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Abstract
The problem addressed here is that of simultaneous treatment of several gene expression datasets, possibly 

collected under different experimental conditions and/or platforms. Using robust statistics, a large scale statistical 
analysis has been conducted over 20 datasets downloaded from the Gene Expression Omnibus repository. The 
differences between datasets are compared to the variability inside a given dataset. Evidence that meaningful biological 
information can be extracted by merging different sources is provided.
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Background
Many genome wide expression datasets have been published during 

the past ten years. Repositories, such as the Gene Expression Omnibus 
(GEO) database [1], have made available an impressive wealth of data. 
Using them as a whole, instead of restricting statistical studies to one 
particular dataset, is tantalizing. Two recently published R/Bioconduct 
or packages [2,3] provide various tools for merging datasets coming 
from different studies. However, a serious doubt has been cast by Haibe-
Kains et al. [4], after comparing two large scale pharmacogenomics 
studies: whereas both studies had a good overall correlation, important 
discordances could be observed. Thus, the following crucial question 
remains to be answered: is it statistically legitimate to merge datasets 
coming from different studies? An attempt at answering this question 
is reported here.

Merging different datasets requires prior checking that the 
information they contain is compatible, and hence that detected 
differences between gene expressions under different conditions are not 
artifacts, due to experimental or data processing methods. An obvious 
obstacle to simultaneous treatment is that expression data collected 
under different experimental conditions and/or platforms usually have 
incompatible distributions, which differ sometimes by several orders 
of magnitude [5,6]. A solution is provided by robust (or distribution-
free) statistics [7,8]. Robust methods amount to replacing actual values 
by ranks, or equivalently by empirical distribution functions or van 
der Waerden’s normal scores [7]. This idea has already been applied to 
expression data in several papers, including [9-11]. However, to the best 
of our knowledge, a large scale analysis assessing the reproducibility 
of information from one dataset to another is still missing. We have 
conducted such an analysis over 20 GEO datasets, totaling 17 745 
genome wide expression samples.

For the data treatments presented here, the statistical language R 
[12] has been used. Our set of functions, together with a manual, has
been made available online as supplementary information. Throughout 
the article, we consider data matrices (also called assay data in [13])
as containing expression data relative to a set of genes. Each row
corresponds to a different gene symbol, or feature, each column to a
different data vector or sample. Such a matrix is deduced from raw
datasets, available on the GEO repository, though standard treatments:
annotation and reduction [14]. Several R packages [15,16] that perform 
these operations and output data matrices such as considered here,
are available. We have encoded our own functions. We have chosen a

data structure in which each data matrix is paired with its information 
matrix. The columns of the information matrix are labelled by the 
same numbers as the paired data matrix. Its rows contain the different 
information fields of the data. Our focus here is on over expression or 
under expression of genes, in different tissues or cancer types.

Our objective was twofold. On the one hand, we wanted to check 
whether the information on genes, contained in different data matrices, 
was compatible, and to which extent. This was done on a set of 20 
different matrices. Various statistical treatments were performed. The 
first one consisted in computing correlations between median columns 
of the matrices. Vectors of pairwise correlations between rows were 
also compared. Then multivariate analysis over assays of gene symbols 
was applied: Wilcoxon and Kruskal-Wallis tests, factor and principal 
component analysis (PCA). The results were compared to those 
obtained by sorting a single matrix according to different keywords. 
All comparisons showed not perfect, but highly significant correlations. 
However, it was also found that in all cases, a sizeable proportion of 
symbols were good discriminators of the different matrices. But this 
was also found to hold between two sub matrices inside a given dataset. 
Therefore, it cannot be regarded as an obstacle to merging different 
datasets. On the other hand, we wanted to know whether biological 
information could be consistently retrieved from matrices collated from 
different sources. Two merged sets of matrices were made. The first one 
came from general cancer cell datasets, from which samples of breast 
and lung tumors were extracted. The second one was made of blood 
RNA datasets, coming from healthy individuals, or from leukemias. In 
both cases, evidence that already known biological information could 
be extracted from merged matrices was found.

