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Introduction
Often, in many engineering applications it is required to find the 

best approximate solution of multi-objective optimization problems 
quick and with good accuracy. Multi-objective optimization 
problems are very common and important in real world applications, 
and as such many researchers are still working to devise various 
novel heuristic and mathematical approaches for their solution. 
Mathematical techniques were more common in the earlier times 
for optimal solution, but as many of the conventional and especially 
deterministic pure mathematical optimization schemes suffer from 
stagnation in local optima, there is a demand for new innovations 
for heuristic methods [1]. The history of heuristic algorithms as a 
revolutionary idea for stochastic optimization techniques goes back 
to 1984 [1,2]. Further, it is notable that stochastic optimization 
techniques are readily applicable to the real problem because of 
gradient free mechanism and local optima trap avoidance. Stochastic 
and multi- objective optimization is in use in different fields of study 
such as mechanical engineering [3], civil engineering [4], chemistry 
[5,6] and other [7]. There are also some heuristic algorithms 
suggested to solve challenging problems in power systems such as 
cuckoo search algorithm [8], Pseudo-Gradient based Particle Swarm 
Optimization with Constriction Factor (PG-PSOCF) [9] and Hybrid 
Particle Swarm Optimization (HPSO) [10].

Within the past decade, a number of multi-objective heuristic 
algorithms has been suggested [11–14] that represent various 
trade-offs between the objectives including optimal solutions of a 
multi-objective problem [15]. In contrary to classical optimization 
methods converting the multi-objective optimization problem 
to a single-objective optimization problem by emphasizing one 
particular Pareto optimal solutions at a time, multi-objective 
heuristic algorithms give a set of optimal solutions called Pareto 
optimal solutions (PAS). A key point in this regard is to find 
accurate approximation of true Pareto optimal solutions with 
the highest diversity for multi-objective optimization algorithms 
[16]. PAS help decision makers to select a certain optimal points 
in a diverse range of design options based on their experience 
and design requirements. Among the most well-known stochastic 

optimization techniques are Non-dominated Sorting Genetic 
Algorithm (NSGA) [17], Strength-Pareto Evolutionary Algorithm 
(SPEA) [18,19], Pareto Archived Evolution Strategy (PAES) [20], 
Pareto frontier Differential Evolution (PDE) [21], Efficient Ant 
Colony Optimization [22], Hybridization of Fruit Fly Optimization 
Algorithm and Firefly Algorithm (FOA-FA) [23], Non-dominated 
Sorting Genetic Algorithm II (NSGA II) [24] and Multi-Objective 
Particle Swarm Optimization (MOPSO) [25]. MOPSO is one of 
the most popular multi-objective meta-heuristic algorithms that 
are conceptually similar to PSO. In more recent MOPSO studies 
[26–28] extra conditions such as diversity estimation are utilized to 
reach better exploration characteristics. In this sense, the concept 
of Pareto dominance for selecting leaders from a non-dominated 
external archive has been utilized by MOPSO where the leaders of 
swarms that guide the particles to the Pareto Frontier are selected 
from the top portion of the archive at each iteration. A dynamic 
fitness inheritance technique [29] is also applied to reduce the 
computation cost of the optimization process. Another well-known 
multi-objective meta-heuristics is NSGA II [24] that is a multi-
objective version of the well- regarded Genetic Algorithm (GA) 
[30,31]. NSGA II was proposed to remove several deficiencies of 
its first version [17] that included high computational cost of non-
dominated sorting, lack of elitism and lack of sharing parameters. 
In the second version, the first population is generated randomly 
and each individual is grouped based on the non-dominated sorting 
method and new population is generated by genetic operators such 
as selection, crossover and mutation operators. The new population 
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Abstract
This paper introduces a hybrid scheme for multi-objective optimization problems via utility of two established 
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to NSGA II sorting for the optimum points, the SA searches the optimum set to find the local optimal points 
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SA is an efficient algorithm that can accurately and quickly exploit the promising area for the optimum point. 
The proposed hybrid scheme is applied to multi- objective optimization of some bench mark functions and its 
performance is compared against those of the classical NSGA II as well as the Multi-Objective Particle Swarm 
Optimization (MOPSO). The numerical results show that the proposed hybrid scheme provides competitive 
results that outperform those of the existing algorithms.
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is next sorted again and the new elements of the final population are 
selected via higher non-dominated level. The process of selecting the 
non-dominated individuals is repeated till reaching a population of 
the same size as the initial population. 

