
Swarm Superintelligence and Actor Systems
Mark Burgin*

University of California, USA
*Corresponding author: Mark Burgin, University of California, USA, Tel: 323-8763091; E-mail: mburgin@math.ucla.edu
Received date: December 18, 2017; Accepted date: December 26, 2017; Published date: December 31, 2017

Copyright: © 2017 Burgin M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

There are different types and levels of intelligence in general and swarm intelligence, in particular. In this paper,
we explore the transition from swarm intelligence to swarm super intelligence, i.e., to higher levels in the hierarchy of
intelligence. While the conventional approach to swarm intelligence presupposes that it emerges in synergetic
organization of simple systems such as ants or fish, to achieve super intelligence, it is necessary to unearth synergy
in systems of intelligent agents or actors. To study such systems, we further develop multi-agent approach by
creating a new mathematically based type of system models, which is called the System Actor Model allowing
concurrency of processes and diversity of actions. Properties of this model are studied and applied to investigation
of computational swarm intelligence and super intelligence.

Keywords: Intelligence; Swarm intelligence; System;
Superintelligence; Swarm superintelligence; Actor; Agent; Action;
Time; Process; Interaction; Environment

Introduction
Swarm intelligence emerges when a group of simple systems lacking

individual intelligence produces intelligent behaviour interacting
locally with one another and with their environment. Ant colonies,
animal herding, bacterial growth, fish schooling, bird flocking, and
microbial organizations are examples of natural systems with swarm
intelligence. Our goal here is to go from simple systems to arbitrary,
even highly intelligent, systems and study intelligence created by their
interactions and organization. One of the aspects of this problem is
exploration of the conditions allowing achievement of higher
intelligence than intelligence of individual members.

Such a higher intelligence is called swarm super intelligence and
defined as a relative concept assuming existence of different levels of
intelligence. Relativity is based on some measure of intelligence. Here
we do not use numerical measures of intelligence such as, for example,
IQ (Intelligence Quotient) because for our purposes, it is sufficient to
have an ordinal measure of intelligence, which allows comparison of
intelligent system determining which of them has higher intelligence.

Methods

Introduction
Let us take a measure m (.) of intelligence and a system Q of

intelligent systems Aj . We say that a system B is super intelligent
relative to Q if the measure m (B) of intelligence of B is larger than the
measure m (Aj) of intelligence of any systems Aj from Q.

Our approach also solves another problem. Namely, there are
different types and kinds of intelligence of human beings and their
measures: analytical intelligence and analytical IQ, creative intelligence
and creative IQ, social intelligence, practical intelligence and practical
IQ or emotional intelligence and emotional IQ [1-4].

Relativistic approach to swarm super intelligence allows
investigation of different types and kinds of swarm super intelligence
by utilizing corresponding measures of intelligence. For instance,
taking a measure of creative intelligence, we can study creative swarm
super intelligence, while taking a measure of emotional intelligence; we
can study emotional swarm super intelligence.

The first step in this direction is to build an adequate, efficient and
powerful model for representation and exploration of swarm super
intelligence. To develop such a model for systems with swarm super
intelligence, we use methods and approaches developed for concurrent
processes in computer science and information theory. On the first
stage of our research, we construct a kinetic system model by
fundamentally advancing and further developing the Actor Model
originally constructed for distributed computations. Here we expand
the scope of this model from computational systems and processes to
general systems making it applicable for any system comprised of
interacting subsystems, e.g. for organization, society, group of people
or a computer network [5].

We call the basic component of the System Actor Model (SAM)
constructed in this paper an actor although the conventional research
typically uses the term agent. The reason for this is that according to
the common usage, an agent is a system (an actor) who/that acts on
behalf of another system (actor). Besides, in political science and
economics, an agent is a person or entity able to make decisions and
take actions on behalf of, or that impact, another person or entity
called the principal.

This methodology allows treating agents as specific actors, who/
which act on behalf other actors - principals. As a result, it is possible
to represent any multi-agent multicomponent system by the System
Actor Model but not every actor system can be represented by a multi-
agent multicomponent system. There are many situations, especially, in
technology and society, when this difference between agents and free
actors is very important. Taking into account that actors can be
software systems, we see that software agents are a very special but
essentially important case of actors. It is possible to compare relation
between actors and agents with the relation between a function and a
computable, e.g. recursive, function.

Internatio
na

l J
ou

rn
al

 o
f S

warm
 Intelligence and Evolutionary Computation

ISSN: 2090-4908

International Journal of Swarm
Intelligence and Evolutionary
Computation Burgin, Int J Swarm Intel Evol Comput 2017, 6:3

DOI: 10.4172/2090-4908.1000167

Research Article Open Access

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167

mailto:mburgin@math.ucla.edu


The System Actor Model is more flexible than agent models. For
instance, agents are usually treated as autonomous systems perceiving
with sensors and acting with actuators. At the same time, actors can be
directed or controlled by other actors. Some of actors can be without
sensors and/or actuators. For instance, in problems of resource
management, identifying each resource with an actor can make
available a helpful, detailed perspective on the system while each of
them might not have sensors and/or actuators and could be controlled
and managed by a central authority [6,7].

This paper is structured in the following way. In Section 2, which
goes after Introduction, we describe and explore the computational
actor model. In Section 3, we construct and explore the system actor
model, for which the computational actor model becomes a very
special case. Besides, we go much further in comparison with the
computational actor model by elaborating mathematical models of
actors and environments where these actors function. This allows us to
obtain many properties of actions, events, actors and their systems by
rigorous mathematical techniques. One of the main targets of this
work is to construct mathematical tools for exploration of
collaborative, swarm and multi-agent intelligence. In Section 4, we
consider computational intelligence and discuss how it is possible to
achieve swarm computational super intelligence.

Actor model in computer science
The Computational Actor Model (CAM) and its methodology were

developed in the theory of computation to provide constructive and
theoretical tool for modelling, analysing and organizing concurrent
digital computations. In CAM, actors are interpreted as computing
devices or computational processes. We will call them computational
actors [5,8].

To make the model uniform, the concept of a messenger, which is
also a computational actor, is used instead of the concept of a message.
An arbitrary event in the model is the receipt of a messenger, which
impersonates a message, by the target (recipient) computational actor.

In CAM, computational actors perform computations based on
information about other computational actors and asynchronously
communicate using their addresses for sending and receiving
messages. Additionally, computational actors can make decisions about
their actions and behaviour, create other computational actors, and
determine how to react to the received messages. It is possible to treat
all these actions as events in the space of computational actors
although this not done in the original Computational Actor Model
described [5].

Computational actors are described by two groups of axioms -
structural axioms and operational axioms.

Structural axioms determine that the local storage of a
computational actor may contain addresses of other computational
actors such that satisfy one of the following conditions:

1. The addresses were provided when the computational actor was
created.

2. The addresses have been received in messages.
3. The addresses were installed in computational actors created by

the given computational actor.

Operational axioms determine what a computational actor can do.
Namely, a computational actor can:

1. Create more computational actors.

2. Send messages to other computational actors.
3. Receive messages from other computational actors.

Hewitt explains that CAM is rooted in physics while other
theoretical models of computation are based on mathematics and/or
logic. As a result, CAM has many properties similar to properties of
physical models, especially, in quantum physics and relativistic physics.
For instance, detailed observation of the arrival order of the messages
for a computational actor affects the results of actor’s behaviour and
can even increase indeterminacy. According to CAM, the performance
of a computational actor is exactly defined when it receives a message
while at other times, it may be indeterminate. Note that in reality,
existence of nondeterministic models of computation, such as
nondeterministic Turing machines, shows that in some cases, the
performance of a computing system or process cannot be exactly
defined [9,10].

