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Abstract

Worldwide, enteric infections are the second commonest cause of disease burden due to all infectious diseases.
It is estimated that they are responsible for 1.3 million deaths per year, mostly in children below 5 years of age in the
developing world. Enteric infections are caused by a gamut of bacterial, viral and parasitic agents. These include
viruses (rotaviruses, enteric adenoviruses, astroviruses, human caliciviruses), bacterial agents (Vibrio cholerae,
Shigella spp., enterotoxigenic Escherichia coli, Salmonella spp. including Salmonella Typhi) and parasites. While
suitable effective licensed vaccines are available against some of the enteric infections, many such diseases do not
have a vaccine against them. Understanding the current scenario of vaccine development against these diseases is
of paramount importance. This article reviews the current scenario in vaccine research and development against
some of the common human viral and bacterial enteric pathogens of public health importance. Vaccines against
parasitic diseases are not discussed.
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Introduction
Enteric infections are major public health problem, especially

affecting children in the developing world with an estimated 1.3
million deaths worldwide in 2008, which account for 15% of total
global child death [1]. Diarrheal diseases are global killers, making
diarrhea the second leading cause of death in infants and young
children. It kills 2,195 children every day being higher than AIDS,
malaria and measles combined [2]. Outbreaks of cholera, shigellosis,
rotavirus diarrhea and typhoid fever occur frequently in resource-poor
countries resulting in high disease burden, mortality and slow
economic growth. World Health Organization (WHO) has given
highest priority to the development of new or improved vaccines

against rotavirus, Shigella spp., enterotoxigenic Escherichia coli
(ETEC), Vibrio cholerae O1 and Salmonella Typhi [3].

It is believed that for enteric vaccines to be effective, mucosal
immunity requires boosting up. Ideally, mucosal protection is best
achieved by administration of a vaccine through the mucosa and oral
route has been found to be the best choice [3,4]. Use of live, attenuated
bacteria as protective vaccine antigens via the mucosal routes is
effective against microbial infections [5]. Transgenic plants or fruits
offer a new strategy for the delivery of safe, oral subunit vaccines
against ETEC and cholera, which are likely to be suitable for use in
developing countries [6]. This mode of vaccine delivery is yet to be
fully established and the safety issues of such vaccines need to be
addressed. This review focuses on licensed enteric vaccines (Table 1)
as well as those that are under development in research mode (Table
2).

Vaccines against Routes of
immunization

Active component (s) Doses Names of Licensed
products

(manufacturers)

Target population (age
of vaccinees)

References

Cholera

Killed whole-cell/
recombinant cholera toxin
B-subunit vaccine (WC/
rBS)

Oral Mixture of 1011 heat-
killed or formalin-killed.
CholeraeO1 of classical
and El Tor biotypes and
Inaba and Ogawa
serotypes +1 mg CT B
subunit

2 Dukoral™ (Crucell/SBL). Children, adult [10,11]

CVD 103- HgR
recombinant live
attenuated vaccine

Oral A ∆ctxA derivative of
classical Inaba strain V.
cholera 569B (CVD
103) and an Hg++
resistance gene
introduced into the

1 Berna, Swiss Serum and
Vaccine Institute as
Orachol (Europe), or
Mutacol (North America)*

Children, adult [13]
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Hemolysin A locus of
the chromosome. 108–
109 cfu

Killed whole cell (WC)
bivalent vaccine

Oral Inactivated V. cholerae
bacteria (Same O1
composition as above +
5 X 1010 formalin-killed
O139 bacteria)

2 Shancol (in India) mORC-
Vax (in Vietnam)

Children, adult [15]

Typhoid

Live attenuated Ty21a Oral Vi negative mutant
strain of S. Typhi

3 Vivotif (Berna Biotech) Children>2 yr, adults [22,23]

Vi polysaccharide Parenteral Purified Vi capsular
polysaccharide (CPS)

1 Typhim Vi (Sanofi
Pasteur)Typherix (GSK)
TypBar (Bharat Biotech);
Shantyph

(Shantha Biotech);Typho-
Vi (BioMed)

Children>2 yr, adults [24,25]

Conjugate vaccine

(Vi-TT)

Parenteral Vi antigen is coupled to
tetanus toxoid protein

2 Peda-typhTM, (BioMed) Children<2 yr

Multivalent combination
vaccines

Parenteral Combined Vi CPS and
inactivated hepatitis A
virus grown in human
diploid cells and
adsorbed onto
aluminum hydroxide.