Methods
The datasets available from the GEO repository [1], collate sets of 
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expression vectors, or samples. Several R/Bioconductor packages can 
be used to download and format the data [15,16]. We have chosen to 
encode in R our own functions. Our R script has been made available 
online, together with a user manual. Our formatting choices are 
described below.

In a GEO dataset two types of information are available for each 
sample. The first type consists of numeric values corresponding to a 
set of probes. The second types are character-type information on the 
experimental setting. We have chosen to separate the two types into 
data matrices and information matrices. In the data matrix, probes 
are associated to gene symbols with the use of different Bioconductor 
annotation packages according to the platform [17-20]. After 
annotation, some symbols are duplicated. Several methods can be used 
to eliminate duplicates. We have chosen to keep the row with the largest 
interquartile range, as in [14], because we believe that this is the most 
statistically coherent choice. After annotation and reduction, the data 
matrix, with gene symbols as row names, and series numbers as column 
names, is saved as a single R object for future use. The information 
matrix has the same column names as the corresponding data matrix. 
Its rows correspond to the different fields.

Our merging function reduces data matrices to common row 
names. For information matrices, different sets of data usually have 
different information fields. This was taken into account when merging 
two information matrices, by indexing the rows of the merged matrix 
by the union of row names in the initial information matrices.

Two R/Bioconductor packages have recently been issued for 
merging GEO datasets [2,3]. In [2], quantile discretization, normal 
discretization normalization, gene quantile normalization, median 

rank scores, quantile normalization (QN) is proposed. In [3], the Batch 
Mean-Centering method, Distance-Weighted Discrimination, Z-score 
standardization, and the Cross-Platform Normalization method 
are proposed. An Empirical Bayes (EB) method is available in both 
packages. For the results reported here, only classical methods were 
used, and we consider them as sufficient to establish our main points, 
our focus being on over expression or under expression of genes, in 
different tissues or cancer types.

As in [9-11], we have made the choice to use robust statistics [7,8]. 
This implies changing the columns of a data matrix into distribution free 
values. The usually proposed transformation replaces the i-th valuexi by 
its rank Ri if xi is the Ri-th smallest value in the column. However, ranks 
range between 1 and the number of rows. The problem is that different 
matrices may have different numbers of rows (gene symbols). In order 
to get a unique range of values for all matrices, it seems preferable to use 
a scale free score. The simplest such score is the Empirical Cumulative 
Distribution Function (ECDF): its value at xiisRi/n, if n is the number 
of rows. Graphical displays look more familiar if another score is used: 
the van der Waerden’s normal score [7]. It consist of replacing xi by 
φ(Ri/(n + 1)), where φ is the quantile function of the standard normal 
distribution. With the ECDF, the distribution of each column becomes 
uniform on the interval (0,1), whereas with the normal score it becomes 
standard normal. Results reported above have been obtained with the 
normal score, but they are not essentially different if the ECDF is used 
instead.

In statistical inference, the choice of robust statistics must be made 
coherent. This is the reason why we have replaced the usual normal-
sample techniques by their robust equivalent, and used medians instead 
of means, Spearman’s correlation instead of Pearson’s, Wilcoxon (or 
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Figure 1: Factor analysis of median columns for 20 datasets.  The 20 variables are projected onto the first principal plane of the PCA. Four clusters are identified.
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Mann-Whitney) location test instead of Student’s t-test, Kruskal-Wallis 
test instead of one-way analysis of variance [7]. When comparing 
several matrices to detect location diffferences, the Kruskal-Wallis test 
was run over all common rows. When differentiating over expression 
from under expression, a one-sided Wilcoxon test was run. The same 
test being used for a large number of features, a False Detection Rate 
(FDR) correction of p-values by the Benjamini-Yekutieli method [21] 
was systematically applied. Features were ranked from most to least 
significant, either by sorting p-values in increasing order, or by sorting 
the values of the test statistic instead. We considered as significant, any 
feature with a (FDR-corrected) p-value smaller than 5%. Once a set of 
(significant) features had been selected, the corresponding rows were 
concatenated into single vectors. These vectors were taken as variables, 
and the samples as individuals, for a PCA (Figures 1 and 2). Figures 3 
to 5 were obtained by projecting the samples as points onto the first 
principal plane, and differentiating their initial data matrices by colors. 
Precise R commands can be found in the user manual made available 
online.