An important feature of CAM is that it can model systems that
cannot be represented by the deterministic Turing's model while the
latter is a special case of CAM. As Milner wrote, Hewitt had explained
that a value, an operator on values, and a process could all be
computational actors. Taking into account that computational actors
can be interpreted as software systems, we can see that software agents
are a very special but essentially important case of computational
actors. The relation between computational actors and software agents
is similar to the relation between the concept of a number and the
concept of a rational number. As we know, there are numbers that are
not rational [11].

Being very useful for concurrent computations, CAM has very
limited applications beyond computer science. That is why, taking the
concept of an actor in all its generality and building a mathematical
representation of a system actor, for which a computational actor is a
very particular case, we extend CAM far beyond the area of computers,
computer networks and computations.

Actor model in systems theory
The basic concept in the System Actor Model (SAM) is the concept

of an actor or more exactly, of a system actor, which, in particular, can
be a computational actor. In what follows, we mostly call system actors
simply by the name actor when it does not cause ambiguity.

Informally, a system actor is a system that functions in some
environment interacting with other systems. It means that System
Actor Model developed in this paper is inherently dynamic.

This notion of an actor is more formally described in the following
way.

Definition 3.1: Taking a system E of interacting systems {Rk; k ∈ K},
which have the lower rank than E; we call the systems Rk actors and
treat them as actors in E, while E is called the environment of each of
the actors Rk.

Note that in contrast to the Computational Actor Model where
computational actors are processes or operators, a system actor can be
(or can be interpreted as) an arbitrary system or an element/
component of an arbitrary system, e.g. people, social networks, living
beings, cells of living beings, molecules, artificial systems, such as
computers or computer networks, processes and/or imaginary systems,
such as heroes of novels or movies. Besides, computational actors can
perform only three types of actions-create new actors, send messages
and receive messages. In comparison with these limited abilities,

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 2 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



system actors, in general, can perform any actions. Possible actions are
described by the axioms that determine the environment of system
actors [9].

Although some authors call such systems by the name agent, it is
more reasonable to call them actors because according to the common
usage, an agent is a system (an actor) who/that acts on behalf of
another system (actor). In addition, in political science and economics,
an agent is a person or entity able to make decisions and take actions
on behalf of another person or entity called the principal.

To build a mathematical model of an environment with actors, we
construct a mathematical model (description) of an actor and an
environment. Note that there is no similar mathematical model
(description) in the computational Actor Model.

A formal actor (system actor representation) A is described by a
name and five structural components - three sets called set
components of the actor A and two functions (or relations) called
functional components of the actor A. Namely, we have the following
structure

A=(RelA, ActA, TrnA; ReactA, ProactA)

A is a name of the actor.

Three sets (set components) are:

• RelA is the set of properties and relations of the actor A (usually
only relations in the environment E are considered).

• ActA is the set of possible actions of the actor A.
• TrnA is the set of possible actions aimed at the actor A.

Two functions (functional components), which are multivalued in
the general case, are:

The reaction function (reaction relation) shows responses of the
actor A to actions on A.

ReactA: TrnA → ActA

The proaction function (proaction relation) shows actions of the
actor A instigated by properties and relations of A.

ProactA: RelA → ActA

Reactions and proactions determine behaviour of the actor.

It is possible to consider the following example of a tentative
proaction.

Example 3.1: If an actor B is a friend of an actor A, then A is doing
something good for B.

The next example shows prescribed proactions.

Example 3.2: If an actor B is a friend of an actor A, then A always
accepts messengers (massages) sent by B.

As an example of reactions, we can consider the following situation.

Example 3.3: The action aimed at an actor A is an e-mail from an
actor B.

The reaction of A is the response to this e-mail.

Relations between an actor and data structures or knowledge
structures, which may also be represented as actors, can represent the
memory of the actor. Then self-actions can change this memory
performing computation, making decisions and deliberating

subsequent actions. Note that it is possible to represent relations by
properties and properties by relations [12,13].

Parts and elements of actor’s components have their modalities
described below.

First, in this description of an actor A, it is useful to make a
distinction between actualized parts (elements) and tentative parts
(elements) of actor’s components. For instance, some relations of A
exist while others are only possible. Then the former relations are
actualized while the latter are tentative. In a similar way, some actions
have been performed or/and are performed while others are only
possible. Then the former actions are actualized while the latter are
tentative.

Second, if an actor has a knowledge system, then it is useful to make
a distinction between acknowledged parts (elements) and implicit
parts (elements) of actor’s components. For instance, an actor A can
know about some of its relations and do not know about others. Then
the former relations are acknowledged while the latter are implicit.

Usually the components of an actor satisfy some restrictions. For
instance, if an actor A is an automaton that does not give any output,
e.g. if A is an accepting finite automaton, then all action of A are self-
actions. In a formal setting, restrictions are described by axioms.

Properties, relations and actions have various properties including
temporal properties. For instance, a singular action is performed at one
moment of time, while performance of a regular action always
demands some interval of time. In the theory of computational
automata, all actions are singular [10].

An important relation in this model is acquaintance. Namely, each
actor A has a list of names (addresses) of forward acquaintances FAcq
(A) and a list of names (addresses) of backward acquaintances BAcq
(A). These lists regulate communication of the actor A. Namely, the
actor A can send messages (messengers) only to forward acquaintances
from FAcq (A) (Figure 1) and can receive messages (messengers) from
only backward acquaintances from BAcq (A) (Figure 2). In particular,
an actor (a system) can get feedback only from its backward
acquaintances and can send feedback only to its forward
acquaintances.

Figure 1: The flow diagram of forward acquaintances Bi of an actor
A.

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 3 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



Figure 2: The flow diagram of backward acquaintances Ci of an
actor A.

This assumption is formalized by the following axioms.

Let SMes (A, B) denotes the action of sending a messenger (a
message) by an actor A to an actor B, ⇒ denotes implication, ◊ denotes
modal value “possible” and ¬◊ denotes modal value “impossible”. For
instance, ◊ SMes (A, C) means that the actor A can send messages to
the actor C.

Axiom SM:

a) ∀ A, C (C ∈ FAcq(A) ⇒ ◊ SMes (A, C)).

b) ∀ A, C (C ℵ FAcq(A) ⇒ ¬◊ SMes (A, C)).

Informally, Axiom SMa means that the actor A can send messages
(messengers) to any of its forward acquaintances. Axiom SMb means
that the actor A cannot send messages (messengers) to any actor that
(who) is not its forward acquaintance.

Proposition 3.1: If Axiom SM is true, then,

∀ A, C (C ∈ FAcq (A) ⇔ ◊ SMes (A, C))

Proof. By Axiom SMa, we have:

∀ A, C (C ∈ FAcq (A) ⇒ ◊ SMes (A, C))

Thus, we have to prove only

∀ A, C (◊ SMes (A, C) ⇒ C ∈ FAcq (A))

Let us assume that the actor A can send messages to some actor C,
i.e., ◊ SMes (A, C), but C does not belong to the forward acquaintances
of A, i.e., C ℵ FAcq (A). However, by Axiom SMb, we have ¬◊ SMes
(A, C)) and by principle of the Excluded Middle, our assumption is
incorrect. Thus, we have:

∀ A, C (◊ SMes (A, C) ⇒ C ∈ FAcq (A))

Proposition is proved.

Let RMes (C, A) denotes the action of receiving a messenger (a
message) by an actor A from an actor C.

Axiom RM: a) ∀ A, C (C ∈ BAcq (A) ⇒ ◊ RMes (C, A)).

b) ∀ A, C (C ℵ BAcq (A) ⇒ ¬◊ RMes (C, A)).

Informally, Axiom RMa means that the actor A can receive
messages (messengers) from any of its backward acquaintances. Axiom

RMb means that the actor A cannot receive messages (messengers)
from any actor that (who) is not its backward acquaintance.