2 HepatyrixTM, (GSK);
ViatimTM, (Aventis
Pasteur)

adults and
adolescents>15 yrs

[36]

Rotavirus diarrhea

Pentavalent human-bovine
reassortant WC3 vaccine

Oral Bovine WC 3
reassortant viruses
carrying G1, G2, G3
and G4 of P(8) RNA
segment of human
rotavirus

3 RotaTeq™ (Merck
Vaccines, USA)

Young infants [50]

Monovalent RIX-4414
human rotavirus strain

Oral A G1 P [8] rotavirus
isolated from a human
infant that evoked
neutralizing antibodies
to rotaviruses of G
types 1-4.

2 Rotarix™ (GSK
Biologicals)

Young infants [53]

Table 1: Licensed vaccines against common enteric diseases of public health importance (adapted from reference 3). *Manufacturing was
discontinued after 2004.

Cholera
Cholera is an acute watery diarrheal disease caused by Vibrio

cholerae (V. cholerae). The emergence of a new serogroup of V.
cholerae O139 during early 1990s showed no cross-protection with
serogroup O1, but remained confined to Bangladesh, India and other
Asian countries [7]. Some cases were reported from developed
countries, mostly among travelers [8]. The global burden of cholera is
huge, particularly in developing countries. Every year an estimated 2.8
million cases of cholera and about 91,000 deaths occur in endemic
countries [9].

A whole-cell injectable cholera vaccine was developed by Haffkine
in 1894 in India and widely used throughout the world. This vaccine
provided 48% protection for 3-5 months only. The vaccine was highly
reactogenic and required 2 doses for development of protective
immunity. In view of this, the vaccine was not any further
recommended and was withdrawn.

Two types of oral cholera vaccines (OCV) are available (Table 1).
Both the vaccines have been shown to be safe, immunogenic and
efficacious. One of them is an inactivated vaccine and the other one is
a live attenuated vaccine. These two OCVs have been licensed in a few
countries and are mainly used for travelers’ from industrialized
countries to cholera endemic areas [3]. The only inactivated oral
vaccine that is currently recommended by WHO (DukoralTM,
licensed by SBL Vaccine, Sweden) consists of heat- or formalin-killed
whole-cell V. cholerae O1, representing both serotypes (Inaba and
Ogawa) and both biotypes (classical and El Tor), and supplemented
with purified recombinant cholera toxin B-subunit (CTB) [3]. The
whole cell/recombinant B subunit (WC/rBS) oral vaccine, which is
given with buffer to neutralize stomach acidity, conferred 80%-90%
protection during 6 months in all age groups in Bangladesh and Peru
[10,11]. This was also used for mass vaccination among risk
population to protect from emergence of potential outbreaks [12]. The
second type of oral cholera vaccine consists of a live attenuated
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genetically modified V. cholerae O1 Inaba strain (CVD103-HgR),
which has been constructed so as to produce CTB but not the A
subunit of CT (Cholera Toxin) [3]. Efficacy trial of a single dose of live
oral cholera vaccine in North Jakarta, Indonesia showed only 15-20%
protection at the end of third year of surveillance [13]. The vaccine has
been licensed in several industrialized countries. Since, these are
genetically modified bacteria, specific regulatory issues regarding their
safety for humans and environmental use need to be elucidated [14].

A bivalent O1 and O139 killed whole-cell, oral vaccine without CTB
was recently developed in Vietnam (Table 1). It was found to be safe
and immunogenic in both adults and children, generating 90% anti-
O1 and 68% anti-O139 vibriocidal responses after administration of a
two-dose regimen [15]. In a collaborative initiative, International
Vaccine Institute (IVI), South Korea and Kolkata’s National Institute
of Cholera and enteric Diseases (NICED) conducted a Phase III,
double-blind, placebo controlled, randomized clinical trial in Kolkata.
This bivalent (O1 and O139) vaccine is currently the only potential
vaccine against cholera caused by O139 serogroup and licensed for
marketing following the documentation of 66% protection for two
years post-vaccination and 65% cumulative protection at the end of 5
years in all age groups [16,17]. Recent findings showed that in addition
to their direct vaccine-specific protection, OCVs also provide
substantial indirect ‘herd’ protection to unvaccinated persons in the
community due to minimization of the transmission of V. cholerae to
unvaccinated people. The overall protection may approach 80% in
settings with high coverage [18].