Results
The 20 datasets that were downloaded from the GEO repository 

are detailed in Table 1[22-41]. They were selected on a criterion of size 
(number of samples: 500 or more). The 20 matrices together amount 
to 17 745 samples. To each study, a three-letter acronym was attached; 
these acronyms will be used in what follows.

In the results reported here, each data matrix has been transformed 
by replacing its column values;by the corresponding van der Waerden 
normal scores [7]. Similar results were obtained when replacing column 
values by their empirical distribution function (methods section).
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Figure 2: Values of PVA on CA4 versus ALPP. Samples separate into 4 clusters, according to over or under expression of the two genes.

Acronym Reference   Series 
number

Platform 
number

Symbols 
(rows)

 Samples 
(columns)

EPO [22] 2109 570 20 184 2158

PMM [23] 2658 570 20 184 559

AML [24] 6891 570 20 184 537

HBI [25] 7307 570 20 184 677

MIL [26] 13159 570 20 184 2096

MDS [27] 15061 570 20 184 870

PLE [28] 20142 6947 19 626 1240

MMD [29] 24080 570 20 184 559

DLB [30] 31312 570 20 184 498

PRS [31] 33828 10558 20 768 881

CCL [32] 36133 15308 18 722 917

BEC [33] 36192 6947 19 628 911

WBS [34] 36382 6947 19 628 991

GSC [35] 36809 570 18 260 812

MBI [36] 37069 570 18 260 590

CCC [37] 39582 570 20 184 566

PVA [38] 48152 6947 19 628 705

HPS [39] 48348 6947 19 628 734

XMD [40] 48433 570 20 184 823

HAV [41] 48762 6947 19 628 621

Table 1: Twenty GEO series have been chosen, coming from four different 
platforms.  To each of them a three letters acronym was associated. The table gives 
the acronym, a recent reference, the GEO series number, the platform number.   
For the data matrix (or assayData), the number of symbols after annotation and 
reduction, and the number of columns (samples) are given.  All 20 data matrices 
had 15 562 gene symbols in common.
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Figure 3: Dataset MIL, partitioned into 6 sub matrices according to keywords Healthy, ALL, AML, CLL, CML, MDS. PCA of the 22 symbols with Kruskal-Wallis p-value 
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COL9A2, MICALL2, MPO, PPM1K. Samples are represented by points, with six different colors.

−6 −4 −2 0 2 4

−2
−1

0
1

2

PCA Breast−Lung in CCL, EPO, XMD separated

first component

se
co

nd
 c

om
po

ne
nt

PTPRO

ASXL2

MS4A4A

ZNF160

C1QB

DBT
PDE4C

IGLL3P

FAM161B

CCDC152

CCLbreast

EPObreast

XMDbreast

CCLlung

EPOlung

XMDlung

−4 −2 0 2 4

−2
−1

0
1

2
3

PCA Breast−Lung in CCL, EPO, XMD merged

first component

se
co

nd
 c

om
po

ne
nt

TXNRD1

IGF2BP3

MGP

TRIL

PRLREFHD1

GATA3

IRX5
TRPS1

VAV3

Breast

Lung

Figure 4: Principal component analysis of two assays of 10 symbols in 6sub matrices, extracted from CCL, EPO, and XMD according to keywords “Breast” and 
“Lung”. The six sub matrices are separated on the right panel; they have been merged on the right panel. In each case the 10 most significant features for the Kruskal-
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The first treatment that was applied consisted in computing, for 
each dataset, the median of all rows, reduced to the 15 562 common 
gene symbols. This gave 20 vectors of length 15 562, the correlation 
matrix of which is given in Table 2. A positive (negative) correlation 

between vectors of size 15 562 is significant at threshold 5% if it is larger 
than 0.013 (smaller than-0.013); thus all correlations of Table 2 can be 
regarded as significant.
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the 7970 having anull Kruskal-Wallis p-value.