Proposition 3.2: If Axiom RM is true, then,

∀ A, C (C ∈ BAcq (A) ⇔ ◊ Mes (C, A))

Proof is similar to the proof of Proposition 3.1.

Note that C ∈ FAcq (A) does not always mean that A ∈ BAcq (C).
Indeed, it is possible that an actor A can send messages to an actor C
but C cannot receive messages from A.

The following axiom for the environment E remedies this situation.

Connectivity axiom CA: ∀ A, C ∈ E (C ∈ FAcq (A) ⇔ A ∈ BAcq
(C)).

Informally, it means that an actor A can receive messages
(messengers) from an actor B if and only if B can send messages
(messengers) to A.

Acquaintances that belong to both lists FAcq (A) and BAcq (A) are
called friends (Figure 3). We denote this set by:

Fr (A)=FAcq (A) ∩ BAcq (A)).

Figure 3: The flow diagram of friends Fi of an actor A.

In many cases (but not always), lists FAcq (A) and BAcq (A)
coincide. In this case, they also coincide with the list Fr (A).

Let us assume that Axioms CA, SM and RM are true.

Proposition 3.3: ∀ A, B (B ∈ Fr (A) ⇒ A ∈ Fr (B))

Proof. The formula B ∈ Fr (A) means that B ∈ FAcq (A) and B ∈
BAcq (A). By Axiom CA, we have:

A ∈ BAcq (A) and A ∈ FAcq (A)

Thus, A ∈ Fr (B)

Proposition is proved.

Proposition 3.3 allows proving the following result.

Proposition 3.4: If in the environment E, all acquaintances are
friends, then E satisfies Axiom CA.

In the process of actor functioning, the lists of acquaintances and
friends can change.

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 4 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



There are five basic types of actor relations:

• Inner relations are relations between parts and elements of the
actor A. For instance, if an actor A is an organization, then relations
between members of this organization are inner relations of A.

• Internal relations are relations between the actor A and its parts
and elements. For instance, if an actor A is an organization, then
the relation “a member H of A receives salary from A” is an
internal relation of A.

• Outer relations are relations of the actor A to other actors, their
parts, elements and the environment. For instance, if actors A and
B are organizations, then cooperation between A and B is an outer
relation of A.

• Intermediate relations are relations of parts and elements of the
actor A to other actors, their parts, elements and the environment.
For instance, if an actor A is an organization, then any relation
between a member H of A and an actor K who is not a member of
A is an intermediate relation of A.

• External relations are relations of other actors, in which the actor A
is included. For instance, if actors are companies, then “to be a
supplier” is an external relation of A when A is a supplier for
another company.

Note that it is possible to consider actions, reactions and proactions
as relations. However, it is more efficient to treat these structures
separately making emphasis on the functionality and dynamics.

According to the theory of autopoiesis developed, relations and
properties play a crucial role for autopoietic systems, which can be
described briefly as self-producing devices or self-generating systems
with the ability to reproduce themselves recursively. Relations and
properties of a system determine the structure of this system. Indeed,
autopoietic systems are structure-determined systems according to the
principle of structural determinism, which states that the potential
behavior of the system depends on its structure and properties [14-16].

Observing actions in the real world, we see that there are different
types, classes, groups and kinds of actions. Let us consider some of
them.

Temporal characteristics of actions determine three groups of
reactions and proactions:

• Sharp immediate reaction (proaction) of A starts immediately after
the beginning of the corresponding action on A (immediately after
the property or relation becomes overt).

• Reserved immediate reaction (proaction) of A starts when the
corresponding action on A ends (when the corresponding property
or relation becomes comprehensible).

• Delayed reaction (proaction) of A is performed when some time
passes after the corresponding action on A (when some time
passes after the corresponding property or relation becomes
comprehensible).

Definitions imply the following results.

Proposition 3.5: If an action a is not immediate, then a and any
sharp immediate reaction to a are parallel in time.

Proposition 3.6: An action and a reserved immediate reaction to it
are strictly sequential in time.

Proposition 3.7: An action and a delayed immediate reaction to it
are sequential in time.

There are other temporal relations between separate actions and
events.

Definition 3.2: a) Temporal independence of events (actions) E1 and
E2 means autonomy of their occurrence, i.e., either E1 can take place
before E2 or E2 can take place before E1 or they can take place at the
same time.

b) Two events (actions) are temporally dependent if they are not are
temporally independent.

For instance, events in two disconnected computing systems are
temporally independent. Note that disconnectedness means that these
computers are not connected not only to one another but also to
another system, for example, to the Internet. However, temporal
independence does not prohibit simultaneous occurrence or
coincidence of actions and events.

Proposition 3.8: Temporal dependence is a transitive relation.

Another important concept is temporal incomparability.

Definition 3.3: a) Temporal incomparability of events (actions) E1
and E2 means that it is not known whether they happen at the same
time or which of them happens before the other.

b) Two events (actions) are temporally comparable if they are not
are temporally incomparable.

For instance, events in two disconnected computers, which are not
observed by the same observer, are temporally incomparable.

Proposition 3.9: Temporal comparability is a transitive relation.

Temporal independence and incomparability are related to
concurrency.

Definition 3.4: Concurrency of two or more events or actions means
their temporal independence and/or temporal incomparability, or in
other words, that time of their happening is independent and
sometimes incomparable.

As temporal independence allows simultaneous occurrence or
coincidence, the introduced concept of concurrency comprises other
interpretations of this term.

Concurrency is intrinsically related to such properties of events and
actions as parallelism and sequentiality.

Definition 3.5: Two or more events or actions are parallel if their
time intervals intersect (moments of their occurring coincide when
they have zero duration, i.e., they are momentary).

For instance, when people read and understand some text, these
actions are usually parallel but not always strictly parallel. It is possible
to see that actions a and b or b and c in Figure 4 are parallel.

Note that independence of events allows them to be parallel. It
implies that some parallel events can also be concurrent.

Proposition 3.10: If a momentary event (action) E1 is parallel to a
momentary event (action) E2 and the event (action) E2 is parallel to a
momentary event (action) E3, then all three events (actions) are
parallel.

If the events are not momentary, then this result is not always true.
For instance, let us consider events E1, E2 and E3 such that E1 starts at
time 0 and ends at time 3, E2 starts at time 2 and ends at time 5, and E3
starts at time 4 and ends at time 7. Then the event E1 is parallel to the

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 5 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



event E2 and the event E2 is parallel to the event E3, but the event E1 is
not parallel to the event E3.

However, for interval events (actions), i.e., events (actions) with
interval duration, it is possible to prove a result similar to Proposition
3.9.

Proposition 3.11: If an interval event (action) E1 is parallel to an
interval event (action) E2, the event (action) E2 is parallel to an interval
event (action) E3 and the event (action) E1 is parallel to the event E3,
then all three events (actions) are parallel.

However, if the events are neither interval nor momentary, then this
result is not always true. For instance, let us consider events E1, E2 and
E3 such that E1 starts at time 0 and ends at time 3, E2 starts at time 2
and ends at time 5 and E3 starts at time 0 and continues to time 1, then
restarts at time 4 and ends at time 7. Then the event E1 is parallel to
the event E2 and the event E2 is parallel to the event E3, the event E1 is
parallel to the event E3 but all three events are not parallel.

Definition 3.6: Two or more events or actions are strictly parallel if
their beginning and end coincide and they go (take place) in the same
time.

For instance, when the user switches her computer on (the first
event), the computer starts working (the second event, which is strictly
parallel to the first event). It is possible to see that actions a and b in
Figure 4 are parallel.

Lemma 3.1: If an event (action) E1 is strictly parallel to an event
(action) E2, then event (action) E1 is parallel to the event (action) E2.

Proposition 3.12: If an event (action) E1 is strictly parallel to an
event (action) E2 and the event (action) E2 is strictly parallel to an
event (action) E3, then the event (action) E1 is strictly parallel to the
event (action) E3.