More recently over the past three years a number of multi-
objective optimization algorithms have also been proposed. These 
new studied include Multi-objective Grey Wolf Optimizer [1], 
Multi-objective Cat Swarm Optimization [32], Multi-objective 
Differential Evolution [33], Multi-objective Gravitational Search 
Algorithm [34], Multi-objective Ant Colony Optimization [35], 
Multi-objective Artificial Bee Colony algorithm [36] and the Multi-
objective Teaching-Learning-Based Optimization algorithm [37]. 
These studies show the ability of meta-heuristics in handling multiple 
objectives. Although all algorithms are able to approximate the true 
Pareto optimal front of a given problem, they are not able to solve all 
optimization problems accurately. Therefore, it is still very likely that 
new hybrid algorithms to be proposed that can solve new problems 
that not solved before and/or with a better accuracy as compared 
with the existing techniques. 

In this respect a new hybrid heuristic optimization algorithm 
is proposed in the current work for multi-objective problems. The 
proposed hybrid algorithm hybridizes the Nelder-Mead simplex 
algorithm with the Non-dominated Sorting Genetic Algorithm II 
(NSGA II) to find the best global point. The performance of the new 
proposed algorithm is demonstrated via some complex benchmark 
functions. 

The organization of this paper is as follows: section 2 deals with 
the mathematical representation of multi-objective optimization. 
Section 3 describes the simplex method. Section 4 is devoted 
to non-dominated sorting genetic algorithm II. The proposed 
hybrid algorithm is introduced in section 5. Section 6 provides 
the numerical simulation results. Finally, a conclusion is drawn in 
section 7. 

Multi-Objective Optimization
The problem is to minimize the fitness function of a multi-objective 

problem. The model is described as follows:

{ }
j

k

F(x)= m=1, 2, ..., M

subject to g (x) j=1, 2, ..., J
h (x) k=1, 2, ..., K

∈

≤

M
m f ( x) R  

   0
                    = 0

                                 (1)

where { }x x 1, 2, ..., N= ∈ℜ =N
n n  is the N-dimensional vector 

of decision variables that represents the possible solutions, M is the 
number of objectives, fm is the objective function, and (gj, hk) are the 
inequality and equality constraint functions, respectively.

To clarify the concept of Pareto optimality, consider two vectors {Fa, 

Fb}M. Fa dominates Fb (denoted by b
m

a
m ff ≤ ) if and only if ( b

m
a
m ff ≤ ). The 

dominance relations a cF F and a cF F  for a two-objective problem 
are indicated by labelled circles in Figure 1. Hence, a vector of decision 
variables Xa  is a non-dominated solution if and only if there is no other 
solution Xb such that a bF(x ) F(x ) . The non-dominated solution is 
also known as the Pareto optimal solution. The set of non-dominated 
solution of a multi-objective optimization problem is known as the 
Pareto Optimal set (P). The set of objective vectors with respect to 
(P) is known as the Pareto Front ( F x x{ ( ) | }M= ∈ℜ ∈PF P ). The 

PF for a two-objective problem is illustrated by the black circles in 
Figure 1.

It is desired to find as many non-dominated solutions as possible 
according to the conflicting and different objective functions and 
constraints in the multi-objective optimization algorithm. The Pareto 
front corresponding to the non-dominated set should be as close to 
and well distributed over the true Pareto front as possible. However, it 
is possible to have different solutions that map to the same fitness value 
in objective space.

Simplex Method
Simplex is a heuristic optimization algorithm. It is a direct search 

method that does not use the derivatives of the objective function. 
Simplex is a geometrical object produced by n+1 points (X0,..., Xn) in 
an n-dimensional space [38,39]. Thus for example, the simplex in two-
dimension space is a triangle. The basic idea of the simplex algorithm 
is to compare the value of the objective function at n+1 vertices of a 
simplex object and move it gradually toward the optimum point via 
an iterative process. The following equations can be used to generate 
the vertices of a regular simplex of size a  (equilateral triangle in two-
dimensional space), within the n-dimensional space [39]:

j 0 j sx =x +px + qu
≠

∑
n

s =1
s j

                                   (2)

where X0 is the initial base point, us is the unit vector along the 
coordinate axis s  and p,q  are defined as follows: 

( )1n1n
2n

−++=
ap                             (3)

( )11n
2n

−+=
aq                                   (4) 

Through a sequence of elementary geometric transformations 
(reflection, contraction and expansion), the simplex, shown in Figure 
2, moves toward the optimum point where after each transformation, 
the current worst vertex is replaced by a better one. 