Among new generation unlicensed cholera vaccine, Peru 15
recombinant live oral vaccine was shown to be safe and immunogenic
in Bangladeshi children [19].

Typhoid Fever
Typhoid fever is caused by Salmonella enterica serovar Typhi (S.

Typhi). The case fatality rate has been reported to be as high as 10%–
20% in the absence of appropriate antibiotic treatment. However, due
to the global emergence of strains resistant to commonly used drugs
(chloramphenicol, ampicillin and co-trimoxazole) as well as
fluoroquinolones, a tremendous therapeutic problem was encountered
which indicated the need for a suitable vaccine effective against
typhoid [20]. Typhoid fever remains a major cause of morbidity with
an estimated global incidence of 22 million cases and 200,000 deaths
per year [20]. In a recent multi-centric study in 5 Asian countries
(China, India, Indonesia, Pakistan and Vietnam), it was estimated that
the incidence of typhoid ranged from 15.3 per 100,000 persons/year in
China to 451.7 per 100,000 persons/year in Pakistan. Population-based
studies have demonstrated a wide variation in the incidence of typhoid
fever both globally and within the same country [21].

First heat-killed, phenol preserved whole-cell S. typhi was used as
parenteral vaccine in 1896 in Germany and England, but it lost
popularity due to high reactogenicity [22]. Two other typhoid vaccines
that are commercially available are the attenuated Ty21a live oral
typhoid vaccine and the purified Vi polysaccharide (PS) parenteral
typhoid vaccine [3].

The attenuated Ty21a live oral typhoid vaccine (Table 1) was tested
in Phase III trials, initially in Egypt and then in Santiago, Chile,
Indonesia and other countries. Randomized, controlled field trials
involving children were conducted in these countries on the
recommendations of the WHO and the Pan American Health
Organization (PAHO). The vaccine elicited both anti-Salmonella

antibodies and strong cell-mediated immune response. Three doses of
the enteric-coated vaccine provided 67% protection over 3 years, and
62% protection over 7 years [23]. The field studies confirmed the
efficacy and tolerability of Ty21a, and provided evidence of indirect
protection (herd immunity).The vaccine is now licensed in 56
countries in Asia, Africa, Europe and the Americas [22,23].

The subunit Vi vaccine (Table 1) contains purified PS and elicits
serum anti-Vi antibody response and is protective in 85%–95% of
adults and children above 2 years of age after a single parenteral
injection. S. typhi is highly sensitive to both complement-assisted
killing and opsonophagocytotic effects via Vi-specific antibodies. This
vaccine has been found to have 72%–77% efficacy in trials in Nepal
and South Africa and is licensed in more than 92 countries globally
[24,25].

A locally produced Vi vaccine in Shanghai, China, demonstrated a
69% protective efficacy in a randomized double-blind, placebo-
controlled trial amongst 5–19 years old children [26,27]. Single-dose
mass vaccination campaigns targeting school children were carried out
in Vietnam and Indonesia and were also conducted in China in both
adults and children [28-30]. The impact of drug resistance may
improve the cost effectiveness of mass vaccination programs in
typhoid endemic countries [31]. Herd immunity was noted in a recent
cluster-randomized effectiveness trial of Vi PS vaccine in Kolkata,
India: a 44% reduction in typhoid among unvaccinated subjects was
found that significantly contributed to the 61% overall vaccine
protection [32].

The lack of immunogenicity of purified Vi PS in younger children
has prompted the development of a conjugate Vi vaccine using
Pseudomonas aeruginosa exotoxin A (Vi-rEPA) [33]. Persistent
efficacy of Vi conjugate vaccine against typhoid fever in young
children was observed following 3 years post vaccination in Vietnam
and Cambodia [34]. Other carrier proteins like Tetanus toxoid,
Corynebacterium diptheriae toxin were also used for conjugation [35].
Two multivalent combination vaccines (combination of Vi PS of S.
typhi and inactivated Hepatitis A virus) marketed under the names
Hepatyrix™ and Viatim™ are available (Table 1). A prospective,
randomized, observer-blind comparative study in healthy adults
showed that both vaccines were well tolerated and induced high levels
of protective antibodies [36].