Remark 3.1: For parallel events (actions), this result is not always
true.

However, we have a weaker result for parallel events (actions).

Proposition 3.13: If an event (action) E1 is strictly parallel to an
event (action) E2 and the event (action) E2 is parallel to an event
(action) E3, then the event (action) E1 is parallel to the event (action)
E3.

Definition 3.7: a) Two events or actions are sequential if one of
them, say E2, starts after the other, say E1, ends.

b) In this case, the event (action) E2 is called subsequent to the event
(action) E1.

For instance, reception of information is subsequent to sending this
information but usually it is not strictly subsequent. It is possible to see
that actions a and d in Figure 4 are sequential.

Proposition 3.14: The relation between events and actions to be
sequential is transitive.

The subsequence relation is also preserved for strictly parallel events
(actions).

Proposition 3.15: a) If an event (action) E1 is strictly parallel to an
event (action) E2 and the event (action) E2 is subsequent to an event
(action) E3, then the event (action) E1 is subsequent to the event
(action) E3.

b) If an event (action) E1 is strictly parallel to an event (action) E2
and the event (action) E3 is subsequent to an event (action) E1, then
the event (action) E3 is subsequent to the event (action) E2.

Another important relation between events and actions is to be
strictly sequential.

Definition 3.8: a) Two events or actions are strictly sequential if one
of them, say E2, starts exactly at the moment the other, say E1, ends.

b) In this case, the event (action) E2 is called strictly subsequent to
the event (action) E1.

In the theory of finite automata, it is assumed that starting from the
second transition, each transition of the automaton is strictly
subsequent to the previous transition [10]. It is possible to see that
actions b and e in Figure 4 are strictly sequential.

Figure 4: Different types of temporal relations between actions
where t denotes time.

Lemma 3.2: If an event (action) E1 is strictly subsequent to an event
(action) E2, then event (action) E1 is subsequent to the event (action)
E2.

Proposition 3.16: If an event (action) E1 is strictly subsequent to an
event (action) E2 and the event (action) E2 has positive duration and is
strictly subsequent to an event (action) E3, then event (action) E1 is
subsequent but not strictly subsequent to the event (action) E3.

The strict subsequence relation is preserved for strictly parallel
events (actions).

Proposition 3.17: a) If an event (action) E1 is strictly parallel to an
event (action) E2 and the event (action) E2 is strictly subsequent to an
event (action) E3, then the event (action) E1 is strictly subsequent to
the event (action) E3.

b) If an event (action) E1 is strictly parallel to an event (action) E2
and the event (action) E3 is strictly subsequent to an event (action) E1,
then the event (action) E3 is strictly subsequent to the event (action)
E2.

There are also structural characteristics of actions. One of them is
direction.

Direction of actions determines three groups of actions:

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 6 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



• An internal action or a self-action of an actor is directed at the
same actor and usually results in self-transformation (Figure 5).

• An external action of an actor is directed at other actors (Figure 6).
• A combined action of an actor is directed both at other actors and

at the same actor (Figure 7).

Figure 5: A self-action is an action of an agent on itself.

Figure 6: An external action is directed at other actors.

Figure 7: A combined action goes inside and outside.

Example 3.4: Reception of information is an example of a self-
action.

Example 3.5: Computation performed by a system actor and any
computational operation are examples of a self-action.

Example 3.6: Decision-making of a system actor is an example of a
self-action.

Example 3.7: Sending information is an example of an external
action.

Example 3.8: Working an inductive Turing machine transforms the
content of its working register and from time to time, sends this
content to the output register. The action of the machine when it is
doing both operations at the same time is a combined action [10].

Another structural characteristic of actions is modality, which
determines the status of actions in the environment. There are three
modalities of actions-positive, negative and neutral-and each of them
contains four classes.

Positive modalities of actions:

• Possible actions
• Tolerable actions
• Permitted actions
• Performed actions

Negative modalities of actions:

• Impossible actions
• Intolerable actions
• Prohibited actions
• Not performed (but possible/permitted) actions

Neutral modalities of actions:

• Unknown actions
• Unidentified actions
• Unspecified actions
• Indefinite actions

There are definite relations between modalities of actions.

Proposition 3.18: a) Any unknown action is unidentified.

b) Any unidentified action is unspecified.

c) Any performed action is possible.

d) Any unknown possible and permitted action is not performed.

Structural characteristics of actions show that there are simple
actions and compound actions, which are compositions of other
actions. Compositions of actions are constructed using operations with
actions. For instance, performing one action after another gives us the
sequential composition of these actions.

If an action a is a composition of actions a1, a2, a3, …, an, for
example, a=ω (a1, a2, a3, …, an) where ω is an n-ary operation with
actions, then any action ai (i=1, 2, 3, …, n) is included in or is a part of
the action a. It is denoted by ai ⊆ a.

Informally, the relation b ⊆ a means that performance of the action
a includes performance of the action b.

Proposition 3.19: For any actions a, b and c, relations a ⊆ b and b ⊆
c imply the relation a ⊆ c.

Indeed, as a composition of compositions of actions is a
composition of actions, relations a ⊆ b and b ⊆ c imply the relation a
⊆ c.

It means that the relation “to be a part” or “to be included” is
transitive.

Composition preserves direction of actions.

Proposition 3.20: A composition of internal (external or combined)
actions of the same actor is an internal (external or combined) action.

Organization of actions determines three groups of actions:

• Direct actions do not include additional operations (actions).

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 7 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



• Mediated actions include additional operations (actions or
processes), for example, such as computation, meditation,
contemplation or actions of other actors.

• Void actions or inactions.

Not to perform an action is also an action. It is a void action. All
other actions are proper actions.

It is possible to build the system Actor Model (SAM) with one void
action or with different void actions. It is possible to give a more
precise description of actor’s behavior when SAM allows different void
actions. In this case, we have the following definition.

Definition 3.9: Not to perform an action a is the inaction ¬a.

For instance, when a person A is standing near the river and doing
nothing seeing a person B is drowning, this is a negative void action.
When the Allies did nothing to prevent Hitler from seizing Austria and
a part of Czechoslovakia, it was also a negative void action.

At the same time, there are positive void actions. For instance, when
a person does not steal, it is a positive void action.

The concept of inaction or non-action plays an important role in
Taoism because one of its central principles is the Principle of non-
action (Wu wei in Chinese). Wu wei from the Tao Te Ching literally
means non-action or non-doing and is connected to the paradox
weiwuwei: "action without action" [17,18].

Let us consider some properties of void actions.

Proposition 3.21: ¬¬a=a.

Informally, it means that when non-doing of action a is not
performed, then action a is performed. In essence, this is a version of
the Principle of Excluded Middle because the proof of Proposition 3.21
uses this Principle and it is possible to consider systems of actors for
which this assertion is not true.

Common sense tells us that independently in what way you
compose non-doing, it will always be non-doing. We formalize this
impression in the following axiom.

Emptiness Axiom EA: If a1, a2, a3, …, an are actions and ω is an n-
ary operation with actions, then

ω (¬a1, ¬a2, ¬a3, …, ¬an)=¬ω (a1, a2, a3, …, an)

Axiom EA implies the following result.

Proposition 3.22: A composition of inactions is inaction.

However, in general, Axiom EA is not always valid and a
composition of inactions can be a proper action. For instance, let us
consider the binary composition L (x, y), which combines two actions
inferring the third action when only three actions can be performed.
To provide an example of this situation, we can take the situation when
a person can only either run (action a) or walk (action b) or stand
(action c). Then combining two inactions ¬a (not running) and ¬b
(not walking), we have L (a, b)=c, which is a proper action.

Proposition 3.23: If a ⊆ b, then ¬b ⊆ ¬a.