2f

1f

aF
cF

bF

Figure 1: Dominance relation for two objectives problem.
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The reflected, expanded and contracted points are given by: Xr, Xe and 
Xc , respectively.

r 0 hx =(1+ ) -  x 0α α α >x                                              (5)

e rx = x +(1-γ γ γ0 ) x >1                           (6) 

c hx = x +(1- 0 1β β β≤ ≤0 ) x                          (7) 

Here, 0x  is the centroid of all vertices jx  except h=j ; where 

h is the index of the worst point. The parameters α, β and γ are called 
reflection, expansion and contraction coefficients, respectively.

Reflection is the operation by which the worst vertex, called high, 
is reflected with respect to the centroid 0x . If the reflected point is 
better than all other points, the method expands the simplex in the 
reflection direction; otherwise, if it is at least better than the worst, the 
algorithm performs again the reflection with the new worst point [39]. 
The contraction is performed when the worst point is at least as good 
as the reflected point.

Non-dominated Sorting Genetic Algorithm II (NSGA 
II)

The NSGA II [24] algorithm is one of the most efficient and famous 
algorithms for multi-objective optimization. It uses fast non-dominated 
sorting to rank the population fronts and a parameter called crowding 
distance is calculated in the same front. Subsequently, the tournament 
selection is made between two individuals that are randomly selected 
from the parent population. The individual with lower front number is 
selected if the two individuals come from different fronts. The individual 
with higher crowding distance is selected if the two individuals are 
from the same front. Next the crossover and mutation operators are 
used to generate a new offspring population. And finally, the parent 
and offspring population are combined together where a fast non-
dominated sorting and crowding distance assignment procedure is 
used to rank the combined population and only the best N individuals 
are selected as the new parent population [40].

NSGA II is proposed on basis of non-dominated sorting genetic 
algorithm (NSGA) [17] and the main advantages of NSGA II 
compared with NSGA are as follows: (1) it uses a fast non-dominated 
sorting approach, (2) it has no sharing parameter and (3) it uses an 
elitist strategy [40]. NSGA II has good global search ability and well 
distributed non-dominated solution in the Pareto front. Nevertheless, 
the convergence capability of NSGA II is limited and its elite strategy 
may result in the loss of the non-dominated solutions in the Pareto 
front [40].

Simplex Non-Dominated Sorting Genetic Algorithm II
In This section, the proposed hybrid algorithm is introduced as a 

tool for multi-objective optimization problems. First the basic structure 
of the proposed algorithm is presented followed by detail description of 
the constructive modules. 

General setting out of the algorithm

The block diagram of Simplex-NSGA II is shown in Figure 3. 
The parameters of Simplex-NSGA II are set during the initialization. 
Simplex-NSGA II utilizes two heuristic algorithms, simplex 
optimization method and NSGA II to find the optimal solution. In 
this approach, simplex optimization is utilized as exploration to make 
better diversity within the search space. In addition NSGA II is used as 
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Figure 2: Available moves in the simplex method: (a) initial simplex; (b) 
reflection; (c) expansion; (d) contraction.
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Figure 3: Simplex-NSGA II flowchart.



Citation: Pourtakdoust SH, Zandavi SM (2016) A Hybrid Simplex Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization. Int J 
Swarm Intel Evol Comput 5: 138. doi: 10.4172/2090-4908.1000138

Page 4 of 11

Volume 5 • Issue 3 • 1000138
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

exploitation to arrange the member of Pareto optimal solutions is the 
main form of a multi-objective optimization algorithm. The proposed 
Simplex-NSGA II consists of two loops. The outer loop generates new 
population using the simplex method at each generation. The inner loop 
initially propagates the vertices of simplex using reflection, expansion 
and contraction operations to reshape and move the simplex toward 
likelihood regions of the search space and is terminated when the 
maximum number of iterations ( maxi ) is reached. Table 1 represents 
the pseudo-code of the Simplex-NSGA II.

Initialization

Simplex-NSGA II has nine parameters that must be set before the 
execution of the algorithm. The parameters are listed in Table 2 and are 
introduced in the following subsections.

Generation initial population

In the proposed method, the initial parent population ( 0P  of size 
popN ) is generated randomly with uniform distribution. The population 

is sorted based on non-domination and each solution is assigned a 
fitness value equal to its non-domination level. An initial offspring 
population ( 0Q ) with the same size as the parent population is created 
through recombination based on binary tournament selection and 
inducing variations via mutation operators.