New attenuated S. typhi strains that could be used as live oral
vaccines are currently at an advanced clinical stage of development:
Ty800, live attenuated oral single-dose vaccine, a phoP/phoQ deletion
mutant of Ty2 has been shown to induce vigorous serum anti O-
antibody responses in Phase I trials [37]. The CVD908-htrA live
attenuated oral vaccine, an aroC/aroD/htrA deletion mutant was
tested in Phase II trials [35]. Attenuated S. typhi strain M01ZH09 oral
vaccine developed by Emergent Biosolutions tested in Phase II trial
induced serum and secretory IgA specific for surface antigens other
than Vi (e.g., O and H) [38].

Rotavirus Diarrhea
Rotaviruses are the leading causes (25-55%) of acute severe

dehydrating diarrhea in infants and young children in both
industrialized and developing countries and account for about 40% of
hospitalizations in children under 5 years of age. Almost all children
suffer from rotavirus infection/diarrhea within first 2-3 years of their
lives. Outbreaks in day-care centers and hospitals are common and
can spread rapidly [39].
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Rotavirus causes approximately 400,000 deaths each year, mostly in
children below 2 years of age [40,41]. Up to 85% of these deaths occur
in “low-income” countries. Rotaviruses were detected in 56% of stool
specimens from hospitalized children with diarrhea in Vietnam, 41%
in China, 56% in Myanmar and 29% in Hong Kong [42].

Rotaviruses are 70 nm icosahedral viruses that belong to the family
Reoviridae. The virus is composed of three protein shells consisting of
an outer and an inner capsids and an internal core with the 11
segments of the double-stranded RNA genome. Two structural outer
capsid proteins, VP7 (G protein) and VP4 (P protein) define the G and
P serotypes/genotypes of the virus, respectively. These are the major
antigens involved in virus neutralization. Human rotaviruses bearing
VP7 G serotypes G1-G4 and G9 and VP4 P genotypes P[4], P[6] and
P[8] are predominant worldwide [43,44]. P[8]G1 is the globally
predominant strain, accounting for over 70% of rotavirus infections in
North America, Europe and Australia, whereas about 30% of the
rotavirus infections in South America and Asia, and 23% of those in
Africa. Other frequently isolated strains are P [8]G3, P[4]G2, and
P[8]G4 [45]. G9 strains emerged during late 1990s and became the
predominant strains in some parts of Asia and Africa. Similarly, the
distribution of the VP4 P[6] antigen is also different according to
regions: P[6] strains constitute over 50% of the circulating strains in
Africa, whereas P[8] strain is common in the rest of the world [46].
When mixed infections with distinct rotavirus strains occur, the gene
segments may reassort independently, producing progeny
“reassortants”, which are important for viral diversity. An effective
rotavirus vaccine should take into account such variations of prevalent
strains [45-47].

The first rotavirus vaccine tested in humans was the live bovine
strain RIT4237 (P[1]G6). Efficacy trials with this vaccine and other
animal rotavirus strain derived vaccines did not show encouraging
results leading to the discontinuation of these vaccines. In view of the
inconsistency of the results, efforts were made to either use naturally
attenuated human rotavirus strains or to develop reassortant rotavirus
strains bearing a human rotavirus gene for the VP7 protein and other
genes from a simian or a bovine rotavirus strain [48,49].

The first live oral reassortant vaccine was developed by the National
Institutes of Health (NIH, Bethesda) as a tetravalent mixture of the
P[3]G3 rhesus RRV strain and human rotavirus strains of G types 1, 2,
and 4, respectively forming three independent rhesus-human
reassortants [48]. The vaccine (RotaShieldTM) was introduced in 1998
by Wyeih-Lederle. But there was a major setback in 1999 leading to the
withdrawal of RotaShieldTM in less than a year after its introduction
due to the reported intussusceptions in those who received the
vaccines [49]. Subsequently, new live oral rotavirus vaccines have been
developed [3].