Indeed, if an action b includes an action a, then the absence of a
implies and thus, includes, the absence of b.

It is useful to consider the total inaction TIA when simply nothing is
done.

Proposition 3.24: For any action a, we have ¬a ⊆ TIA.

Definitions imply the following result.

Proposition 3.25: A composition of non-void (proper) actions is a
mediated action.

There other important types of actions.

A primitive action is a direct action that depends only on the input
actions of other actors in the case of reactions or only properties and
relations in the case of proactions.

An automatic action is a direct action that depends both on actions
of other actors and on properties/relations.

Note that inaction also can be primitive or automatic.

Proposition 3.26: When an action a is primitive (automatic), the
inaction ¬a is also primitive (automatic).

Automatic actions allow unification of reactions and proactions in
one (multivalued in a general case) function of combined actions

CombactA: TrnA × RelA → ActA

In this context, the function ReactA is a restriction of the function
CombactA when the action on A is void and the function ProactA is a
restriction of the function CombactA when the property/relation is
void. This gives us the following result.

Proposition 3.27: Any primitive action is an automatic action.

Different types of actions spawn different types of actors.

Definition 3.10: A behaviorally primitive actor A has only primitive
actions.

For instance, finite automata with one state are behaviorally
primitive actors because their actions depend only on the input.

Definition 3.11: A behaviorally automatic actor A has only
automatic actions.

For instance, finite automata are behaviorally primitive actors
because their actions depend on both the input and inner state.

Proposition 3.27 implies the following result.

Corollary 3.1: Any behaviorally primitive actor is a behaviorally
automatic actor.

There are various relations between actors.

Definition 3.12: Two actors are identical if they have the same
structural components.

For instance, in contemporary industry, identical copies of many
devices, such as vehicles, planes, computers and cell phones, are
produced. In the system Actor Model, all these copies are represented
by identical actors.

Lemma 3.3: Identity is an equivalence relation in sets of actors.

It is possible to find identical actors in many areas. One of them is
theory and technology of information processing. Thus, there are
models of computational systems, which contain many (sometimes,
infinite) identical computing elements. Examples are cellular automata,
artificial neural networks and iterative arrays.

For instance, a cellular automaton is a system of identical finite
automata called cells, which form a net and interact with one another.
A cellular automaton is determined by the following parameters [10]:

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 8 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



1. The space organization of the cells. In the majority of cellular
automata, cells organized in a simple rectangular grid (mostly it is a
one-dimensional string of cells and a two- or three-dimensional grid of
cells), but in some cases, other arrangements, such as a honeycomb or
Fibonacci trees.

a. The topology of the cellular automaton is determined by the type
of the cell neighborhood, which consists of other cells that interact
with this cell. In a grid, these are normally the cells physically closest to
the cell in question. For instance, if each cell has only two neighbors
(right and left), it defines linear topology. Such cellular automata are
called linear or one-dimensional. It is possible to consider linear
automata with the neighborhood of some radius r>1. When there are
four cells (upper, below, right, and left), the CA has two-dimensional
rectangular topology. Such cellular automata are called planar or two-
dimensional.

2. The dynamics of a cellular automaton, which determines by what
rules cells exchange information with each other.

Traditionally, only rectangular organization of the cells and their
neighborhoods has been considered for cellular automata. Recently,
researchers have begun studies of cellular automata in the hyperbolic
plane or on a Fibonacci tree. It is proved that such automata are more
efficient than traditional cellular automata in the Euclidean plane. This
higher efficiency is a result of a better topology in cellular automata in
the hyperbolic plane [19].

According to the system Actor Model, each element of a cellular
automaton is an actor and its actions consist of computing and
communicating operations.

Looking at computer technology, we see that from the perspective of
a manufacturer, products, e.g., computers, of the same type are
identical.

Another important relation between actors is dynamic equivalence.

Definition 3.13: Two actors are dynamically equivalent if they have
the same action components.

When it is necessary to solve the same problem for different input
data, it is possible to use equivalent actors to this in a parallel or
concurrent mode. This is often done in multiprocessor computers
where identical processors perform necessary computations.

Lemma 3.4: Dynamic equivalence is an equivalence relation in sets
of actors.

Identity of actors is a stronger relation than dynamic equivalence.

Lemma 3.5: Identical actors are dynamically equivalent.

Dynamic equivalence determines similarities in actor’s behavior.

Proposition 3.28: An actor without actions is dynamically equivalent
to an actor that has only void actions.

Proposition 3.29: An actor A dynamically equivalent to a
behaviorally primitive actor B is behaviorally primitive.

Proposition 3.30: An actor A dynamically equivalent to a
behaviorally automatic actor B is behaviorally automatic.

Another important relation between actors is homology.

Definition 3.14: Two actors A and B are homological if all their
corresponding structural components are isomorphic.

For instance, for homological actors A and B, there are
isomorphisms between RelA and RelB, between ReactA and ReactB and
between ProactA and ProactB.

Example 3.9: Let us consider two deterministic finite automata A
and B. They have the same set of states and the same set of start and
final states. The first has the alphabet {0, 1} and the second the alphabet
{a, b}. Besides, all transitions of A produced by input 0 are the same as
all transitions of B produced by input a and all transitions of A
produced by input 1 are the same as all transitions of B produced by
input b. Then these automata are homological actors.

Lemma 3.6: Homology is an equivalence relation in sets of actors.

Identity of actors is a stronger relation than homology.

Lemma 3.7: Identical actors are homological.

Let us assume that isomorphisms between ReactA and ReactB and
between ProactA and ProactB preserve primitive actions. Then we have
the following result.

Proposition 3.31: An actor A homological to a behaviorally
primitive actor B is behaviorally primitive.

Let us assume that isomorphisms between ReactA and ReactB and
between ProactA and ProactB preserve automatic actions. Then we
have the following result.

Proposition 3.32: An actor A homological to a behaviorally
automatic actor B is behaviorally automatic.

A weaker type of relations is dynamic homology

Definition 3.15: Two actors A and B are dynamically homological if
all their corresponding action components are isomorphic.

Lemma 3.8: Dynamic homology is an equivalence relation in sets of
actors.

Dynamic equivalence of actors is a stronger relation than dynamic
homology.

Lemma 3.9: Dynamically equivalent actors are dynamically
homological.

Let us assume that isomorphisms between ReactA and ReactB and
between ProactA and ProactB preserve primitive actions. Then we
have the following result.

Proposition 3.33: An actor A dynamically homological to a
behaviorally primitive actor B is behaviorally primitive.

Let us assume that isomorphisms between ReactA and ReactB and
between ProactA and ProactB preserve automatic actions. Then we
have the following result.

Proposition 3.34: An actor A dynamically homological to a
behaviorally automatic actor B is behaviorally automatic.

According to their structure, we discern four classes of actors:

• A structurally prime actor A does not have components or parts.
• A structurally primitive actor A does not have components or

parts, which are also actors.
• A structurally composite actor A has parts and/or components.
• A structurally compound actor A has parts and/or components,

which are also actors.

In the actor’s structure elements are also treated as parts.

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 9 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



The scale of observation defines what actors are prime. Thus, to be a
prime actor depends on the scale of observation/treatment. For
instance, in the observation scale of society, people are primitive
actors. At the same time, in the observation scale of biology, people are
composite actors.

The scale of modeling defines what actors are primitive. Thus, to be
a primitive actor depends on the scale of modeling/representation. For
instance, in the modeling scale of society, it is natural to represent
people as primitive actors. At the same time, in the modeling scale of
biology, it is natural to represent people as compound actors.

It is possible to develop a scale (ranging) of actors and deal with
parts and components of a actor in this scale. Namely, an actor A that
is a part/component of another actor B has lower range than B.

The system (environment) E can be a model of a real system R,
which can be physical, mental or structural. The system R is called a
modeled domain of E. In general, one environment E can model
different domains.