Population update

From the first generation onward, a combined population (
gen gen gen= R P Q ) is formed that is sorted according to fast non-

domination procedure. The new parent population is formed by the 
inner loop. Therefore, during any iteration of the inner loop, the 

population will be updated using reflection, expansion and contraction 
operators for the next generation. In this respect, any individual that 
is generated by genetic operators such as selection, crossover and 
mutation is utilized as vertices of the simplex to generate the initial 
simplex in order to create the new population.

Stop condition

The inner loop stops when the maximum number of iterations 
(imax) is reached. The outer loop is stopped when the maximum number 
of generation is reached.

Numerical Results
In this section, the performance of Simplex-NSGA II is evaluated 

using ten benchmarks that are proposed in CEC 2009 [41], listed in 
Table 3 and 4. The results are compared to well-known algorithms 
of Non-dominated Sorting Genetic Algorithm II (NSGA II) [24] and 
Multi-Objective Particle Swarm Optimization (MOPSO) [28]. For 
the performance metric [32], Inverted Generational Distance (IGD) 
[42], Spacing (SP) [43] and Maximum Spread (MS) [18] criteria are 
employed to measure convergence, quantity and coverage respectively. 
The mathematical formulation of IGD is as follows:

 N 2

1
d

IGD
N
=
∑

=
i

i
                                    (8)

Where N is the number of true Pareto optimal solutions and  di 
indicates the Euclidean distance between the i-th true Pareto optimal 
solution and the closet obtained Pareto optimal solutions in the 
reference set. It should be noted that IGD 0=  indicates that all 
members of the non-dominated solutions are in the true Pareto Front.

 The mathematical formulation of the SP and MS are as follows:

N 1 2

1

1SP (d d )
N 1

−

=
∑= −

− i
i

                       (9)

where  d   is the average of all  di ,  N is the number of  Pareto optimal 

solutions obtained, and i j i j
1 1 2 2mind  ( (x) (x) (x) (x) )= − + −i

j
f f f f  for 

all , 1, 2, 3, ..., N=i j .

Initialization

Set: Genetic Parameters ( genN , popN , crP , mutP ),

Simplex Parameters ( a , α , γ , β , imax) 

Generate initial population (
0P  and 0Q )

gen=1

Repeat
Evaluate fitness function

Combine 
genQ  and 

genQ
Classify the population ( gen gen genR P Q=  )
Create simplex’s vertices
Selection
Crossover
Mutation
i=1
Repeat

Generate simplex

Compute cost function for each vertex

Update simplex

Reflection

Contraction

Expansion

i=i+1

Until
 maxi≥i

Create new population
gen=gen+1
Until gengen N≥

Table 1: Simplex-NSGA II pseudo-code.

Parameter Description Value

popN Population size 50

genN Maximum generation 100

Pcrs
Probability of crossover 0.80

Pmut
Probability of mutation 0.01

a Side of simplex 22

α Reflection coefficient 0.9

γ Expansion coefficient 2

β Contraction coefficient 0.005

maxi
Maximum iteration of 

simplex method 60

Table 2: Parameters of simplex-NSGA II.
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Name Mathematic Formulation
UF1

1 2

2 2

1 1 j 1 2 j 1
j J j J1 2

1 2

2 j 2 jf x x sin(6 x ) , f 1 x x sin(6 x )
J n J n

J {j | j is odd and 2 j n},  J {j | j is even and 2 j n}

∈ ∈
∑ ∑

π π   = + − π + = − + − π +      
= ≤ ≤ = ≤ ≤

UF2

1 2

2 2
1 1 j 2 j

j J j J1 2

1 2

2
j 1 1 1 1 1

j
2

j 1 1 1 1 2

2 2f x y ,  f 1 x y
J J

J {j | j is odd and 2 j n},  J {j | j is even and 2 j n}
4j jx [0.3x cos(24 x ) 0.6x ]cos(6 x ) if j J
n ny

4j jx [0.3x cos(24 x ) 0.6x ]sin(6 x ) if j J
n n

∈ ∈
∑ ∑= + = − +

= ≤ ≤ = ≤ ≤

π π − π + + π + ∈
=

π π
− π + + π + ∈






UF3

1 11 2

j j2 2
1 1 j 2 1 j

j J j Jj J j J1 2

1 2
3( j 2)0.5(1 )

n 2
j j 1

20y 20y2 2f x 4 y 2 cos( ) 2 ,  f x 4 y 2 cos( ) 2
J Jj j

J  and J  are the same as those of UF1

y x x ,  j 2,3,...., n

∈ ∈∈ ∈

−
+

−

∑ ∑∏ ∏
   π π

= + − + = + − +      
   

= − =

UF4

1 2
1 1 j 2 2 j

j J j J1 2

1 2

j j 1 2 t

2 2f x h(y ) ,  f 1 x h(y )
J J

J  and J  are the same as those of UF1
tjy x sin(6 x ),  j 2,3,....,n , h(t)

n 1 e

∈ ∈
∑ ∑= + = − +

π
= − π + = =

+
UF5

1 2
1 1 1 i 2 1 1 i

j J j J1 2

1 2

2
j j 1

1 2 1 2f x ( ) sin(2N x ) h(y ) , f 1 x ( ) sin(2N x ) h(y )
2N J 2N J

J  and J  are the same as those of UF1 , >0
jy x sin(6 x ),  j 2,3,....,n , h(t) 2t cos(4 t) 1
n