More recently, a pentavalent human-bovine (WC3) reassortants
(Gl, G2, G3, G4 with P[8] and G6 with P[7]) live-attenuated, 3-dose
oral vaccine, has been developed (Table 1). The vaccine was
administered at 6–12 weeks of age at 1–2 months intervals. This
vaccine (RotaTeq™) was tested in a Phase III trial in several countries
including the USA and Finland on more than 70,000 children and
carefully monitored for risks of intussusception. The vaccine was 74%
efficacious in preventing any rotavirus disease and provided 98%
protection in case of severe rotavirus diseases. In developing countries
like Bangladesh and Vietnam, pentavalent rotavirus vaccines
prevented severe rotavirus diarrhea by more than 50 percent during
the first year of life, when children are at greatest risk for having

rotavirus diarrhea [50]. Merck is marketing the licensed vaccine
RotaTeqTM globally [3].

Another multivalent bovine-human reassortant vaccine has been
independently developed by the National Institute of Allergy and
Infectious Diseases (NIAID, NIH, Bethesda). Analysis of Phase II data
revealed a good immune response and no adverse interference with
concomitantly administered childhood vaccines were noted [51]. Two
naturally occurring human-bovine, neonate derived, reassortant
strains (116E and 1321) are under development in India in partnership
with Centers for Disease Control and Prevention (CDC), USA and the
Children’s Vaccine Programme funded by the Program for
Appropriate Technology in Health (PATH). These strains have
P[10]G9 and P[ll]G10 antigens, respectively [52].

A monovalent (P[8]G1) live-attenuated, 2-dose oral vaccine has
been developed from a human rotavirus strain RIX-4414 (Table 1).
The vaccine (Rotatrix™) has been tested in Latin American and
European countries in a phase III trial on more than 63,000 children.
The vaccine was 85-100% efficacious in preventing severe rotavirus
disease. No increased attributable risk of intussusception was reported.
The vaccine has been licensed in several countries in Latin America,
Asia, Africa and Europe [53]. Phase II clinical trials were conducted in
developing countries like Bangladesh, Vietnam and Philippines to
investigate the safety and immunogenicity of the vaccine when given
concomitantly with the oral polio vaccine (OPV). The Rotatrix™

vaccine was found to be immunogenic when co-administered with
OPV and did not interfere with OPV sero-protection rates in the
infants [54,55].

Based on the clinical trial data from Asia and Africa, in 2009, the
WHO’s Strategic Advisory Group of Experts (SAGE) recommended
that all countries should include rotavirus vaccines in their national
immunization programs. Significant declines in hospitalization and
deaths due to rotavirus and all-cause diarrhea have been observed in
many of the countries that have introduced rotavirus vaccines [56,57].
Unvaccinated children and adults were found to be protected due to
“herd immunity” [58]. The Global Alliance for Vaccines and
Immunizations (GAVI) is sponsoring a new Public-Private
organization, the Rotavirus Vaccine Programme at PATH, whose role
is to accelerate the development and introduction of rotavirus vaccines
in developing countries. Post marketing surveillance is required to
measure the extent of cross-protection of the existing vaccine against
different rotavirus serotypes, including serotype G9, which is
becoming increasingly important across Asia and Africa.

Shigellosis
Shigellosis remains an important cause of morbidity and mortality

globally, particularly among children less than 5 years of age in
developing countries. In 1999, it was estimated that Shigellae caused
approximately 113 million episodes and 0.6 million deaths annually.
In addition, about 500,000 cases of shigellosis are reported each year
among travelers and military personnel from industrialized countries
[59].

Since Shigellae invade and destroys intestinal mucosa, antimicrobial
therapy is the cornerstone of treatment for shigellosis, but the option is
gradually narrowed down due to widespread occurrences of multidrug
resistant strains in Asia where even resistance to ciprofloxacin has
been observed [60]. Resistance has increased also to the second line
choices like pivmecillinam and azithromycin (30–50%) and to the
third generation cephalosporin [60,61]. Increasing occurrences of

Citation: Dutta S, Jain P, Bhattachary KS (2014) Human Enteric Vaccines. J Vaccines Vaccin 5: 252. doi:10.4172/2157-7560.1000252

Page 4 of 9

J Vaccines Vaccin
ISSN:2157-7560 JVV, an open access journal

Volume 5 • Issue 6 • 1000252



outbreaks and spread of multidrug resistant Shigellae dysenteriae
type1 strains is a matter of great concern [60]. It is imperative that
there is an urgent need for a safe and effective Shigella vaccine to
control the disease, but unfortunately currently no such vaccine is
available.