Let us consider a modeled domain R of an environment E.

Proposition 3.35: If R is the modeled domain of environment E and
a subdomain P of R is a modeled domain of D, then there is an
injection of the set of all actors from D into the set of all actors from E.

It is possible to introduce the following axiom.

Modelling axiom MA: Any object in the modelled domain R is
modelled by an actor in E.

If Pythagoras asserted “Everything is a number,” the Modeling
Axiom states “Everything and everybody is an actor.”

The computational Actor Model that satisfies the Modeling Axiom
is called the universe of CAM [20].

Let us consider an actor A with the inner structure Q.

Proposition 3.36: If the Modeling Axiom is valid for an environment
E and its modeled domain R, then:

(a) Any structurally primitive actor is structurally prime.

(b) Any structurally composite actor is structurally compound.

Corollary 3.2: If the Modeling Axiom is valid for an environment E
and its modeled domain R, then there are only structurally primitive
and structurally compound actors in E.

Definition 3.16: A primary actor A is not a part or component of
other actors.

According to their communication, we discern five classes of actors
– closed, inactive, generative, undemanding and open actors.

Definition 3.17: A closed actor A does not send and receive
messengers (messages).

The concept of a closed actor allows treating almost anything, for
example, tables, chairs, mountains, rivers, words, sounds, etc., as
actors.

Definition 3.18: An inactive actor A does not send messengers
(messages).

For instance, a sleeping woman does not send messengers
(messages). Another example of an inactive actor is a receptor such as
an automaton, which accepts input but gives no output [10].

Definitions imply the following result.

Lemma 3.10: Any closed actor A is inactive.

The dual concept to an inactive actor is a non-receptive actor.

Definition 3.19: A non-receptive actor A does not receive
messengers (messages).

An example of a non-receptive actor is a generator, i.e., such as an
automaton, which does not accept input but gives output. Another
example of a non-receptive actor is a black hole [21,22].

Definitions imply the following results.

Lemma 3.11: Any closed actor A is non-receptive.

It means that the property “to be closed” is stronger than the
property “to be non-receptive.”

Lemma 3.12: A non-receptive and inactive actor A is closed.

Opposite to closed actor are open actors.

Definition 3.20: An open actor A sends and receives messengers
(messages).

Definitions imply the following results.

Lemma 3.13: Any open actor A is active.

It means that the property “to be open” is stronger than the property
“to be active.”

Lemma 3.14: A receptive and active actor A is open.

It is possible to distinguish actor by messages they send.

Definition 3.21: An undemanding actor A does not send requesting
messengers (requests).

Definitions imply the following results.

Lemma 3.15: Any inactive actor A is undemanding.

Lemmas 3.11 and 3.15 imply the following result.

Corollary 3.3: Any closed actor A is undemanding.

It is possible to develop a scale (ranging) of actors and deal with
parts and components of a primary actor in this scale.

Because an actor is functioning in some environment, it is also
practical to use an extended actor representation, which includes
relevant characteristics of the environment.

An extended actor representation consists of two names, three sets
and four functions (or relations)

(A, E)=(RelA, ActA, TrnA; ReactA, ProactA, VReactA, VProactA)

A is a name of the actor.

C is a name of the actor’s environment.

Three sets are:

• RelA is the set of properties of A and relations of A to other actors
and the environment.

• ActA is the set of possible actions of A.
• TrnA is the set of possible actions on A.

Four functions (multivalued in the general case) are:

The reaction function shows responses of A to actions on A.

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 10 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



ReactA: TrnA → ActA

Proactions show actions on A instigated by properties and relations
of A.

ProactA: RelA → ActA

For instance, if B is a friend of A, then A is doing something good
for B.

The virtual reaction function shows responses of A to all possible
actions.

VReactA: ActpE → ActA

Here ActpE is the set of all possible actions in E.

The virtual proaction function shows actions on A instigated by all
properties and relations, which exist in E

VProactA: RelpC → ActA

Here RelpC is the set of all possible properties and relations in E.

Definitions imply the following results.

Lemma 3.16: ReactA is a restriction of VReactA.

Lemma 3.17: ProactA is a restriction of VProactA.

In the System Actor Model, we also have a mathematical model of
an environment.

An environment representation is described by a name, two sets and
two functions (or relations)

E=(RelpE, ActpE, TrnE; EReactE, EProactE)

A is a name of the actor.

Two sets are:

• RelpE is the set of all possible properties and relations in E.
• ActpE is the set of all possible actions in E.

Two functions (multivalued in the general case) are:

EReactions show all possible responses to actions in E.

EReactE: TrnE → ActE

EProactions show all possible actions instigated by properties and
relations in E.

EProactE: RelE → ActE

Note that the systems Rk in the environment E can have different
ranks. For instance, in society, actors include separate individuals,
organizations, countries, and so on. In technology, actors include
computers, cell phones, local networks, global networks, and so on.

Definition 3.22: a) If an actor A is a proper subsystem of an actor B,
then the rank of A is lower than the rank of B.

b) If actors A and B consist of elements of the same rank, then the
rank of A is equal to the rank of B.

By definition, the environment E has the highest rank in the system
Actor Model.

Proposition 3.37: Elements, parts and components of an actor A
have lower rank than A.

Rank of actors is an important characteristic for organization of
interactions and collaboration in actor systems.

Computational intelligence and super intelligence
Let us consider actor systems, in which actors are abstract

computing systems such as finite automata, cellular automata,
evolutionary automata, Turing machines and inductive Turing
machines.

To define computational intelligence, we fix some basic level of
computational intelligence and define that a computing system B is
more intelligent than a computing system A if B can solve more
problems than A, i.e., B can solve all problems solvable by A and there
are problems that B can solve and A cannot. For instance, a universal
inductive Turing machine W is more intelligent than any Turing
machine and in particular, than a universal inductive Turing machine
U. Indeed, as it is proved, a universal inductive Turing machine W is
able to solve the halting problem for all Turing machines but no Turing
machine can solve this problem [10,23,24].

It is generally assumed that it is possible to achieve actual
intelligence only in the class of Turing machines as they supposedly
can model the human brain. Here we do not discuss this hypothesis
but reflect it in the following concept assuming existence of different
levels of intelligence.

Definition 4.1: Turing intelligence is the highest in the class of all
Turing machines intelligence of a separate Turing machine.

Note that some Turing machines can have very low (if any)
intelligence. For instance, it is hard to call intelligent a Turing machine
that simply reproduces its input as its output.

As a result, we also come to the following concept.

Definition 4.2: Turing super intelligence is any intelligence that is
higher than Turing intelligence.

Results allow us to obtain the following result [25,26].

Theorem 4.1: Working in the recursive synchronized mode any
number of Turing machines cannot achieve Turing super intelligence.

However, Turing intelligence is not the highest level of
computational intelligence because inductive Turing machines are
much more powerful. That is why in the study of super intelligence, we
have to go to higher levels of computational intelligence [10,27].

Definition 4.3: Inductive intelligence is the highest in the class of all
inductive Turing machines intelligence of a separate inductive Turing
machine

Note that some inductive Turing machines can have very low (if
any) intelligence. For instance, it is hard to call intelligent an inductive
Turing machine that simple reproduces its input as its output.

We also have a super intelligent counterpart of Definition 4.3.

Definition 4.4: Inductive super intelligence is any intelligence that is
higher than inductive intelligence.

Inductive Turing machines are stratified by their orders. As a
consequence, we also come to the following concept [10,27].

Definition 4.5: Inductive intelligence of order n is the highest in the
class of all inductive Turing machines of order n intelligence of a
separate inductive Turing machine.

In particular, inductive intelligence of the first order is the highest in
the class of all inductive Turing machines of the first order intelligence
of a separate inductive Turing machine.

