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Introduction
Conformationally constrained peptides are very good subjects for 

investigations, since the provided modifications make the structure 
more rigid. It helps in studies of active conformations structures in 
solution. Widely used cis peptide bond constraints include: N-metylated 
residues [1], double bonds [2], or 1,2,3 triazole [3]. But the most 
common cis amide bond surrogate is 1,5-disubstituted tetrazole [4,5]. 
This mimic was successfully introduced to among others bradykinin 
[6], CCK-B receptor ligands [7], somatostatin [8], enkephalins [9], 
TRH analogues [10] or scyliorhinin I [11], allowing structural studies 
of bioactive conformations.

The object of this study Scyliorhinin II (ScyII) was isolated from 
the dogfish gut in 1986 by Conlon et al. [12]. It is a tachykinin peptide 
which displays selective agonistic activity towards the NK-3 tachykinin 
receptor [13]. All tachykinin receptors are of similar sequence and 
belong to the family of G-protein coupled receptors. Their structure 
is based on heptahelical structure of rhodopsin [14]. The wide range 
of physiological activity of tachykinin peptides is caused by their short 
backbone and linearity [15]. Because of these features, they can easily 
adopt bioactive conformation in contact with the receptor. Scyliorhinin 
II is one of the biggest tachykinin peptides. Furthermore, there is a 
disulfide bridge which is rare structural element among all naturally 
occuring tachykinins. The amino acid sequence of this peptide is as 
follows:

Ser1-Pro-Ser-Asn-Ser-Lys-Cys(&)-Pro-Asp-Gly-Pro-Asp-Cys(&)-
Phe-Val-Gly-Leu-Met18

Literature data [1,16-18] describes selective agonists for 
NK-3 tachykinin receptor as ones which prefer to adopt α-helical 
conformation. Our previous studies showed that ScyII does not adopt 
any particular secondary structure in the solution. Moreover, we 

detected the existence of cis/trans equilibrium involving three residues 
of ScyII [19]. 

Additionally, as reported [1,20,21], Gly16 plays an important role 
in biological activity and three-dimensional structure of this peptide. 
Taking above into account, we decided to synthesize two restrained 
analogues of ScyII. We introduced a tetrazole ring as a surrogate for 
the cis peptide bond between positions 11 and 12 ([11Ψ12(CN4])]ScyII) 
and 15 and 16 ([15Ψ16(CN4])]ScyII). In this paper, we describe total 
conformational analysis of [11Ψ12(CN4)]ScyII and [115Ψ16(CN4)]ScyII 
molecules in DMSO-d6 using NMR spectroscopy in conjunction with 
restrained molecular dynamics calculations. We present our results as a 
set of low energy conformations and discuss them in terms of structural 
features in comparison to ScyII and its other analogues.

Materials and Methods
Peptide synthesis

Both peptides were synthesized according to protocol described 
previously [11].

NMR experiment

The sample concentrations were approximately 5 mM in DMSO-d6 
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Abstract
A conformational analysis of two analogues of scyliorhinin II [11Ψ12(CN4])]ScyII and [15Ψ16(CN4)]ScyII was 

performed in DMSO-d6. 2D NMR techniques and restrained molecular dynamics were applied. Our previous studies 
had shown Scyliorhinin II adopts three cis peptide bonds in DMSO-d6 solution. Moreover, in its two analogues [Aib16]
ScyII and [Sar16]ScyII, we also found cis peptide bond geometries. Taking above into consideration, we decided to 
perform extensive conformational studies of restrained ScyII analogues. To do so, we introduced tetrazole groups into 
either of peptides studied. These peptides were synthesized by the solid-phase method using the Fmoc chemistry. 
In the case of two analogues, the following spectra were recorded: TOCSY, NOESY, ROESY, DQF-COSY and set 
of temperature ones. To obtain final structures, we performed restrained molecular dynamics simulations carried out 
using CHARMM force field as implemented in XPLOR 3.11 programm. Our calculations resulted in two ensembles of 
10 conformations each. Comparing the obtained structures, we found that introduction of a 1,5-substituted tetrazole 
ring influences the three dimensional structure both locally and globally.
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for [11Ψ12(CN4)]ScyII and [15Ψ16(CN4)]ScyII. All experiments were 
carried out on a Varian Unity 500 Plus spectrometer (Varian Instruments 
USA), operating at 500 MHz resonance frequency at 305 K except for 
temperature ones, which were measured throughout the temperature 
range of 295-313 K. The assignment of the proton shifts was made by 
means of one dimensional proton spectra and two dimensional TOCSY 
(90 ms) [22], NOESY (400 ms) [23], ROESY (200 ms) [24], and DQF-
COSY [25,26]. All NMR data was processed using VNMR 6.1B [27], 
XEASY 3.1 [28] and CARA 1.2 [29] software.