There are four serogroups of Shigellae: S. sonnei, S. flexneri, S.
dysenteriae, and S. boydii. These serogroups are subdivided into
serotypes on the basis of the O-polysaccharide antigen of their
lipopolysaccharide (LPS). S. sonnei is the predominant serogroup in
industrialized countries, where it accounts for 77% of cases compared
to 15% in developing countries. It was also the commonly obtained
isolate in Thailand in recent years, a phenomenon possibly linked to
the level of economic development of the country and tourists from
developed regions. S. flexneri is endemic in developing countries and
is the most frequently (60%) isolated species worldwide. The
predominant serotype of S. flexneri is serotype 2a, followed by lb, 3a,
4a and 6, although recent studies from Asian countries showed wide
variations in the prevalence of these serotypes. S. boydii is the
relatively uncommon serotype. S. dysenteriae serotype 1is notorious
for being multidrug resistant and has caused large scale severe
epidemics of dysentery [59]

Antibody directed to the O somatic antigen of Shigellae is
protective and is type specific. In view of the large number of Shigella
serotypes, vaccine development against all serotypes is complex,
although it is observed that a vaccine could give cross-reactive
protection. Candidate shigellosis vaccines that are currently under
development include both killed and live vaccines and are mostly
targeted against S. flexneri [3,62,63]. Two approaches to develop
Shigella vaccines have demonstrated reasonable protection in field
trials. The first approach is the development of conjugate vaccines in
which Shigella O-polysaccharides are linked to carrier proteins. The
second approach is the development of live oral vaccines after
attenuation of wild-type Shigellae spp. [3,64]. These vaccines are at
preclinical stage (Table 2). This approach includes:

• Parenteral conjugate vaccines comprising of purified S. dysenteriae
type 1 LPS conjugated to tetanus toxoid; S. flexneri 2a and S.
sonnei LPS conjugated to recombinant Pseudomonas aeruginosa
exotoxin A [65]. These vaccines were developed at the NIH, were
safe and immunogenic in children greater than 4 years of age and
afforded 74% protection when tested in field trials with Israeli
military volunteers, except in pre-school children [66,67].

• A nasally administered bivalent invasin complex vaccine
(Invaplex) against S. flexneri 2a and S. sonnei developed by Walter
Reed Army Institute of Research (WRAIR), US is under evaluation
[68].

• A nasally administered proteosome vaccine consisting of S. sonnei
and S. flexneri 2a LPS linked to the outer membrane protein of
group B Neisseria meningitides [69].

Definite progress has been made with candidate live oral Shigella
vaccines (Table 2), but the problem remains with them that under-
attenuation causes excessive reactogenicity and over-attenuation leads
to poor immunogenicity in human subjects. These approaches
include:

• A live, attenuated S. sonnei WRSS1 was developed by WRAIR with
a single deletion mutation of the virG gene as oral Shigella vaccine.
The safety and immunogenicity of the vaccine was tested in Israeli
volunteer in phase II trial and the vaccine was found to elicit a
significant immune response [70].

• A live, attenuated S. flexneri 2a strain (SC602), carrying mutations
in their icsA (virG), iuc, int and toxA (stxA) genes and a S.
dysenteriae type 1 strain (SC599) carrying mutations in their icsA,
ent, fep and stxA genes were developed at the Pasteur Institute,
Paris [71-73]. SC602 was tested in adult volunteers in the USA and
in both adults and children in Bangladesh, although the outcome
was not so encouraging in Bangladesh study [71,72]. SC599 was
well tolerated in their phase II trials. A single oral immunization of
SC599 vaccine elicited a significantly higher circulating IgA-
antibody secretory cells and serum antibody, when compared to
phase I trials [73].

• A series of strains were made auxotrophic for aromatic amino
acids synthesis (amA) and guanine synthesis (guaBA) with
progressive deletions of virulence genes virG, set (ShET-1) and sen
(ShET-2) resulting in construction of CVD1203, CVD 1204, etc.
culminating in strain CVD1208S, which was safe and
immunogenic in phase I studies [74].

Enterotoxigenic Escherichia coli
Enterotoxigenic E. coli (ETEC) remains the major cause of infantile

diarrheas in the developing world and of traveler’s diarrheas in the
industrialized countries among the travelers visiting the third world
countries [75].

