 

comprehensive assessment of multiple PTMs across the 
proteome, even with limited protein quantities. The application 
of these methods in combination with stable-isotope labeling 
may shed light on the relationship between protein modification 
and turnover. 
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