EPO PMM AML HBI MIL MDS PLE MMD DLB PRS

EPO 1.00 0.80 0.71 0.92 0.63 0.82 0.55 0.48 0.59 0.18
PMM 0.80 1.00 0.75 0.79 0.63 0.81 0.56 0.63 0.55 0.19
AML 0.71 0.75 1.00 0.68 0.76 0.85 0.61 0.58 0.59 0.18
HBI 0.92 0.79 0.68 1.00 0.58 0.76 0.53 0.46 0.53 0.18
MIL 0.63 0.63 0.76 0.58 1.00 0.78 0.58 0.67 0.61 0.14
MDS 0.82 0.81 0.85 0.76 0.78 1.00 0.69 0.52 0.60 0.18
PLE 0.55 0.56 0.61 0.53 0.58 0.69 1.00 0.40 0.45 0.22
MMD 0.48 0.63 0.58 0.46 0.67 0.52 0.40 1.00 0.50 0.11
DLB 0.59 0.55 0.59 0.53 0.61 0.60 0.45 0.50 1.00 0.12
PRS 0.18 0.19 0.18 0.18 0.14 0.18 0.22 0.11 0.12 1.00
CCL 0.81 0.74 0.69 0.75 0.65 0.77 0.55 0.54 0.56 0.20
BEC 0.56 0.49 0.43 0.65 0.38 0.48 0.63 0.32 0.35 0.21
WBS 0.57 0.58 0.62 0.54 0.58 0.70 0.94 0.40 0.46 0.23
GSC 0.59 0.61 0.69 0.57 0.63 0.74 0.66 0.46 0.49 0.15
MBI 0.60 0.63 0.70 0.58 0.65 0.75 0.64 0.48 0.50 0.15
CCC 0.77 0.62 0.64 0.67 0.59 0.67 0.50 0.49 0.53 0.15
PVA -0.09 -0.10 -0.13 -0.09 -0.14 -0.16 -0.30 -0.09 -0.09 0.16
HPS 0.62 0.62 0.66 0.58 0.62 0.74 0.93 0.43 0.49 0.24
XMD 0.90 0.81 0.72 0.84 0.65 0.83 0.56 0.51 0.56 0.19
HAV 0.60 0.60 0.64 0.56 0.61 0.73 0.89 0.42 0.48 0.21

CCL BEC WBS GSC MBI CCC PVA HPS XMD HAV

EPO 0.81 0.56 0.57 0.59 0.60 0.77 -0.09 0.62 0.90 0.60
PMM 0.74 0.49 0.58 0.61 0.63 0.62 -0.10 0.62 0.81 0.60
AML 0.69 0.43 0.62 0.69 0.70 0.64 -0.13 0.66 0.72 0.64
HBI 0.75 0.65 0.54 0.57 0.58 0.67 -0.09 0.58 0.84 0.56
MIL 0.65 0.38 0.58 0.63 0.65 0.59 -0.14 0.62 0.65 0.61
MDS 0.77 0.48 0.70 0.74 0.75 0.67 -0.16 0.74 0.83 0.76
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Figure 1 shows a factor analysis of the 20 variables. Fifteen of them 
can be clustered into four groups.

•	 PMM, EPO, XMD, HBI, CCL, CCC. Among these six datasets, 
four are generalist studies involving different tissues and 
conditions (EPO, HBI, XMD, and CCL); CCC concerns colon 
cancer and PMM multiple myelomas. Observe that CCL, which 
was obtained under a platform different from the five others, 
has excellent correlations with them (between 0.74 and 0.92).

•	 WBS, PLE, HPS, HAV. All four correspond to blood RNA 
samples from healthy patients.

•	 MIL, AML, MDS. All three correspond to leukemias.

•	 GSC, MBI. These two matrices correspond to similar tissues 
(blood samples), and similar conditions (critical injuries and 
burn injuries). Moreover, they were produced on the same 
platform, by the same organization. Their excellent correlation 
(0.94) is not a surprise.

