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Abstract
Sufficient literature has been published about Pre-Darcy flow in non-petroleum disciplines. Investigators dissent 

about the significance of deviation of Darcy’s Law at very low fluid velocities. Most of their investigations are based on 
coarse, unconsolidated porous media with an aqueous fluid. However little has been published regarding the same 
for consolidated oil and gas reservoirs. If a significant departure from Darcy’s Law is observed, then this could have 
multiple implications on: reservoir limit tests, under prediction of reserves, unrecognized prospecting opportunities 
etc. This study aims to perform a comprehensive review of the literature; and to experimentally demonstrate that the 
Pre-Darcy flow effect is significant in petroleum rocks.
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Nomenclature
A	 Cross-sectional area, m2

a	 Empirical parameter

h	 Formation thickness, m

k	 Permeability, m2

Kv	 Modified Bessel function of the second kind of order v

m	 Empirical parameter

n	 Flow behavior index (power law parameter)

p	 Pressure, Pa

Q	 Flow rate, m3/s

v	 Superficial velocity, m/s

x	 Distance, m

z	 Laplace parameter

μ	 Viscosity, Pa.s

μeff	 Effective viscosity, Pa.sn.m1-n

Introduction
Modern petroleum engineers have used many equations to describe 

the physics behind the fluid flow through porous media. Under ideal 
situations these equations, which form the basis of modern software, 
yield accurate results. However, ever so often engineers are faced with 
challenging problems that seemingly defy physics: be it a well test 
problem, a history matched simulation model, or even a tool as simple 
as the material balance. Upon further investigation, engineers have to 
concede to the simple explanation that the assumptions behind those 
equations were violated. Even further discomforting is the admission 
that engineers have not yet properly characterized the physics behind 
the fluid flow through porous media. 

Darcy’s pioneering work is at the heart of all equations related to 
porous media. Often engineers use it without question. Forchheimer 
[1] demonstrated the departure from linearity for high velocity flows.
However little has been said about the validity of Darcy Law at low
velocities. Considerable amount of work [2-4] has already been
published in this area outside of petroleum, but it has not seeped

through the petroleum engineering literature.

Darcy’s law

Darcy’s Law is based on the experimental observation that the 
apparent fluid velocity is proportional to the applied pressure gradient 
on a porous medium. This observation is analogous to flow of fluid 
through pipes, capillaries (Poisseuille’s Law) and also to that of flow of 
current through a resistive conductor. Wyckoff, [5] separated Darcy’s 
original constant of proportionality into permeability (a property of 
the porous medium) and viscosity (a property of the fluid). The final 
form of equation is (Equation 1): 

Q k dpv
A dxµ

= = −   (1)

Following sections discuss some of the well-known departures 
from Darcy’s Law.

Post Darcy flow effect: Forchheimer [1] made observations 
that the Darcy’s Law deviated from linearity for high velocities. He 
attributed this to the inertial losses. He proposed a velocity squared 
term to account for this non-linearity. Even in 1901, Forchheimer 
noted that some experimental data does not fit his newly proposed 
quadratic flow equation. He then proposed the addition of a cubic term 
to describe those data. Due to the less than proportional increase in 
flow velocity with respect to applied pressure gradient, this effect has 
shown a significant influence on well performance [6,7]. This effect 
is generally termed as Non-Darcy flow; however in this study we will 
refer to it as Post-Darcy flow. Later studies [8-10] have published the 
impact of Post-Darcy flow on fractured gas wells. The literature already 
has effectively dealt with Post-Darcy flow and the reader is suggested to 
consult elsewhere for a more comprehensive treatment of the subject. 
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Low pressure Klinkenberg effect: This effect is also well known 
and ascribed to the Knudsen effect (slippage effect). Also known as the 
Klinkenberg effect [11], who demonstrated that the permeability of a 
porous medium is a function of gas pressure. Well known published 
procedures exist to deal with this effect.

Non-newtonian fluid effect: Darcy’s Law does not apply to non-
Newtonian fluid flow. For non-Newtonian fluids, viscosity is a function 
of applied shear rate. Bird, Stewart, and Lightfoot [12] and Savins [13] 
gave an analogous expression of Darcy’s Law for Power Law fluids 
(Equation 2). 

n

eff

k dpv
dxµ

= − 					                    (2)

Siddiqui [14] applied the above equation and solved the radial 
diffusivity equation for analyzing pressure transient tests. They 
validated the above equation with real field injection data.

