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Abstract

In a world with an increasing aging population, a proper understanding of the biology of the aging process could
be of economic and social significance for governments, in order to guarantee a long but productive life for the
elderly. In this regard, studies about the relationship between changes in chromatin organization and aging are
pivotal, since it has been widely accepted that the aging process can be genetically driven. Several studies have
shown that aging is associated with changes in gene expression and chromatin structure, and that in many cases,
including diseases; such phenotypes can be pharmacologically altered in order to reestablish homeostasis.
Therefore, the objective of this review was to analyze what has been published in this subject from a historical
perspective, and to discuss what can be concluded from those results with its impact in human health.
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Background
Life expectancy is growing steadily all over the world, mainly in

almost every country, as a result of good health policies and
socioeconomic development. According to data from the World
Health Organization (http://www.who.int/kobe_centre/ageing/en/), by
2050, about 400 million people in the world are expected to be 80 years
or more. In Japan, for example, by this time, almost a quarter of total
population is going to be older than 80 years.

In a brilliant graphic posted by Sally Squires and Brenna Maloney in
the 2006’s December 5th edition of the Washington Post, Todd
Linderman summarized how several tissues and organs of the human
body age. It includes detrimental changes in skin, muscles, bones,
joints and cartilages, senses, heart, neural tissue, stomach, as well as
body strength and height. Along cellular aging, several biochemical
changes lead to the loss of function and proliverative capacity, arrest of
the cell cycle and replicative senescence. The process of cellular
senescence contributes to the organismal aging, due to the decrease in
proliferative capacity and consequent tissue loss of function [1].
Therefore, aging is characterized as one of the main risk factors to the
onset of human diseases like neurodegenerative and cardiovascular
diseases, while the abnormal aging of tissues generally results in cancer
[2,3]. It’s not surprising thus, that aging has been increasingly
considered an important public health issue for governments all
around the world. Therefore, it is necessary to guarantee that all
people ages healthy and be able to maintain a normal and active life
longer than our ancestors did.

No one is expecting to live forever, but certainly, live longer with a
younger body can be very attractive for anyone. The only way to
achieve this, if you are not naturally gifted with a long and healthy life,
is first to understand all the cellular mechanisms behind the aging
process, and then, how we can modulate them, in order to postpone
aging or, at least, avoid all the age-related diseases that take place in
older people. This concept started a run that ended in a huge amount

of published articles in the field. An analysis of published articles
indexed in the Web of Science database using the search descriptor
“human aging” brought about 166 thousand results. Almost 50% of
them have been published solely after 2005. It shows the increasing
interest in studying human aging due to the impact it has on our lives
and several sectors of our societies, comprised of a fast increasing aged
population.

Holger P. von Hahn from the Institute of Experimental
Gerontology in Basel, Switzerland, was, on 60’s, one of the first
researchers to propose that the aging process could be genetically
regulated [4]. Even before his work and until the present days, several
theories have been created and debated in order to explain the aging
process. Two groups arose: that of the social theories and that of the
biological theories of aging. To see a very complete review on the
biological theories of aging, please refer to the work of Linares et al.
[5]. By that time, one of the main accepted biological theories of aging
stated that cells could age because of reduced protein synthesis.
According to von Hahn [4], this could be explained by three
mechanisms: 1. Loss of genes, by chromosomal breaks not only during
mitosis; 2. Gene mutations (Theory of somatic mutations); 3. Failure
of normal gene regulation. Giving more importance to the third
mechanism, the author concluded that aging could be a genetically
driven rather than a stochastic process, more related to the first two
mechanisms. This gave birth to the endless search for changes in gene
expression along aging in several tissues and organs in different
models, from yeast to humans, also including fish, worms, and insects
just to give a few examples. Nowadays, it is very well accepted that
aging, rather than being only a stochastic event, is also a genetically
driven phenomenon, and that it could be a consequence of altered
gene expression profiles.

Chromatin Structure and Function
In cell biology there is a crosstalk between structure and function

(for example, collagens and cytoskeletal proteins are fibrilar in nature
and are, thus, adapted to resist mechanical stress, or the structure of
phospholipids, which in an aqueous environment, naturally self-
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assemble in phospholipids bilayers. This applies to genes as well, and
besides of their primary structure (the genetic information behind the
gene base sequence), gene expression can be controlled by the
accessibility of their information by transcription factors and
polymerases. This is due to the association of DNA with nuclear
proteins, in a supramolecular entity called chromatin. Such structure is
comprised of the entire genomic DNA wrapped around nuclear
proteins called histones. These proteins are small arginine- and lysine-
rich basic proteins, whose interaction with DNA is based on
hydrostatic forces between the positively charged lateral chains of
argines and lysines on histones and the negatively charged phosphates
on the DNA backbone. There are several types of histones, from which
two of each histone H2A, H2B, H3, and H4, interact with each other to
form a histone octamer. A DNA molecule thus wraps around this
octamer between 1,75 and two turns (about 146 bp of DNA) except for
a small fraction of the double helix that remains unwrapped and is
called linker DNA (about 50 bp). This structural unit, called
nucleosome, repeats endlessly until all the chromosome has been
packed in a polynucleosome fiber. Thus, each chromosome in the
nucleus consists of a single DNA molecule organized with histones
and non-histone proteins in the form of a polynucleosome fiber, called
chromatin [6,7]. A fifth histone type, called H1, binds to chromatin
outside the nucleosomal core, and is associated with the regulation of
chromatin packaging [8].