∈ ∈
∑ ∑= + + ε π + = − + + ε π +

ε
π

= − π + = = − π +

UF6

1 1

2 2

j2
1 1 1 j

j J j J1

j2
2 1 1 j

j J j J2

1 2

j

20y1 2f x max 0,2( ) sin(2N x ) 4 y 2 cos( ) 1
2N J j

20y1 2f 1 x max 0,2( ) sin(2N x ) 4 y 2 cos( ) 1
2N J j

J  and J  are the same as those of UF1 , >0

y

∈ ∈

∈ ∈

∑ ∏

∑ ∏

 π = + + ε π + − +       
 π = − + + ε π + − +       

ε

j 1
jx sin(6 x ),  j 2,3,....,n
n
π

= − π + =

UF7

1 2

2 25 5
1 1 j 2 1 j

j J j J1 2

1 2

j j 1

2 2f x y  , f 1 x y
J J

J  and J  are the same as those of UF1 
jy x sin(6 x ),  j 2,3,....,n
n

∈ ∈
∑ ∑= + = − +

π
= − π + =

Table 3: Bi-objective benchmark functions.
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M

1
MS max[d( , )]

=
∑= i i
i

a b                     (10)

where d is a function to calculate the Euclidean distance, ib  is 
the maximum value in the ith objective, ib  is the minimum in the ith 
objective, and M is the number of objectives.

In addition to utilizing the performance metrics, the best set of 
Pareto optimal solution obtained by Simplex-NSGA II on both the 
parameter space as well as the search space is shown in Figures 4-6. 
These figures show the performance of Simplex-NSGA II in comparison 
with true Pareto front. For a comparative evaluation, all the algorithms 
are run 30 times on the test problems and the statistics results of the 30 

runs are provided in Tables 5-7. Note that 900,000 function evaluations 
are used for each algorithm and the number of parameters for each 
benchmark is 30.

Statistical results of the algorithm for IGD, SP and MS are provided 
in Tables 5-7, respectively. The IGD shows that the proposed hybrid 
algorithm (Simplex-NSGA II) is able to provide the best results on all 
statistical metrics for bi-objective test problems. IGD is the performance 
metric that shows the accuracy and convergence of an algorithm. Thus 
it can be stated that the proposed Simplex-NSGA II algorithm is able to 
provide superior convergence on the bi-objective benchmarks.

The resulting Pareto optimal solution of Simplex-NSGA II on each 
benchmark is also depicted in Figures 4 and 5. These figures demonstrate 

Name Mathematic Formulation

UF8

1

2

3

2
1 1 2 j 2 1

j J1

2
2 1 2 j 2 1

j J2

2
3 1 j 2 1

j J3

1

2 jf cos(0.5x )cos(0.5x ) (x 2x sin(2 x ) )
J n
2 jf cos(0.5x )sin(0.5x ) (x 2x sin(2 x ) )
J n

2 jf sin(0.5x ) (x 2x sin(2 x ) )
J n

J {j | 3 j n,  and j 1 is a multiplication of

∈

∈

∈

∑

∑

∑

π
= π π + − π +

π
= π π + − π +

π
= π + − π +

= ≤ ≤ −

2

3

 3}
J {j | 3 j n,  and j 2 is a multiplication of 3}
J {j | 3 j n,  and j is a multiplication of 3}

= ≤ ≤ −
= ≤ ≤

UF9

1

2

3

2 2
1 1 2 2 j 2 1

j J1

2 2
2 1 2 2 j 2 1

j J2

2
3 2 j 2 1

j J3

1

2 jf 0.5[max{0,(1 )(1 4(2x 1) )} 2x ]x (x 2x sin(2 x ) )
J n
2 jf 0.5[max{0,(1 )(1 4(2x 1) )} 2x ]x (x 2x sin(2 x ) )
J n