Vicinal coupling constants

The 3JNHα coupling constants were extracted from 1D 1HNMR and 
2D DQF-COSY spectra. Due to a great number of overlaping signals 
in NH region, collecting of 3JHN-Hα constants was possible in the case of 
[15Ψ16(CN4)]ScyII only. 

NOE effects

All NOE cross-peaks, for peptides studied were picked up in the 
NOESY spectra. The integration was performed in CARA 1.2. 

Conformational calculations

Parameterization of tetrazole groups: Two residues including 
tetrazole ring were build as Pro[ΨCN4]Asp and Val[ΨCN4]Gly. They 
were modelled using bond lengths, the valence and torsional angles 
of appropriate residues and compatible molecular segments taken 
from CSDS database [30]. The partial atomic charges were optimized 
by fitting the point-charge Coulombic potential to the molecular 
electrostatic potential calculated using GAMESS program and RHF 
6-31 G* wave function [31]. 

Calculations were performed for two different conformations of 
every non-standard residue, followed by consecutive averaging the 
charges over all conformations, as recommended by the RESP protocol 
[32,33].

Molecular Dynamics Calculations
Calculations were carried out in CHARMM force field implemented 

in XPLOR 3.1 package [34]. The starting conformation was set to 
random. Additionally, NMR-derived constraints for interproton 
distances, dihedral angles and ω angles of the peptide groups (to keep 
them in a trans configuration) were added to the target function with 
force constants: f=50 kcal/mol×Å2, f=50 kcal/mol×rad2 and f=500 kcal/
mol×rad2, respectively. The chirality of Cα atoms (except for Gly) was 
fixed to l by imposing a three-fold potential on the improper N-CO-
Cα-Cβ torsion angles with force constant f=500 kcal/mol×rad2.

Results and Discussion
Assignment of the proton chemical shifts of both peptides was 

completed using DQF-COSY, TOCSY (Figure 1a and 1b) and NOESY 
spectra. Spin systems of Val, Leu and Met were identified based on the 
position of their β, δ and γ protons. Signals of protons of aminoacids 
joined with a tetrazole group were recognized by the cross-peak between 
Hα atoms of these residues. Asn 4 protons were possible to identify 
by means of couplings between Hβ and HNδ. All Gly residues were 
unambiguously identified by their Hα positions. The rest of Hα protons 
were identified by sequential couplings visible in fingerprint region 
of NOESY spectra (Figure 2a and 2b). Next using TOCSY spectra, 
the rest of protons were assigned. Correctness of this assignment 
was proved by means of DQF-COSY and NOESY. For two residues 
of [15Ψ16(CN4)]ScyII, we found more than one set of residual proton 

resonances (Lys6, Val15). It could be connected with either the presence 
of cis/trans isomerization or flexibility of peptide’s fragments containing 
these residues. All the chemical shifts are summarized in Table 1a 
and 1b. In both cases, all peptide bonds were in trans configuration. 
To obtain interproton distances, 67 and 124 NOE effects were picked 
for [11Ψ12(CN4)]ScyII and [15Ψ16(CN4)]ScyII, respectively. Obtained 
NOE pattern for [11Ψ12(CN4)]ScyII and temperature coefficients 
(Figure 3a) suggested lack of any particular dominant secondary 
structure element. However dNN(i,i+2) and dαN(i,i+2) NOEs of Cys13 
and Val15 pointed the existence of two β-turns in regions involving 
these residues. Moreover, ∆δ/∆T values obtained for these residues 
indicated involvement of their HN protons in the formation of strong 
hydrogen bonds. The second peptide [15Ψ16(CN4)]ScyII showed also a 
rigid structure at the C-terminus. NOE pattern (Figure 3b) suggested 
existence of two overlapping β-turns in the region Phe14-Met18. One 
of their determinants was the tetrazole ring between Val15 and Gly16. 

The vicinal coupling constants indicated extended structure 
of the peptide’s backbone (most of obtained values are above 8 Hz). 
Additionally, when comparing values of temperature coefficients, we 
deducted that the second peptide studied characterized more packed 
arrangement of the backbone. 