Three datasets, BEC, DLB, MMD have relatively good correlations 
with those of the above four groups (around 0.5), but no particular 
links with those groups, nor between themselves. The relative surprise 
comes from the weak correlations of PRS, and the negative correlations 
of PVA. Both come from blood RNA samples, and they could have 
been expected to be close to the WBS, PLE, HPS, HAV group. That PRS 
and PVA are far from any other matrix can be explained by their inner 
heterogeneity. It is illustrated for PVA on Figure 2, where the values 
over features ALPP and CA4 are represented: samples separate into 4 
clusters, according to over- or under expression of the two genes. As 
an example, if PVA is split into samples for which the value of ALPP is 
positive (over expression), or negative (under expression), and the row 
medians are calculated over the two sub matrices as before, a correlation 
of -0.69 is found: thus one half of PVA has a strong negative correlation 
with the other half. Similar results are obtained for many other features. 
We considered that the heterogeneity of PVA and PRS did not qualify 
them for merging.

For each matrix, we also computed all possible pairwise row 
correlations: 20 vectors of more than 121 millions of pair-correlations 
were obtained: this is the technique used to evaluate genes for cross-
platform consistency of expression patterns in [42-45]. As expected, the 
correlation matrix had smaller values than that of Table 2. For instance, 
the correlation of CCL with XMD was 0.53 instead of 0.92, but still 
highly significant because of the large number of values.

Correlations between column medians or pair-correlations, is 

too crude a criterion to judge the homogeneity of two datasets. As an 
example, GSC and MBI have an excellent median correlation of 0.94, 
and several good reasons to be similar. Yet, when each feature is tested 
for significant differences by the Kruskal-Wallis test, 14 800 significant 
features out of 18 260 are detected (methods section for details). The 
same occurred for any pair of datasets: the distributions of rows had 
significantly different location parameters, for a majority of features. 
This means that, for a majority of genes, the ranks of their expressions 
in the first dataset are significantly smaller or larger than in the second.

Since discrepancies appear to be observed between any two 
datasets, it must be decided whether they are due to actual biological 
information, or to a statisticalartifact, induced by the experimental 
setting or the platform. For this, we focused on the dataset MIL 
(GSE13159 [26]), that has 2096 samples. The samples were sorted into 
six sub-matrices, according to six keywords: Healthy (74 samples), 
ALL (acute lymphoblasticleukemia, 750 samples), AML (acute myeloid 
leukemia, 542 samples), CLL (chronic lymphocytic leukemia, 448 
samples), CML (chronic myelogenous leukemia, 750 samples), MDS 
(myelodysplastic syndrome, 202 samples). Then the same treatments 
as before were applied. Firstly the six median columns were computed, 
and their correlation matrix was obtained (Table 3).

The values are between 0.85 and 0.99, which is in the range of the 
best correlations of Table 2. As a control, we made a partition of the 
same matrix into 6 random subsets, with the same numbers of samples 
as above, and computed the correlation matrix in the same way. On 
the control random partition, all correlations were above 0.997. This 
proves that the partition into keywords does contain meaningful 
differences. Indeed, these differences were detected by the Kruskal-
Wallis test: out of the 20 184 features, 18 301 were found significant. 
Twenty-two features had Kruskal-Wallis p-value below 10-300: SOX4, 
SYNGR2, ERLIN1, FAH, C7orf23, PSMA6, RTN3, UHRF1, ADAM28, 

PLE 0.55 0.63 0.94 0.66 0.64 0.50 -0.30 0.93 0.56 0.89
MMD 0.54 0.32 0.40 0.46 0.48 0.49 -0.09 0.43 0.51 0.42
DLB 0.56 0.35 0.46 0.49 0.50 0.53 -0.09 0.49 0.56 0.48
PRS 0.20 0.21 0.23 0.15 0.15 0.15 0.16 0.24 0.19 0.21
CCL 1.00 0.56 0.56 0.56 0.59 0.74 -0.08 0.61 0.92 0.60
BEC 0.56 1.00 0.64 0.37 0.37 0.45 -0.13 0.65 0.57 0.59
WBS 0.56 0.64 1.00 0.64 0.63 0.49 -0.29 0.95 0.57 0.88
GSC 0.56 0.37 0.64 1.00 0.94 0.61 -0.19 0.66 0.57 0.64
MBI 0.59 0.37 0.63 0.94 1.00 0.62 -0.17 0.66 0.59 0.64
CCC 0.74 0.45 0.49 0.61 0.62 1.00 -0.09 0.53 0.75 0.51
PVA -0.08 -0.13 -0.29 -0.19 -0.17 -0.09 1.00 -0.27 -0.08 -0.26
HPS 0.61 0.65 0.95 0.66 0.66 0.53 -0.27 1.00 0.62 0.90
XMD 0.92 0.57 0.57 0.57 0.59 0.75 -0.08 0.62 1.00 0.60
HAV 0.60 0.59 0.88 0.64 0.64 0.51 -0.26 0.90 0.60 1.00