The structure of chromatin modulates gene expression. In a very
simplistic way, chromatin can be found in two different forms. A very
open , transcription permissive, and normally gene-rich form, known
as euchromatin, which is more prone to degradation by nucleases,
more accessible to transcription factors, and replicates early during S
phase. On the other hand, most of the gene-poor regions, which
replicates late in S phase, are poorly accessible by nuclear factors,
generally rich in repetitive sequences, much more compact, and
collectively known as heterochromatin [7]. Today, many authors just
use the terms open and compact chromatin, rather than the eu- and
heterochromatin concepts proposed by Heitz [9] to describe,
respectively, active and inactive states of chromatin, in respect to their
transcriptional activity. For a very complete review about chromatin
structure and organization see [10].

Aging is Associated with Changes in Chromatin
Structure

Since chromatin structure is responsible for modulation of gene
activity, and considering that the aging process is genetically driven, it
was natural to conclude that aging could be associated with changes in
chromatin structure and composition. As we can see below, this
relationship was extensively shown in several studies, as well it has
been observed in cells from patients with aging syndromes [11,12].
This is supported also by the observation that changes in chromatin
structure appear not only in cancer cells (where cancer is a typical
aging-related disease) but also in cells obtained from "normal"
epithelium taken several centimeters from the (colon) tumor [13].

One of the first attempts to link chromatin and aging came from
studies back to 60’s when it was shown that DNA composition does
not change with age [14]. So, the age-related increased thermal
stability observed in beef thymus chromatin was a consequence of
increased nucleoprotein-DNA interaction, making this chromatin less
readable by polymerases [15,16]. Latter, it was shown that such age-
dependent chromatin condensation could also be attributed to a shift
on histone H1 types, possibly a conserved mechanism in all aging

tissues [17], or an increased presence of disulfide bonds between
nucleoproteins [18]. It is important to mention that H1 histones are
normally required for the maintenance of chromatin organization
along aging, and some aged models seems to have decreased levels of
this protein [19]. Other studies, also evaluating the thermal stability of
chromatin with age, found similar results in rat liver [20], being this
property reversed by hepatectomy [21]. This means that age-related
chromatin changes can be also associated with a reduced proliferative
capacity, thus contributing to the aging and loss of function on tissues,
which is also true for adult stem cell compartments [22]. Interestingly,
in the liver, the reestablishment of the proliferative environment (as a
consequence of hepatectomy), can also change chromatin structure
back to a young phenotype. It cannot be excluded the possibility of the
reduction in proliferative capacity might be associated with opposite
changes in chromatin, as those observed in aged cultured human skin
fibroblasts (i.e. chromatin with more single-stranded character, and
thus more easily denaturable and prone to breakage) [23]. In fact,
chromatin breaks were commonly observed in cells from patients with
Xeroderma pigmentosum, an age accelerating disease [12]. Despite the
fact increased levels of chromatin breaks were observed in mouse liver
chromatin subjected to salt dissociation [24],such differences were not
associated with changes in the amount of DNA-associated proteins,
and thus chromatin packaging. Despite some proteomic studies have
detected changes in nuclear proteins with age [25], it seems that
histone proteins do not change along aging, at least not for neurons
[26].

In all cases above described, a relationship between changes in
chromatin structure and functional aspects in aged cells has been
made, since the ability of this altered chromatin to function as a
transcriptional template has decreased with age, at least in vitro. In
fact, according to [27], cell senescence is characterized by a reduction
of cell metabolism and a restriction on DNA transcription and
proliferative capacity, being all of this associated with increased
condensed chromatin. The reduction of template activity of chromatin
was also found in aged normal female embryonic lung WI38 cells [28].
Contrarily, as it was observed in submandibular glands from rats [29],
cultured aged skin fibroblasts [30], and mouse hepatocytes [31],
chromatin unpackages with aging with a consequent increase in the
template activity. Therefore, no generalizations can be made for
different cell types in this respect. It is important to mention that,
when homologous polymerase was used in the in vitro assays, no
impairment of template activity was observed with age, but only when
heterologous polymerase from E. coli was used [32]. Replicative
activity of chromatin was also described as decreased in senescent cells
[33], and was attributed to changes of DNA-protein interactions since
no age-related differences in the activities of DNA polymerases have
been found [34,35].