Pre-Darcy flow

Oil and gas flowing at very low velocity will be referred to as Pre-
Darcy flow in this text. Many authors [15] have already pointed out 
the necessity of considering the Pre-Darcy flow. The actual fluid flow 
velocity in a real reservoir is very slow especially for radial flow. The 
Darcy velocity is superficial velocity and it can be easily related to the 
continuity equation by (Equation 3).

Qv
A

= 				                                      (3)

In radial flow, the cross-sectional area to flow increases, which 
causes a decrease in fluid velocity for any, given constant flow rate. 

Figure 1 shows a plot of typical oil/gas wells under steady state 
radial flow regime for 160 acre spacing. Figure 1 shows that at smaller 
radial distances, the velocity is large, but it rapidly drops to small 
values for intermediate to large radial distances. Another important 
conclusion from Figure 1 is that only for the initial 5 to 10% of the 
radial distance, the fluid is flowing with a high velocity; whereas more 
than 90% of the fluid in the porous medium is actually moving with a 
very small velocity (orders of magnitude smaller). Therefore Pre-Darcy 
is the dominant flow phenomenon in typical radial flow regime wells. 
Hence it warrants an experimental investigation and mathematical 
modeling (Figure 1).

Researchers [16-19] over the years have also realized that not only 
is Pre-Darcy a deviation from linearity, but there is also a presence of a 
“threshold pressure gradient” and that Darcy’s Law should be corrected 
for that. Figure 2 summarizes some of the proposed models for Pre-
Darcy flow in the literature (with and without the threshold gradient). 
Kutilek [20] classified these regimes into seven types, four of which are 
shown in Figure 2.

Various non-Petroleum engineering literature [2-4] have already 
demonstrated deviations from Darcy linearity under very small 
velocity fluid flow. However most of those studies were conducted on 
unconsolidated samples. Following sections examine their experiments 
and conclusions (Figure 2).

Published Datasets
Figure 3 summarizes some of the datasets collected for Pre-Darcy 

flow. It also yields a comparison of real reservoirs velocities versus the 
lab experiments. 

Fishel [2] observed that laboratory tests for permeability are made 
with much higher pressure gradients than those encountered in water 
bearing formations. He conducted experiments with sand samples and 
water as the working fluid in a U-tube apparatus. His conclusions were 
that Darcy’s Law is valid for very low velocities (10-4 ft/day and above).

Dudgeon [3] conducted permeability tests on coarse grained 
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Figure 1: Superficial Velocity vs. Radial Distance for Various Flow Rates and 
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Experimental Work
Most of the published work was concerned with coarse 

unconsolidated material with water as the working fluid. In this study, 
authors carried out experiments on consolidated porous media with an 
organic (Soltrol-130) fluid. This study employed the U-tube apparatus 
described by Fishel [2], to apply low pressure gradients on the medium. 
This study aims to target the “region of interest” (as shaded on Figure 3).

Experimental setup

The U-tube type apparatus (Figure 3) applies the pressure gradient 
on a saturated core sample through the difference of fluid levels in 
the columns. This difference in head is then converted to pressure 
difference through the density of the working fluid. This pressure 
difference is converted to pressure gradient by dividing by the length 
of the core sample. The flow rate is calculated by noting the change in 
head with respect to time. By using the diameter of the tube (cross-
sectional area) this rate of head change is converted to rate of volume 
change (flow rate). Superficial velocity can be found by dividing the 
flow rate by the cross-sectional area of the core sample (Equation 3).

Consolidated core samples from sandstone reservoirs of various 
permeabilities were used to study the Pre-Darcy effect in these 
experiments (Figure 4).

The required data of head vs. time were recorded for core samples 
with various lengths, diameters and permeabilities. Velocity vs. 
gradient data (after calculations) is plotted on Figure 5.

Laboratory precision and uncertainty

The main sources of error in the experiment arise from the 
challenge of measurement of low flow rates and low pressure gradients. 
The setup described above can read pressures down to 1 mm head (9.8 
Pa or 1.4×10-3 psi, assuming water head, Soltrol-130 would result in 
even smaller least count). Low flow rates can also be directly read off 
down to zero with this setup. 

material including river gravels, crushed rock particles and glass 
marbles with water as the working fluid. He was able to discern three 
different regimes from his experiments: Pre-Linear (Pre-Darcy), 
Linear (Darcy) and Post-Linear (Post-Darcy). These flow regimes are 
distinguishable with abrupt changes in linearity. Therefore Dudgeon 
proposed an empirical fit based on Equation 4 [21-23]. Where the 
coefficients a and m are different for each flow regime and that m=1 for 
Darcy flow and m<1 for Pre-Darcy flow. Dudgeon’s explanation for the 
Pre-Linear flow was ascribed to non-Newtonian characteristics caused 
by interfacial tension. 