2 jf 1 x (x 2x sin(2 x ) )
J n

J {j | 3 j n,  and j 1 i

∈

∈

∈

∑

∑

∑

π
= + ε − − + + − π +

π
= + ε − − + + − π +

π
= − + − π +

= ≤ ≤ −

2

3

s a multiplication of 3}
J {j | 3 j n,  and j 2 is a multiplication of 3}
J {j | 3 j n,  and j is a multiplication of 3},  0.1

= ≤ ≤ −
= ≤ ≤ ε >

UF10

1

2

3

2
1 1 2 j j

j J1

2
2 1 2 j j

j J2

2
3 1 j j

j J3

1

2

2f cos(0.5x )cos(0.5x ) (4y cos(8 y ) 1)
J
2f cos(0.5x )sin(0.5x ) (4y cos(8 y ) 1)
J

2f sin(0.5x ) (4y cos(8 y ) 1)
J

J {j | 3 j n,  and j 1 is a multiplication of 3}
J {j | 3 j

∈

∈

∈

∑

∑

∑

= π π + − π +

= π π + − π +

= π + − π +

= ≤ ≤ −
= ≤

3

n,  and j 2 is a multiplication of 3}
J {j | 3 j n,  and j is a multiplication of 3}

≤ −
= ≤ ≤

Table 4: Tri-objective benchmark functions.
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Figure 4: Pareto optimal solutions for UF1 to UF6.

the convergence and coverage characteristics (Tables 6 and 7) of the 
Simplex-NSGA II are also better than the other algorithms. In addition, 
Simplex-NSGA II Pareto optimal fronts are closer to the true Pareto 
front and highly distributed along both objectives. The numerical 
results show that the performance of the Simplex-NSGA algorithm is 
more stable than MOPSO and NSGA II.

Problems UF8, UF9 and UF10 are three-objective that make them 
more challenging against the two-objective problems. The results 
of the first three-objective problem show that Simplex-NSGA II has 
competitive and even better performance in solving these problems as 
compared to NSGA II.

The Pareto optimal fronts obtained by the proposed algorithm 
for UF8 are shown in Figure 5. The Pareto optimal solutions have 

converged towards the true Pareto optimal front despite their low 
diversity. Therefore, the proposed Simplex-NSGA II algorithm shows 
high convergence but low coverage for the UF8 in the best case.

The UF9 test problem has a separated Pareto front and its pertinent 
results indicate that the proposed algorithm has been effective on this 
challenging test function. The statistical results both quantitatively and 
qualitatively indicate that the coverage of the proposed Simplex-NSGA 
II is very good for all objectives. Finally, the results of the last UF10 test 
problem are similar to that of UF8, in which NSGA II provides better 
statistical results on the average, median and standard deviation, and 
the worst result is for IGD. However, the proposed Simplex-NSGA II, 
provides the best coverage among the 30 independent runs. 

To get a better image of the Pareto optimal sets obtained via the 



Citation: Pourtakdoust SH, Zandavi SM (2016) A Hybrid Simplex Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization. Int J 
Swarm Intel Evol Comput 5: 138. doi: 10.4172/2090-4908.1000138

Page 8 of 11

Volume 5 • Issue 3 • 1000138
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

  

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

Results of Simplex-NSGA II on UF7

 

 
True Pareto Front
Obtained Solution

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 

f1

Results of Simplex-NSGA II on UF8

f2

 

f 3

True Pareto Front
Obtained Solution

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 

f1

Results of Simplex-NSGA II on UF9

f2

 

f 3

True Pareto Front
Obtained Solution

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

 

f1

Results of Simplex-NSGA II on UF10

f2

 

f 3

True Pareto Front
Obtained Solution

FIGURE 5: PARETO OPTIMAL SOLUTIONS FOR UF7 TO UF10.

 
 

 

0
0.5

1
1.5

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

 

x1

Result of Simplex-NSGA II on UF2

x2

 

x 3

True Pareto Set
Obtained Solution

0 0.2 0.4 0.6 0.8 1
0

0.5
1
0

0.2

0.4

0.6

0.8

1

 

x1

Result of Simplex-NSGA II on UF7

x2

 

x 3

True Pareto Set
Obtained Solution

0

1

2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-2

-1

0

1

2

3
 

x2

Result of Simplex-NSGA II on UF7

x1

 

x 3

True Pareto Set
Obtained Solution

Figure 6: Pareto optimal sets of Simplex-NSGA II on UF2, UF7 and UF9.