Conformational calculations were carried out only for major 
species because there was too little data to determine minor ones. 
As a result, we chose ten conformers of the lowest energy from two 
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Figure 1: Fingerprint region of TOCSY spectra of Scyliorhinin II analogues in 
dmso-d6: a) [11Ψ12CN4

12]ScyII b) [15Ψ16CN4]ScyII.
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tetrazole is an effective restraint, which allows the peptide to adopt 
conformation to be recognized by the enzyme [4-6,35-38]. Further, 
more introduction of this mimic into bradykinin showed that the 
peptides were able to adopt most conformations of those for native 
hormone [4-6,35-38].

ensembles of 100 conformations for each of the peptide studied. For 
obtained structures, we calculated the positions and types of β-turns 
(Table 2). They pointed the rigid structure of the peptides and were in 
good agreement with NMR data indicating [15Ψ16(CN4)]ScyII as more 
rigid and packed than the other peptide. 

The superposition of all Cα atoms of [11Ψ12(CN4)]ScyII and 
[15Ψ16(CN4)]ScyII gave RMSDs of 1.778 and 1.869 Å, respectively. 
In both ensembles of results, we indicated families of conformations 
with lower RMSD values. They were: the family of 6 conformations 
with RMSD of 0.878 Å for [11Ψ12(CN4)]ScyII and two families of 4 
conformations for [15Ψ16(CN4)]ScyII with RMDSs of 0.597 and 0.555 
Å (Figure 4a-4c). Fragments of studied peptides were better defined 
what was confirmed by the values of corresponding RMSDs. For 10 
conformations of [11Ψ12(CN4)]ScyII, superposition of Cα atoms of 7-13 
and 12-18 fragments produced RMSDs of 0.792 and 0.546 Å, respectively, 
whereas for the second peptide, the same fragments gave RMSDs of 1.078 
and 1.040 Å. In Figure 5, we showed the comparison of the lowest energy 
conformations obtained for both ScyII analogues. Analyzing -turns, we 
could say that IV type β-turn is present in almost all conformations in the 
regions, which contain tetrazole ring. Positions of other β-turns in each 
conformational ensemble were similar, but the type. 

Conclusions
Studying published data, we have found that 1,5-disubstituted 
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Figure 2: Fingerprint of NOESY spectra of peptides studied in dmso-d6: 
a) [11Ψ12CN4]ScyII b) [15Ψ16CN4]ScyII.
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Figure 3: Internal intensities of off-diagonal signals in NOESY spectra, the HN 
temperature coefficients ∆/∆T (-p.p.b./K) and vicinal coupling constants 3JHN-Hα 
of ScyII analogues: a) [11Ψ12CN4]ScyII b) [15Ψ16CN4]ScyII.

Aminoacid
Chemical shifts (ppm)

HN α-H β-H γ-H δ-H Others
Ser1 8.06 4.20 3.55

Pro2 4.45
2.10

1.84
1.90

3.67

3.53
Ser3 8.04 4.20 3.55

Asn4 8.08 4.58
2.75

2.40

NH1 6.93

NH2 7.43
Ser5 7.27 4.23 3.47
Lys6 8.11 4.16 1.71 1.50 1.32 ε 2.74
Cys7 7.99 4.73 3.37 2.72

Pro8 4.12
2.11

1.62
1.79

3.45

3.30

Asp9 8.00 4.26
2.02

1.89
Gly10

Pro11 5.28
2.26

1.83
2.00

3.90

3.61
Asp12 5.58 3.35
Cys13 9.05 4.57 2.88

Phe14 8.49 4.63
3.05

2.83
Ar 7.21

Val15 7.74 4.11 1.95 0.84
Gly16 8.10 3.72
Leu17 7.92 4.28 1.59 1.45 0.84

Met18 7.91 4.23
1.91

1.79

2.43

2.37

Table 1a: The chemical shifts (ppm) of [11Ψ12(CN4)]ScyII in DMSO-d6 at 305 K.
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A)                                                     B)                                              C)

Figure 4: Superposition of Cα atoms of the obtained conformations: a) family of 
six conformations of [11Ψ12CN4

12]ScyII, RMDS=0.878 Å, b) and c) families of four 
conformations of [15Ψ16CN4]ScyII RMSDs equal 0.597 and 0.555 Å respectively. 
Disulfide bridge is marked yellow and tetrazole red.