Table 2: For each of the 20 data matrices of Table 1, the median column value of each gene symbol was computed.  This gave 20 vectors with length 15 562 (number of 
common symbols).  The table gives pairwise correlations between the 20 vectors.

Healthy ALL AML CLL CML MDS

Healthy 1.00 0.92 0.96 0.86 0.98 0.99
ALL 0.92 1.00 0.95 0.91 0.90 0.91
AML 0.96 0.95 1.00 0.89 0.96 0.97
CLL 0.86 0.91 0.89 1.00 0.84 0.85
CML 0.98 0.90 0.96 0.84 1.00 0.98
MDS 0.99 0.91 0.97 0.85 0.98 1.00

Table  3:  The  data  matrix  MIL was partitioned  according to  the  6 keywords  
Healthy,  ALL,  AML,  CLL, CML, MDS. For each of the six sub matrices, the median 
column of each feature was computed.  This gave 6 vectors with length 20 184 
(number of symbols in MIL). The table gives the correlations of the 6 vectors.
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BLK, FUCA2, CD79A, ADA, MYL6B, HEBP1, LEF1-AS1, LEF1, AFF3, 
COL9A2, MICALL2, MPO, and PPM1K. A PCA of the corresponding 
rows of MIL was run, and the samples projected as points onto the first 
principal plane, differentiating sub matrices by colors (Figure 3). The 
two sub matrices ALL (blue points) and CLL (brown points) are clearly 
separated from the rest.

Differences inside a given dataset can be induced by several factors. 
Two factors may not induce differences of the same order of magnitude. 
However, there is no statistical reason why a dataset like MIL should 
not be used as a whole, and many ways to verify that the observed 
differences correspond to actual biological information. Here is an 
example. Stirewalt et al. [45] list a group of 7 genes displaying increased 
expression in acute myeloid leukemia samples: BIK, CCNA1, FUT4, 
IL3RA, HOMER3, JAG1, and WT1. When a one-sided Wilcoxon test 
is applied to the sub-matrix AML versus the rest of MIL, those 7 genes 
are among the most significant: their p-values range between6.7×10-130 
and 4.3×10-42. The most significant, HOMER3, ranks 54-th among the 
20 184 features of MIL.

If observed differences between two datasets (like GSC and MBI) are 
of the same order of magnitude than differences inside a given dataset, 
such as caused by a significant factor (Figure 3), it can be admitted 
as statistically legitimate to merge the two datasets. That meaningful 
information can be obtained from the merging, remains to be proved. 
In the following experiments, matrices to be merged were selected in 
the clusters detected by factor analysis (Figure 1).

Our first experiment consisted in extracting samples corresponding 
to breast and lung tumors, from the three matrices CCL, EPO, and 
XMD. CCL has 56 samples of breast tumors, and 166 of lung tumors, 
EPO has 367 and 143, and XMD has 32 and 152. Two matrices “Breast” 
and “Lung” were made by merging the six sub-matrices three by three, 
according to tissues. They had 18 466 features in common, by 455 
samples for Breast, and 461 for Lung.