mp av
x
∂

=
∂

					                    (4)

Soni et al. [4] conducted various experiments on different particle 
sized porous media. The objective of their study was to better correlate 
the values of a and m for particle size and porosities. Their experiments 
also suggested abrupt changes in flow regimes and categorized them 
into Pre-Linear, Linear and Post Linear flow regimes; and they too 
concluded that m<1 for Pre-Darcy flow. Their experiments were 
conducted with particle sizes in the range of 0.074 to 1.19 mm and 
with porosities as high as 48.75%. They were able to identify Pre-Darcy 
regime for velocity as high as 100 ft/day. This kind of information is 
relevant to unconsolidated reservoirs and shows qualitatively that 
even the near wellbore region might be experiencing Pre-Darcy flow 
phenomenon. 

Prada and Civan [19] experimentally demonstrated the existence of 
a threshold pressure gradient for liquids. They attributed this threshold 
to frictional effects. Their experiments were conducted on consolidated 
sandstones, sand-packs and on shaly sandstone; with brine as the 
working fluid. They demonstrated that the threshold pressure gradient 
is an inverse power law of mobility (Figure 3).

Neuzil [24] attributed the departures from Darcy’s law in the 
Pre-Darcy range to subtle experimental errors: changes in water 
viscosity, measurement errors, small leaks, bacterial activity, incorrect 
assumption of steady state flow, gas generation and dissolution, 
and changes in medium matrix. However he also conceded that an 
observational gap exists, and that flow measurements have only been 
made at gradients several orders of magnitudes higher than in actual 
nature. Therefore applicability of Darcy’s Law can only be inferred at 
small gradients.

Figure 3 also shows the velocity vs. gradient lines for different 
permeabilities encountered in petroleum reservoirs. These lines show 
that almost all of the experiments conducted were on high permeability 
(k>500 mD) media and also confirm that most of the experimental data 
is not parallel to these lines (hence under Pre-Darcy flow as discussed 
above). The shaded region shows the reservoirs with a permeability of 
50 mD or less. Inspection of Figure 3 alongside Figure 1 reveals that 
only the experiments conducted [2] were in the low velocity range 
(v<0.1 ft/day). As described earlier, at least 80% of the porous media is 
flowing fluid with the velocity of 0.1 ft/day or lower. 

Noting that most petroleum reservoirs have a permeability of 50 
mD or less and that 80% of the fluid in a typical reservoir is flowing 
with a velocity of 0.1 ft/day or less; a “region of interest” can be 
constructed on Figure 3 (shaded) based on these constraints. This 
region describes a real petroleum reservoir having a permeability of 
50 mD (or less) dominated with low velocity flow (0.1 ft/day or less). It 
becomes apparent that none of the experiments were conducted in this 
region of interest. 

Figure 4: Schematic of the U-tube Type Apparatus.
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versus pressure gradient deviates from linear relationship.

Figure 6 shows the power law fit (described by Equation 4) on 
the Pre-Darcy regime of the experimental results. The value of m was 
found to vary between 0.3 and 0.6 for these particular experiments. 
This shows significant Pre-Darcy effect at these velocities. However 
m does not correlate well with the permeability and therefore m can 
only be determined experimentally. Clearly since a is a function of 
permeability our experiments also show that a varies inversely with 
permeability (Figure 5).

Deviation from unit slope also points towards the existence of a 
“threshold pressure gradient” as described by previous researchers. 
However for this study it was considered that Equation 4 is sufficient 
to describe mathematically the physics behind the Pre-Darcy 
phenomenon. However our experimental data does corroborate the 
existence of a threshold pressure gradient (Figure 6).

Conclusion
1.	 The literature shows surprising lack of low velocity 

experiments on petroleum rocks.

2.	 Pre-Darcy effect is relevant because real field reservoirs are 
dominated by Pre-Darcy (low velocity) flow.

3.	 Experiments from previous non-petroleum literature are 
inconclusive about the existence of significant Pre-Darcy effect. 

4.	 Those experiments, that confirm the existence of a Pre-
Darcy effect, were conducted on coarse unconsolidated material with 
an aqueous fluid; which casts a shadow on applicability to petroleum 
reservoirs.

5.	 A “region of interest” (to petroleum engineers) was identified 
and none of the published experiments were conducted in that region.

6.	 This study experimentally showed the existence of Pre-Darcy 
effects on consolidated core samples with organic fluid (Table 1).
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1 ft/day 3.528E-06 m/s
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1 ft 0.3048 m
1 mD 9.872E-16 m2

1 psi/ft 22621 Pa/m

Table 1: Unit Conversions.
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