Aminoacid
Chemical shifts (ppm)

HN α-H β-H γH δ-H Others

Ser1 8.32 4.32 3.60

Pro2 4.63
2.21

1.80
2.07

3.49

3.42

Ser3 8.31 4.33 3.60

Asn4 8.19 4.59
2.56

2.46

NH1 6.95

NH2 7.43

Ser5 7.79 4.22
3.59

3.48

Lys6 8.03 4.17 1.71 1.53 1.31 ε 2.75

Cys7 7.98 4.76
3.35

2.80

Pro8 4.20
2.07

1.75
1.82

3.57

3.48

Asp9 8.49 4.61
2.85

2.68

Gly10 7.46
4.17

3.74

Pro11 4.45
2.12

1.84
1.93

3.67

3.53

Asp12 8.05 4.52
2.54

2.46

Cys13 7.62 4.35
3.04

2.97

Phe14 7.75 4.46
2.87

2.77

Ar δ 6.96

Ar ε 7.11

Val15 8.49 4.72 2.31
0.97

0.73

Gly16 5.22

Leu17 8.64 4.32 1.46 1.60
0.88

0.82

Met18 8.11 4.25
1.88

1.77

2.42

2.38

Table 1b: The chemical shifts (ppm) of [15Ψ16(CN4)]ScyII in DMSO-d6 at 305 K.

[11ΨCN4
12]ScyII

Conformation number Positions (i+1 and i+2) and types of β-turns
[11`Ψ12CN4]ScyII

1

Ser3-Asn4. type I
Ser5-Lys6. type II
Lys6-Cys7. type II’
Pro11-Asp12. type IV
Phe14-Val15. type IV

2

Ser3-Asn4. type III’
Lys6-Cys7. type IV
Pro11-Asp12. type IV
Phe14-Val15. type III’

3
Asn4-Ser5. type VII
Pro11-Asp12. type IV
Phe 14-Val15. type I’

4
Ser3-Asn4. type IV
Lys6-Cys7. type IV
Phe14-Val15. type IV

5
Asn4-Ser5. type III’
Phe14-Val15. type III”

6
Ser5-Lys6. type IV
Pro11-Asp12. type IV
Phe14-Val15. type II

7
Ser3-Asn4. type III’
Ser5-Lys6. type IV
Phe14-Val15. type III’

8
Gly10-Pro11. type VI
Pro11-Asp12. type IV

9
Ser3-Asn4. type III’
Gly10-Pro11. type VI
Pro11-Asp12. type IV

10
Asn4-Ser5. type III’
Phe14-Val15. type IV

[15Ψ16CN4]ScyII

1

Ser3-Asn4. type III
Ans4-Ser5. type IV
Ser5-Lys6. type IV
Asp9-Gly10. type II
Gly10-Asp11. type III’
Phe14-Val15. type III
Val15-Gly16. type VI

2

Pro2-Ser3. type I’
Asn4-Ser5. type IV
Ser5-Lys6. type III’
Asp9-Gly10. type II
Gly10-Pro11. type III’
Phe14-Val15. type I
Val15-Gly16. type VI

3

Asn4-Ser5. type II”
Ser5-Lys6. type II
Asp9-Gly10. type II
Gly10-Pro11. type III’
Phe14-Val15. type I
Val15-Gly16. type VI

4

Asn4-Ser5. type II’
Ser5-Lys6. type III’
Asp9-Gly10. typeV
Gly10-Pro11. type IV
Phe14-Val15. type III
Val15-Gly16. type VI
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Not contrary to literature [39], obtained conformations for both 
ScyII analogues do not adopt any particular secondary structure. 
Studying the positions of β-turns, we assumed that they were similar 
to those in [Sar16]ScyII and [AiB16]ScyII, but their types were different. 
Closer analysis of Ramachandran plots obtained for the peptides 
studied revealed that C-terminus of [11Ψ12(CN4)]ScyII might tend 
to adopt helical structure, which additionally could be confirmed by 
dNN(i,i+2) NOE effect. Such conformation is responsible for biological 
activity of tachykinin peptides [1], and may be formed in contact with 
receptor. Introduction of tetrazole between residues 11 and 12 made the 
C-terminus more rigid and helped expose C-terminal fragment out of 
the molecule making it more accessible. We met the opposite situation 
in the case of [15Ψ16(CN4)]ScyII. The IV type β-turn present in the 
region of tetrazole introduction caused that the Cys13-Met18 fragment 
resembled the letter U. We assumed that such restriction could disable 
biological activity of this peptide. Summing up the introduction of 
tetrazole ring influenced the peptides’ backbones not only locally, but 

also globally. Furthermore, analyzing the obtained conformations, 
we could also assume that [11Ψ12(CN4)]ScyII might exhibit biological 
activity what was connected with its C-terminal fragment structure, 
which was similar to one obtained by Dike and Cowsik for scyliorhinin 
II in DPC micelles [40].
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