ETEC infections are characterized by profuse watery diarrhea,
generally clinically indistinguishable from cholera, leading to
dehydration and malnutrition in young children. ETEC causes
approximately 280 million diarrhea based episodes and more than
400,000 deaths annually [76,77]. Active community and hospital
surveillance in Bangladesh has shown that the prevalence of ETEC
infections were 14–23% in children with diarrhea and 8% in
asymptomatic children. ETEC are globally responsible for about 25%
of persistent diarrheas and 26% of severe diarrheas requiring
hospitalization [78].

ETEC attaches to specific receptors of the enterocytes in the small
intestinal lumen by the hair-like fimbriae, which function as adhesins
and define strain-specific antigenicity. More than 25 types of fimbrial
antigens, called coli surface antigens (CSs) or colonization factor
antigens (CFAs) have been described, with seven types (CFA/I and
CS1 through CS6) occurring most frequently. Antibodies targeted to
fimbriae are protective but showed serotype-specificity. Once attached
to the intestinal epithelium, ETEC elaborates a heat-labile toxin (LT)
and/or a heat-stable toxin (ST), which induces the watery diarrhea.
Approximately one half of ETEC strains secrete only ST, 25% secrete
only LT, and the remaining 25% secrete both LT and ST. LT is highly
homologous to cholera toxin (CT) comprising of an active A subunit
surrounded by five B subunits for attachment. ST is a small peptide
toxin of 18 or 19 amino acids. Since ST is not immunogenic, it is not a
suitable candidate for vaccine [3,78].

ETEC infections in children in developing countries confer
immunity against subsequent infection as reflected by declining rates
of ETEC diarrhea with increasing age and lower ratios of symptomatic
to asymptomatic ETEC infections in adults. The protection against
subsequent infections occurs if the infecting strains have similar toxin
and/or colonization factor phenotypes to that of initial strains. Thus
immunization against ETEC early in life is expected to confer effective
protection. Travelers from industrialized country and military troops
on deployment are important potential target population for
vaccination against ETEC [78,79].
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The oral killed WC/rBS cholera vaccine (Dukoral™ as stated earlier)
was found to prevent 23% of all diarrhea episodes and 52% of episodes
due to ETEC in tourists which did not last more than a few months

[80]. Several approaches have been pursued to develop specific ETEC
vaccines (Table 2).

Vaccine Immunization route No. of
doses

Developer Status References

Shigellosis

Attenuated S. sonnei strain WRSS1 Oral 2 Walter Reed Army Institute of
Research

Phase II [70]

Attenuated S. flexneri2a strain CVD 1208S Oral 2 Center for Vaccine Development,
University of Maryland

Phase I [74]

Attenuated S. flexneri2a strain SC602 Oral 1-2 Pasteur Institute Phase II [71]

Attenuated S. dysenteriae 1 strain SC599 Oral 2 Pasteur Institute Phase II [73]

Shigella glycoconjugates (O polysaccharide
covalently linked to carrier protein)

Intra-muscular 2 National Institute of Health and
Human Development

Phase III [65]

Shigella invasion complex (Invaplex) Nasal 3 Walter Reed Army Institute of
Research

Phase I [68]

Proteosomes (OMP of Group B meningitides) to
which S. sonnei or S. flexneri2a LPS is adsorbed

Nasal 2 ID Biomedical* Phase I [69]

ETEC diarrhea

B subunit-inactivated whole fimbriated ETEC
combination

Oral 2 University of Goteborg and SBL Phase III [82]

Attenuated fimbriated non-toxigenic E. coli
(derived from ETEC)

Oral 2 Cambridge Biostability Ltd. Phase I [88]

Attenuated Shigella strains expressing ETEC
fimbrial colonization factors and B subunit of LTh**

Oral 2 Center for Vaccine Development,
University of Maryland

Phase I [86]

Table 2: New generation unlicensed vaccines against Shigella and ETEC (adapted from ref. 3). *Now GSK Biologicals. **LTh, LT from a human
ETEC strain.