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 11 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



As in the previous case, we also have a super intelligent counterpart
of Definition 4.3.

Definition 4.6: Inductive super intelligence of order n is any
intelligence that is higher than inductive intelligence of order n.

Results allow us to obtain the following result [26,27].

Theorem 4.2: For any natural number n, an efficiently organized
swarm of two or more inductive Turing machines of order n can
achieve inductive super intelligence of order n working in the inductive
synchronized mode.

Allowing swarms (actor systems) with infinite number of members,
it is possible to achieve even higher levels of intelligence.

Results from the theory of cellular automata allow us to obtain the
following result [28].

Theorem 4.3: An infinite organized in a lattice swarm of finite
automata can achieve Turing intelligence.

Note that this is impossible for any finite swarm of finite automata.

Results from the theory of evolutionary automata allow us to obtain
the following result [29,30].

Theorem 4.4: An infinite evolutionary organized swarm of finite
automata can achieve Turing super intelligence.

Theorems 4.3 and 4.4 show that the level of swarm intelligence
essentially depends on the static and dynamic structures of the swarms
created by their organization.

Results allow us to obtain the following result [26,27].

Theorem 4.5: An infinite efficiently organized swarm of inductive
Turing machines can achieve inductive super intelligence of any order.

Obtained results show that the level of swarm intelligence essentially
depends on three parameters:

• Intelligence level of the swarm members.
• The static and dynamic structures of the swarms created by their

organization.
• The size of the swarm.

Conclusion
In the paper, a mathematical model of multicomponent interactive

systems, which is called the System Actor Model and based on the
formal structure of actors functioning in a multifarious convoluted
environment, is built. Different properties of such systems represented
by an environment with actors are obtained in this context and
different classes of events and actions are explicated and studied.
Actors are also classified according to their traits. In addition, we
elaborated a mathematical model of the environment in accordance
with the basic target of this work of construction of mathematical tools
for exploration of systems with swarm super intelligence, which is
analysed in the context of computational intelligence.

In addition, the elaborated model provides means for taking into
account time, which is a critically important characteristic of any real-
life system but is not adequately represented in existing approaches
and directions in the multi-agent approach. Indeed, in all dynamic
models of multi-agent systems, either time is implicitly induced by
actions of agents and system states or it is explicitly assumed that
unique time exists for the whole system. An archetypal example of this

situation is the absolute Newtonian time in the physical universe,
which is innate for the entire classical physics.

At the same time, relativity theory and various experiments
disproved this assumption bringing forth the concept of local time. The
system theory of time extends this principle much further. Other
researchers also advocated existence of different times or different time
scales in their theories. In contrast to other system models, the System
Actor Model (SAM) allows existence of diverse times and time scales
for different actors and their environment using the concept of local
time, which exists and can be different in distinct components and
parts of real systems according to the system theory of time. As a
result, the System Actor Model provides descriptions and tools for
exploration not only of classical systems with one global time but also
of relativistic and concurrent systems, which can have multiplicities of
time [31-35].

To conclude, we formulate some open problems for the System
Actor Model, which are important for applications.

The first cluster of problems is related to actions.

Actions are usually aimed at achieving some results. This brings us
to the following problem.

Problem 1: Formalize and study results of actions.

Actions always have some consequences. This brings us to the
following problem.

Problem 2: Formalize and study consequences of actions.

As it is explicated in the System Actor Model, there are two types of
actions- reactions and proactions. Reactions are caused by other
actions while proactions are caused by properties and relations of
actors. However, to utilize the System Actor Model, we need more
information.

Problem 3: Formalize and study detailed causes of actions.

Actions have many characteristics. Here we only outlined their
structural, temporal and spatial characteristics. Thus, we come to the
following problem.

Problem 4: Formalize and study in more detail structural, temporal
and spatial characteristics of actions.

The second cluster of problems is related to actors.

Behavior of actors is influenced and sometimes determined by a
variety of factors, which include tasks, obligations, norms and values of
actors. Thus, it is necessary to know more about tasks of actors and
their impact.

Problem 5: Formalize and study tasks of actors.

It is also necessary to know more about obligations of actors and
their impact.

Problem 6: Formalize and study obligations of actors.

Knowledge about norms of actors is important for modelling social
systems such as organizations or societies. At the same time, norms in
the form of constraints are essential for artificial intelligence systems,
especially, in relation to super intelligence. This makes the following
problem especially important [19,36,37].

Problem 7: Formalize and study norms of actors.

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 12 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167



Values are very important for people. Thus, it is necessary to have
more knowledge about values and related issues.

Problem 8: Formalize and study values of actors.

The third cluster of problems is related to concepts of agents and
oracles, which are connected to the concept of actors. The System
Actor Model provides flexible tools to study these relations. In
particular, we have two more problems.

Problem 9: Formalize and study relations between agents and actors.

Problem 10: Formalize and study relations between oracles and
actors.

To conclude, it is necessary to remark that there are different levels
of intelligence in society and technical devices, which can be studied
efficiently utilizing the System Actor Model.

References
1. Burgin M (1998) Intellectual components of creativity. International

Academy Man in Aerospace systems, Kiev.
2. Thorndike RK (1920) Intelligence and its uses. Harper's Magazine 140:

227-335.
3. Mayer JD, Salovey P (1993) The intelligence of emotional intelligence.

Intelligence 17: 433-442.
4. Koonce R (1996) Emotional IQ, a new secret of success. Training Dev 50:

19-21.
5. Hewitt C, Bishop P, Steiger R (1973) A universal modular actor formalism

for artificial intelligence, IJCAI'73 Proceedings of the 3rd international
joint conference on Artificial intelligence, Morgan Kaufmann Publishers
Inc., San Francisco, CA, pp: 235-245.

6. Vlassis N (2007) A concise introduction to multi-agent systems and
distributed artificial intelligence. Synthesis Lectures in Artificial
Intelligence and Machine Learning, Morgan & Claypool Publishers.

7. Weiss G (1999) Multiagent systems: A modern approach to distributed
artificial intelligence, MIT Press, New York/London.

8. Hewitt C (2012) What is computation? Actor model versus Turing’s
model, in a computable universe, understanding computation &
exploring nature as computation. World Scientific Publishing Company/
Imperial College Press.

9. Hewitt C (2007) What is commitment? Physical, organizational and
social, lecture notes in artificial intelligence, Springer.

10. Burgin M (2005) Super-recursive algorithms. Springer, New York/
Heidelberg/Berlin.

11. Milner R (1993) Elements of interaction. Communications of the ACM,
pp: 36: 78-89.

12. Burgin M (1985) Abstract theory of properties, in non-classical logics.
Institute of Philosophy, Moscow, pp: 109-118.

13. Burgin M (1990) Abstract theory of properties and sociological scaling, in
expert evaluation in sociological studies. Kiev, pp: 243-264.

14. Maturana H, Varela F (1998) The tree of knowledge: The biological roots
of human understanding. Shambhala, Boston.

15. Maturana H (1997) Metadesign, in articulos y conferences. Diez Años de
Post-Racionalismo en Chile, Instituto de Terapia Cognitiva Web,
Santiago.

16. Burgin M (2012) Structural reality. Nova Science Publishers, New York.
17. Kirkland R (2004) Taoism: The enduring tradition. Routledge,

London/New York.
18. Klaus H (2009) The tao of wisdom. Laozi-Daodejing. Chinese-English-

German. Hochschulverlag, Aachen.
19. Hibbard B (2002) Super-intelligent machines. Kluwer Academic/Plenum

Publishers, Boston.
20. Agha (1986) GA ACTORS: A model of concurrent computation in

distributed systems. The MIT press series in artificial intelligence, The
MIT Press, Cambridge, Massachusetts.