Citation: Pourtakdoust SH, Zandavi SM (2016) A Hybrid Simplex Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization. Int J 
Swarm Intel Evol Comput 5: 138. doi: 10.4172/2090-4908.1000138

Page 9 of 11

Volume 5 • Issue 3 • 1000138
Int J Swarm Intel Evol Comput, an open access journal
ISSN: 2090-4908

IGD
UF1 UF2 UF3

Simplex-
NSGAII MOPSO MOEA/D Simplex-

NSGAII MOPSO NSGA II Simplex-
NSGAII MOPSO NSGA II

Average 0.04695 0.137005 0.18713 0.01359 0.06040 0.12224 0.07361 0.31399 0.28875
Median 0.03886 0.13174 0.18285 0.01225 0.04835 0.1231 0.07265 0.30802 0.28989

STD. Dev. 0.03319 0.04407 0.05073 0.00289 0.02762 0.01040 0.01108 0.04473 0.015931
Worst 0.09301 0.22786 0.24642 0.01845 0.13051 0.14389 0.09167 0.37773 0.31284
Best 0.00674 0.08990 0.12652 0.01060 0.03699 0.10456 0.05764 0.25648 0.26322

UF4 UF5 UF6
Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII MOPSO NSGA II Simplex-
NSGAII MOPSO NSGA II

Average 0.02434 0.13604 0.06813 0.45289 2.20238 1.29155 0.15713 0.64752 0.688412
Median 0.02415 0.13432 0.06846 0.45486 2.12574 1.33731 0.13523 0.55073 0.69811

STD. Dev. 0.00138 0.00739 0.00214 0.08449 0.55304 0.13479 0.09019 0.26612 0.05543
Worst 0.02760 0.15189 0.07037 0.53701 3.03836 1.46726 0.35279 1.24281 0.74031
Best 0.02295 0.12733 0.06466 0.25741 1.46479 1.12326 0.07954 0.37933 0.55255

UF7 UF8 UF9 UF10
Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII NSGA II Simplex-
NSGAII NSGA II Simplex-

NSGAII NSGA II

Average 0.02669 0.35395 0.45534 0.19992 0.53681 0.31183 0.48840 1.70149 1.63729
Median 0.02641 0.38730 0.43776 0.20740 0.53650 0.32593 0.41441 1.54063 1.59123

STD. Dev. 0.01986 0.20442 0.18993 0.06217 0.18267 0.08044 0.14459 0.55163 0.29849
Worst 0.06600 0.61512 0.67711 0.33433 0.79647 0.48522 0.72230 3.02835 2.16250
Best 0.00558 0.05402 0.02910 0.12553 0.24530 0.22217 0.33365 1.12806 1.22028

Table 5: Statistical results for IGD on UF1 to UF10.

SP
UF1 UF2 UF3

Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII MOPSO NSGA II Simplex-
NSGAII MOPSO NSGA II

Average 0.03811 0.00898 0.00384 0.02770 0.00829 0.00876 0.01991 0.00699 0.28875
Median 0.03761 0.00855 0.00382 0.02654 0.00814 0.00859 0.02007 0.00677 0.28939

STD. Dev. 0.01516 0.00247 0.00151 0.01289 0.00168 0.00076 0.00276 0.00170 0.01582
Worst 0.06146 0.01464 0.00665 0.06199 0.01245 0.01042 0.02369 0.01007 0.31294
Best 0.01399 0.00670 0.00213 0.01640 0.00624 0.00797 0.01461 0.00476 0.26342

UF4 UF5 UF6
Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII MOPSO NSGA II Simplex-
NSGAII MOPSO NSGA II

Average 0.02543 0.00666 0.00730 0.12049 0.00479 0.00278 0.06150 0.02084 0.00640
Median 0.02386 0.00662 0.00728 0.12758 0.00487 0.00007 0.05482 0.01235 0.00000

STD. Dev. 0.00475 0.00091 0.00059 0.02505 0.00408 0.00553 0.04126 0.03258 0.01227
Worst 0.03384 0.00809 0.00836 0.15826 0.01206 0.01615 0.13353 0.11140 0.03010
Best 0.02055 0.00546 0.00610 0.07457 0.00006 0.00000 0.01222 0.00215 0.00000

UF7 UF8 UF9 UF10
Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII NSGA II Simplex-
NSGAII NSGA II Simplex-

NSGAII NSGA II

Average 0.02541 0.00670 0.00540 0.23364 0.02682 0.25104 0.02343 1.06788 0.01994
Median 0.02379 0.00655 0.00441 0.23699 0.02639 0.24302 0.02349 0.89524 0.02066

STD. Dev. 0.01286 0.00285 0.00301 0.03859 0.00827 0.03695 0.00405 0.41661 0.00348
Worst 0.05257 0.01240 0.01168 0.27492 0.04473 0.30891 0.03087 1.81766 0.02665
Best 0.00351 0.00325 0.00084 0.16389 0.01531 0.19916 0.01716 0.67219 0.01536

Table 6: Statistical results for SP on UF1 to UF10.

proposed Simplex-NSGA II, the first three variables of the true Pareto 
optimal set and determined sets are illustrated in Figure 6 showing a 
very goof convergence and coverage characteristics. 