The Kruskal-Wallis test was run on the six separated sub-matrices, 
then on the two matrices Breast and Lung. The 10 most significant 
symbols were extracted, and a PCA was run as before. The results are 
displayed on Figure 4. Significant symbols when the 6 matrices are 
separated (left panel) are different from significant symbols separating 
Breast and Lung (right panel). On the left panel, it is clear that the 
information on the dataset (CCL, EPO, or XMD) dominates the 
separation Breast vs. Lung: samples coming from CCL are on the left, 
from EPO on the right, from CCL in the middle. But on the right panel, 
the two types of tumors are also clearly separated. Separators include 
GATA3 on the right side (Breast), IGF2BP3 on the left side (Lung). 
Two articles, among others, show the importance of GATA3 for breast 
cancer [44,45]. In [46],the link of IGF2BP3 to lung cancer is explicitly 
stated.

Further information was obtained by running a one-sided Wilcoxon 
test to detect symbols separating both types of tumor. Then the Molecular 
Signature database C2 [47] was searched for symbols matching them. 
Among the 20 genes found most significantly overexpressed in breast 
tumors by our test, 11 were inside genesets of C2 relative to breast 
cancers, and outside all genesets relative to lung tumors: EFHD1, IRX5, 
MUCL1, PRLR, PTGER3, RGL2, TRIL, TRPS1, VAV3, WWP1, and 
ZG16B. Seven of these genes can be found in the G2SBC database [48] 
and for 10 out of 11, we have found at least one reference relating it to 
breast cancer. Conversely, among the most significant genes for lung 
tumor, the following were found in C2 genesets related to lung and 
not in those related to breast: ALDH3B1, DARS, PRPSAP2, FAM96B, 
MBIP, and LRRC20. The overexpression of ALDH3B1 in lung tumors 

has been reported in [49-51]. Santarius et al. [52] gives lists of genes, 
the overexpression of which is associated to different types of human 
cancers. The genes detected as significantly overexpressed in Breast by 
our test, that were also among class III genes related to breast cancer 
in Table 1 of [50], were FGFR1, BAG4, MDM2, YWHAB, ZNF217. 
For Lung, they were EGFR, MET, YWHAZ, MYC, NKX2-1, and 
DCUN1D1. These findings would require further confirmation over 
larger datasets. Yet they provide evidence that meaningful biological 
information can be extracted by merging generalist matrices such as 
CCL, EPO and XMD.

Our next experiment consisted in merging the two groups of blood 
RNA datasets, found to be homogeneous on the correlation analysis 
(Figure 1): HAV, HPS, PLE, and WBS for healthy individuals, AML, 
MDS, for leukemias. The samples of MIL were separated into MILh 
(Healthy), and MILl (leukemias). The left panel of Figure 3 shows the 
first plane of the PCA for the same 22 features as in Figure 2, the 8 
matrices being represented by different colors. It turns out that the 
samples corresponding to MILh are mixed on the representation 
with the other MIL points. Thus they were removed from the matrix 
“Healthy”, whereas “Leukemia” was made by merging AML, MDS, and 
MILl. The Kruskal-Wallis test between Healthy and Leukemia, detected 
16 977 significant features out of 17 691, among which 7 970 had a null 
p-value. The right panel of Figure 5 shows the PCA over 10 of them.

The one-sided Wilcoxon test was run to detect which symbols 
were significantly over expressed in leukemias. For that test, a set of 4 
191 symbols had a null p-value. A second set of symbol was extracted 
from C2: those appearing in leukemia-related genesets. The C2 set has 
5 688 symbols, and the intersection with the first contains 1 617, which 
is highly significant for Fisher’s hyper geometric test (P =1.36×10-51). 
The ten symbols found most significant for leukemia by the Wilcoxon 
test were RPL34, GABARAP, RPL36A, H2AFV, CSDE1, DNTTIP2, 
OPHN1, PABPC3, PNRC1, RPSA. Among those 10, 8 appeared in 
the leukemia-related gene sets of C2. The symbol H2AFV is found 
in six of them. Another noteworthy result concerns the pair of genes 
NUP98-TOP1, shown to be related with leukemia in [51]. When genes 
are ranked by decreasing order of significance, NUP98 and TOP1 have 
ranks 187 and 65 respectively, which confirms their link with leukemia.