One of the most successful vaccine approach developed by the
investigators at the University of Goteborg (Sweden) is based on
recombinant CTB combined with 4 formalin-killed ETEC strains that
collectively express the colonization factors of epidemiological
importance in developing countries [78,81]. Phase II studies of 2-doses
of this vaccine have been conducted in Bangladesh, Egypt, Israel,
Nicaragua, the USA and Europe. This vaccine was safe and
immunogenic by inducing mucosal antibody responses to CTB and to
the CFA components of the vaccine. The vaccine was less than 20%
effective against ETEC infections in the very young [82]. Several
factors were involved for these observations. Studies in US travelers
showed 60%–84% protection against severe incapacitating diarrhea
[83]. CS6 protein antigens could induce systemic immune responses in
the presence of an adjuvant such as LT [84]. ST is not immunogenic
even if coupled to a protein carrier and was very reactogenic. Lastly,
feeding volunteers with transgenic corn or potatoes expressing the LT
B subunit resulted in significant serum and gut antibody responses
[85]. At the Center for Vaccine Development (CVD), University of
Maryland (USA), the vaccine approach being pursued is by using live
attenuated Shigella vectors for expression of ETEC fimbrial and LT
antigens. Such constructs protect against both Shigella and ETEC [86].
The same approach is being followed by Micro science using their spi-
VEC oral live attenuated typhoid vaccine as a vector for the delivery of
ETEC antigens [87].

Two non-toxigenic ETEC strains have been attenuated by
mutagenesis of the aroC and ompR genes or of the aroC, ompC and
ompF genes, respectively, to be used as candidate live, oral attenuated
vaccines. The mutagenized strains were found to be well tolerated and
immunogenic when fed to human volunteers [88]. But none of these
ETEC candidate vaccines were found to be protective in infants and
young children in the endemic areas. Intense efforts need to be made
to improve the immunogenicity of the candidate vaccines. The
strategy is to include toxin antigen alone or together with over-
expressing colonizing factors antigens [89,90].

Conclusion
In recent years, there is an increased research interest for

understanding the biology and development of enteric vaccines due to
improved knowledge about the mucosal immune system together with
the development of improved methodologies for measuring local
immune responses, both humoral and cell-mediated immunity.
Several new enteric vaccines are in different stages of clinical testing,
including improved alternatives to existing vaccines. Oral route has
been extensively studied for mucosal vaccination due to its many
attractive features. But the tolerance is a crucial challenge in the
development of effective oral vaccines. Other challenges, including
antigen degradation by proteolytic enzymes, the low dose of antigen
absorbed, a lack of potent mucosal adjuvants, and difficulty in
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directing antigens to M cells, are also responsible for the non-
availability of a potent oral vaccine. Two areas that could revolutionize
enteric vaccine research are (i) the development of new well-tolerated
mucosal adjuvants that could influence the innate immune system vis-
à-vis enhance the adaptive immune response to oral vaccines and (ii)
the use of lectins or other means to target vaccine antigens or use of
delivery vehicles for direct delivery of the purified subunit antigens to
intestinal M cells.

The ability of M cells in Peyer’s patches to take up diverse numbers
of microorganisms to antigen-presenting cells (APCs) have made M
cells an ideal target for delivery of vaccine to the mucosal immune
system. Targeting specific receptors on the apical surface of M cells
may have the ability to specifically increase the uptake and
presentation of antigens, consequently initiating higher immune
response and inducing protection against infectious agents [91]. WHO
prequalified safe and effective enteric vaccines are licensed and
commercially available in several countries. Some countries have
introduced them in their routine immunization programs. During
implementation of an enteric vaccine in developing countries where
the disease is endemic, it was observed that poor people living in the
slum communities prefer to have safe water, improved sanitation,
housing and not the vaccines. It is true that safe water supply and
promotion of good sanitation practice are the permanent measures to
prevent diseases, improve the health and quality of life of people in a
country, but achieving this is a difficult proposition in resource poor
countries in near future. It is imperative that researchers should not
only contribute to the development of suitable vaccines, but, it is also
their responsibility to sensitize the political leaders, bureaucrats,
policymakers and the common people about the cost-effectiveness,
overall benefits and their impact on economic growth by introduction
of these vaccines in routine immunization programs of the countries,
which would mitigate the suffering of poor people. Oral cholera
vaccine is now ready to be introduced in endemic areas. The vaccine
should be used before the cholera season so that, it will prevent the
occurrence of outbreaks and minimize the number of cholera cases.
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