In summary, numerical results demonstrate that the proposed 
Simplex-NSGA II has better performance for bi-objective bench mark 
functions with regards to convergence and coverage. However, for 
some tri-objective bench mark functions, even though the proposed 
algorithm shows high convergence, it has a low coverage. Thus one 
could say the key advantages of the proposed Simplex-NSGA II 
algorithm compared to NSGA II and MOPSO are high convergence 

and coverage characteristics. In addition, the results of the proposed 
Simplex-NSGA II were in almost all cases better than those of 
MOPSO. Thus the results show that the proposed Simplex-NSGA II 
outperforms MOPSO as it utilizes simplex operators for generating 
new population obtained from the non-dominated solution. In 
addition, MOPSO updates gBest in each iteration. So all particles are 
attracted by the same (or a similar set of) gBest(s) in each iteration 
[44], while the individuals of Simplex-NSGA II, are updated for each 
generation thus assisting search agents to explore the search space 
more extensively.
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MS
UF1 UF2 UF3

Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII MOPSO NSGA II Simplex-
NSGAII MOPSO NSGA II

Average 0.96922 0.64538 0.51774 0.89222 0.91205 0.87201 0.99659 0.61030 0.23994
Median 0.91629 0.66322 0.59541 0.88328 0.91636 0.87437 1.00000 0.61612 0.22943

STD. Dev. 0.13919 0.19292 0.16609 0.05448 0.02560 0.00560 0.08165 0.10575 0.12129
Worst 0.79407 0.26592 0.31478 0.82385 0.86654 0.85986 0.87763 0.38172 0.08975
Best 0.99536 0.95226 0.74128 0.93883 0.95301 0.87794 1.00000 0.77145 0.47863

UF4 UF5 UF6
Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII MOPSO NSGA II Simplex-
NSGAII MOPSO NSGA II

Average 0.95759 0.81275 0.88320 0.83746 0.27926 0.29215 0.98393 0.27435 0.09677
Median 0.96323 0.81321 0.88131 0.83556 0.28654 0.29165 1.00000 0.22917 0.00005

STD. Dev. 0.01762 0.01367 0.01812 0.06986 0.09575 0.03470 0.21202 0.11285 0.20715
Worst 0.92252 0.79441 0.85324 0.69914 0.15574 0.23834 0.79702 0.15436 0.00000
Best 0.97665 0.83449 0.91394 0.95996 0.43827 0.34380 1.00000 0.52516 0.59484

UF7 UF8 UF9 UF10
Simplex-
NSGAII MOPSO NSGA II Simplex-

NSGAII NSGAII Simplex-
NSGAII NSGA II Simplex-

NSGAII NSGA II

Average 0.98737 0.42928 0.56317 0.35198 0.50810 0.87641 0.19160 0.27643 0.13025
Median 1.00000 0.29520 0.63267 0.34883 0.50601 0.94795 0.16566 0.14774 0.10933

STD. Dev. 0.09838 0.27553 0.24209 0.44928 0.16136 0.39021 0.16351 0.38569 0.06243
Worst 0.80289 0.14458 0.14963 0.27879 0.22723 0.30638 0.06771 0.03183 0.06479
Best 1.00000 0.87714 0.99152 0.73412 0.71476 0.96641 0.64242 0.93133 0.25414

Table 7: Statistical results for MS on UF1 to UF10.

Conclusion
A new hybrid heuristic optimization algorithm is proposed for 

multi-objective optimization problems. The proposed hybrid algorithm 
formulates the optimization problems via a stochastic search method. 
The new hybrid algorithm is based on Nelder-Mead simplex and Non-
dominated Sorting Genetic Algorithm II (NSGA II) developed to find the 
global optimum. The proposed hybrid scheme is noted as Simplex-NSGA 
II whose performance is evaluated using a series of bi-objective and tri-
objective benchmarks test functions. The results are compared with those 
of other multi-objective optimization methods such as MOPSO and NSGA 
II. The numerical results demonstrate that the proposed hybrid algorithm 
has a greater performance in solving multi-objective optimization 
problems with a much better convergence and coverage capability.
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