Another experiment was run on the same matrices, by separating 
acute myeloid leukemia samples, from all other samples. Thus the same 
calculations that had been run inside MIL before were repeated over a 
larger number of samples. The acute myeloid leukemia samples were 
taken from AML and MIL (1 076 samples), others were obtained by 
merging HAV, HPS, PLE, WBS, MDS, with the non-AML samples 
of MIL (6 010 samples). The one-sided Wilcoxon test of comparison 
was run. For the 7 genes signaled as overexpressed in AML by [38], 
the results were much more significant as before: the least significant 
p-value was that of BIK:8.4×10-35, whereas FUT4 and HOMER3 had 
p-values below machine precision. Contrarily to the study that had 
been conducted inside MIL, a clear confirmation was also obtained for 
the genes reported by [43] to be under expressed in case of AML. Five 
of them were in the common features of our matrices; four had p-values 
smaller than 10-100 for under expression in AML. In particular, PELO 
and PLXNC1 who had not been found significantly under expressed in 
the first experiment, now had p-values 3.5×10-238 and 4.4×10-168 in the 
test on merged matrices.

Discussion
A new set of R functions has been developed. Like other packages 

[15,16], it performs the usual formatting operations. It also offers new 
functionalities for sorting lists of datasets according to information 

Volume 4 • Issue 1 • 1000113



Citation: Ycart B, Charmpi K, Rousseaux S, Fournié JJ (2014) Large Scale Statistical Analysis of GEO Datasets. Gene Technology 4: 113. doi: 
10.4172/2329-6682.1000113

Page 8 of 9

Gene Technology
ISSN: 2329-6682 GNT, an open access journal 

Transcriptomics

keywords. Various robust statistics techniques are encoded. The script 
and a user manual have been made available online. Using these R 
functions, a large scale study of 20 GEO datasets, totaling 17 745 
samples, has been conducted.

Our first conclusion is that Haibe-Kains et al. [4] were right in 
observing that inconsistencies between datasets make it dangerous to 
merge them without precautions. The risk is to declare as biologically 
significant, observations which are actually statistical artifacts. The first 
precaution is to transform the data into distribution-free values, i.e. to use 
robust statistics. This implies replacing the data of each sample by their 
empirical distribution function, or some other distribution-free score 
[7,8]. Even after data have been homogenized, important discrepancies 
remain. For this reason, checking comparability between studies before 
merging them is imperative. One possible measure of similarity (among 
others, see for instance [42]) for two datasets is the correlation between 
medians, which has been used here. Two sets of samples corresponding 
to different conditions inside one given homogeneous dataset usually 
have correlations of medians above 0.8 (Table 3). Arguably, it can 
be considered that two different datasets can safely be merged, if all 
paired- correlations between medians are above 0.8. This is not always 
the case, even between datasets coming from the same tissues, obtained 
under the same platform (Table 2). Further ways of investigating 
possible discrepancies involve multivariate statistics. Graphical 
methods include Factor Analysis, Principal Component Analysis, and 
Discriminant Analysis [52]. Inference can be done using the robust 
equivalents of usual normal-sample methods, i.e. Wilcoxon test instead 
of Student’s t-test, Kruskal-Wallis instead of one-way anova, etc. When 
repeatedly applying such a test to a set of symbols, a False Detection 
Rate (FDR) correction must be applied to the p-values. We have chosen 
the Benjamini-Yekutieli method [21]. Our observation was that, even 
after FDR correction, the tests usually detect a sizeable proportion of 
all symbols as significant for discrimination, either between several 
different datasets, or between different types of samples within the same 
dataset. We believe that relevant biological information can be obtained 
from applying a discriminating test, then ranking features according to 
their degree of significance, i.e. ordering the values obtained over each 
feature by the test statistic. In the cases considered here (breast tumors 
against lung tumors, healthy blood samples against leukemias, acute 
myeloid leukemia against other blood RNA samples), it was observed 
that among the most significant symbols, a large proportion of them 
were already known as being related to the corresponding cancers. This 
can be viewed as evidence that meaningful biological information can 
be extracted by merging different datasets. We believe that important 
new findings could be obtained by the same method, being aware that a 
statistical listing of significant symbols does not necessarily imply that 
all listed symbols correspond to true biological information. Such a list 
must necessarily be expert-curated for biochemical validation.
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