21. Thorne KS (1994) Black holes and time warps, Norton, New York.
22. Davies P (1995) About Time, Simon & Schuster. New York/London/

Tokyo.
23. Burgin M (2010) Measuring power of algorithm. Computer Programs

and Information Automata, Nova Science Publishers, New York.
24. Burgin M (2017) Inaccessible information and the mathematical theory

of oracles, in information studies and the quest for transdisciplinarity:
Unity through diversity. World Scientific, New York/London/Singapore,
pp: 59-114.

25. Burgin M (2006) Algorithmic control in concurrent computations. In:
Proceedings of the 2006 International Conference on Foundations of
Computer Science, CSREA Press, Las Vega, pp: 17-23.

26. Burgin M (2015) Super recursive algorithms and modes of computation.
Proceedings of the 2015 European Conference on Software Architecture
Workshops, Dubrovnik/Cavtat, Croatia 10: 1-5.

27. Burgin M (2003) Nonlinear phenomena in spaces of algorithms. Int J
Comput Math 80: 1449-1476. 

28. Codd EF (1968) Cellular automata. Academic, New York.
29. Burgin M, Eberbach E (2009) On foundations of evolutionary

computation: An evolutionary automata approach. In: Hongwei Mo,
Handbook of Research on Artificial Immune Systems and Natural
Computing: Applying Complex Adaptive Technologies, IGI Global,
Hershey, Pennsylvania, pp: 342-360.

30. Burgin M, Eberbach E (2012) Evolutionary automata: Expressiveness and
convergence of evolutionary computation. Comput J 55: 1023-1029.

31. Einstein A, Lorentz HA, Weil H, Minkowski H (1923) The principle of
relativity. Dover.

32. Burgin M (1992) A system approach to the concept of time. Philosophical
and Sociological Thought.

33. Burgin M (2002) elements of the system theory of time, LANL. Preprint
in Physics 0207055: 21.

34. Prigogine I (1980) From being to becoming: Time and complexity in
physical systems, San Francisco.

35. Barwise J, Seligman J (1997) Information flow: The logic of distributed
systems, Cambridge tracts in theoretical computer science 44, Cambridge
University Press.

36. Bostrom N (2014) Super intelligence: Paths, dangers, strategies. Oxford
University Press.

37. Buşoniu L, Babuška R, DeSchutter B (2010) Multi-agent reinforcement
learning: An overview, in innovations in multi-agent systems and
applications. Studies in Computational Intelligence, Berlin, Germany:
Springer 310: 183-221.

 

Citation: Burgin M (2017) Swarm Superintelligence and Actor Systems. Int J Swarm Intel Evol Comput 6: 167. doi:10.4172/2090-4908.1000167

Page 13 of 13

Int J Swarm Intel Evol Comput, an open access journal
ISSN:2090-4908

Volume 6 • Issue 3 • 1000167

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.6340&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.6340&rep=rep1&type=pdf
https://doi.org/10.12691/rpbs-2-4-2
https://doi.org/10.12691/rpbs-2-4-2
https://doi.org/10.1016/0160-2896(93)90010-3
https://doi.org/10.1016/0160-2896(93)90010-3
https://doi.org/10.1007/978-3-642-14435-6
https://doi.org/10.1007/978-3-642-14435-6
https://doi.org/10.1007/978-3-642-14435-6
https://doi.org/10.1007/978-3-642-14435-6
https://doi.org/10.2200/S00091ED1V01Y200705AIM002
https://doi.org/10.2200/S00091ED1V01Y200705AIM002
https://doi.org/10.2200/S00091ED1V01Y200705AIM002
https://pdfs.semanticscholar.org/bde2/a76bcb7543ec2b18cd6037a05a84314d3524.pdf
https://pdfs.semanticscholar.org/bde2/a76bcb7543ec2b18cd6037a05a84314d3524.pdf
https://doi.org/10.3390/isis-summit-vienna-2015-T9.2005
https://doi.org/10.3390/isis-summit-vienna-2015-T9.2005
https://doi.org/10.3390/isis-summit-vienna-2015-T9.2005
https://doi.org/10.3390/isis-summit-vienna-2015-T9.2005
https://doi.org/10.1007/978-3-540-74459-7_19
https://doi.org/10.1007/978-3-540-74459-7_19
https://doi.org/10.1145/2797433.2797443
https://doi.org/10.1145/2797433.2797443
https://doi.org/10.1145/151233.151240
https://doi.org/10.1145/151233.151240
https://doi.org/10.1007/BF01102499
https://doi.org/10.1007/BF01102499
https://doi.org/10.1007/978-0-387-35611-2_3
https://doi.org/10.1007/978-0-387-35611-2_3
http://www.cybertech-engineering.ch/research/references/Maturana1988/maturana-h-1987-tree-of-knowledge-bkmrk.pdf
http://www.cybertech-engineering.ch/research/references/Maturana1988/maturana-h-1987-tree-of-knowledge-bkmrk.pdf
https://www.inteco.cl/
https://www.inteco.cl/
https://www.inteco.cl/
http://www.daoiststudies.org/book/export/html/664
http://www.daoiststudies.org/book/export/html/664
https://daoiststudies.org/node/11424
https://daoiststudies.org/node/11424
https://doi.org/10.1007/978-1-4615-0759-8
https://doi.org/10.1007/978-1-4615-0759-8
https://mitpress.mit.edu/books/actors
https://mitpress.mit.edu/books/actors
https://mitpress.mit.edu/books/actors
http://plouffe.fr/simon/math/Black%20Holes%20and%20Time%20Warps,%20Einstein%27s%20Outrageous%20Legacy%20-%20Thorne.pdf
https://trove.nla.gov.au/version/43672953
https://trove.nla.gov.au/version/43672953
https://doi.org/10.1142/9789813109001_0003
https://doi.org/10.1142/9789813109001_0003
https://doi.org/10.1142/9789813109001_0003
https://doi.org/10.1142/9789813109001_0003
https://pdfs.semanticscholar.org/fae7/893af7103ec8616957f2ce321bc665afdb77.pdf
https://pdfs.semanticscholar.org/fae7/893af7103ec8616957f2ce321bc665afdb77.pdf
https://pdfs.semanticscholar.org/fae7/893af7103ec8616957f2ce321bc665afdb77.pdf
https://doi.org/10.1080/00207160310001606034
https://doi.org/10.1080/00207160310001606034
https://dl.acm.org/citation.cfm?id=1098682
https://doi.org/10.4018/978-1-60566-310-4.ch016
https://doi.org/10.4018/978-1-60566-310-4.ch016
https://doi.org/10.4018/978-1-60566-310-4.ch016
https://doi.org/10.4018/978-1-60566-310-4.ch016
https://doi.org/10.4018/978-1-60566-310-4.ch016
https://doi.org/10.1093/comjnl/bxr099
https://doi.org/10.1093/comjnl/bxr099
https://www.researchgate.net/publication/2167749_Elements_of_the_System_Theory_of_Time
https://www.researchgate.net/publication/2167749_Elements_of_the_System_Theory_of_Time
https://doi.org/10.1016/j.procs.2015.03.053
https://doi.org/10.1016/j.procs.2015.03.053
http://www.fulviofrisone.com/attachments/article/412/prigogine_from_being_to_becoming.pdf
http://www.fulviofrisone.com/attachments/article/412/prigogine_from_being_to_becoming.pdf
http://www.jstor.org/stable/20012891
http://www.jstor.org/stable/20012891
http://www.jstor.org/stable/20012891
https://global.oup.com/academic/product/superintelligence-9780199678112?cc=in&lang=en&
https://global.oup.com/academic/product/superintelligence-9780199678112?cc=in&lang=en&
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7

	Contents
	Swarm Superintelligence and Actor Systems
	Abstract
	Keywords:
	Introduction
	Methods
	Introduction
	Actor model in computer science
	Actor model in systems theory
	Computational intelligence and super intelligence

	Conclusion
	References