Studies on chromatin accessibility to nucleases were proved to be
good resources for the evaluation of chromatin structure. By using this
approach, it was shown that bulk chromatin from old mouse or rat
livers was less susceptible to nuclease digestion being, thus, more
compact [36,37], with the same being true also for the satellite DNA
[38]. Such chromatin condensation in old animals has been reversed
by administration of steroid hormones [39]. Firstly Berkowitz et al.
[40], and then Thakur et al. [41] showed that chromatin from cortical/
cerebellar neurons condensed with age. Again, this packaging was
associated with increased protein-DNA interactions, and also with
age-associated differential gene expression, thus corroborating, for
another tissue, the results published earlier [15]. Interestingly, when
nuclei extracted from the whole brain were subjected to the same
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approach [35,36], no age-related difference was found, thus implying
that, in the same tissue, we can find cells with no age-related alteration
on chromatin structure or even some cells with a completely opposite
phenotype (chromatin loosened with aging). It means that neurons
from different regions of brain can have their own genetic programs
according to their specific functions or localization, and therefore,
could age differently from the others, showing diverse age-associated
chromatin configurations. Other studies have found no age-related
change in chromatin organization for whole brain, liver, kidney or
heart tissue [42,43], or chromatin unpackaging for mouse hepatocytes
with aging [44], when subjected to nuclease digestion. It was argued
that the non-dividing nature of these cells could be an explanation,
since when aged skin fibroblasts were analyzed under the same
approach, changes in chromatin organization were found (i.e. more
spaced nucleosomes)[45]. From this variable results, it can be
concluded that diverse chromatin configurations can be found in cells
from aged donors, depending on the starting material, whole tissue or
organ or specific cell types isolated from them.

Age-associated chromatin changes have also been observed in
gametes, thus negatively affecting mammalian reproduction. For
instance, age-related chromatin decondensation in oocytes have been
shown to be associated with fertilization defects, like predisposition of
oocytes to parthenogenetic activation without male pronucleus
formation [46], and leading to decreased fertility [47], while sperm
cells from aged donors are more vulnerable to oxidative damage due to
an age-associated chromatin unpackaging [48,49], and are rich in
chromatin defects like decreased genome integrity, and gene
mutations [50]. Again, data in literature are still conflicting, since
others have found no evidence of age-related cellular alterations on
sperm cells that could impair men’s fertility [51].

Acid hydrolysis followed by staining using the Feulgen Reaction, a
histochemical method specific for DNA, have also been used to study
chromatin organization. Using image analysis and comparison of
hydrolysis curves of Feulgen stained material it is possible to make
assumptions about chromatin condensation levels. By using this
approach, Myśliwski et al.. [52] found, similar to earlier results, that
chromatin condenses with age in nuclei from rat liver. Additionally,
they found that ploidy level did not influence this phenotype. This
means that all liver population, irrespective of their ploidy status, ages
the same, at least in relation to chromatin aging. Image analysis also
revealed that aging is associated with changes in textural features in
the chromatin of erythroid precursor cells, negatively impacting the
hematopoietic properties of spleen on aged animals [53].

Increased chromatin packaging in old animals has several times
been observed in the form of condensed regions called senescence
associated heterochromatin foci (SAHF) [54]. These regions of
heterochromatin accumulate along aging, even in cells with
generalized chromatin unpackaging, thus leading to the theory that,
instead of increased or decreased chromatin condensation, aging
comes followed by heterochromatin redistribution [55].

An increase in adducts on DNA (e.g. loss of amino groups from
cytosine and adenine, methylation of cytosines, and protein-DNA
cross linkages) has been observed by Cutler [56]. Nowadays, it is well
known that DNA can be modified epigenetically by methylation on
specific bases, mainly cytosines in CpG islands, and that DNA
methylation increases with age in several model organisms and
humans [57,58]; mainly in bivalent chromatin domains (domains with
both activating and inhibitory epigenetic marks), which generally
comprises housekeeping and developmental genes [59]. Contrarily,

primary cultures of human cells showed decreased DNA methylation
associated with decreased chromatin condensation as cells age in
culture and hit replicative senescence [60], thus implying that this
subject is still controversial, and needs further investigation.

Changes of post-translational modifications of proteins, especially
histones, which are one of the most important and studied epigenetic
mechanisms, were also observed in aging models: core histone
acetylation was observed to decrease with age [61,62], along with the
transcriptional potential of aged chromatin; although, increased H1
acetylation levels were observed in several mouse tissues along aging
[63], concomitant with increased deamination. Contrarily to [61,62],
core histone acetylation was observed to increase in aged neurons
from mice [64], and could be a reflex of decreased activity,
concentration, or redistribution of SIRT1 or the NURD complex, both
responsible for histone deacetylation [65,66], leading to increased
genome instability and aging [67]. SIRT1 is a NAD+-dependent
histone deacetylase, and it was shown that in human aged tissues there
is a NAD+ depletion [68], thus explaining the enzyme reduced activity
and accumulation of histone acetylation. Therefore, NAD+-dependent
histone deacetylases (e.g. SIRT1) function as metabolic sensors, and
nutritional interventions like caloric restriction, which increases the
level of NAD+, can increase the activity not only of these proteins, but
also of nuclear repair enzymes, such the poly(ADP-ribose) polymerase
– PARP, thus increasing life span [68-70]. For a review on the role of
histone deacetylases on aging, see the work of Guarente [71].
Furthermore, addition of methyl marks on key residues on histone
tails comprise another important epigenetic mechanism of gene
expression control, and both age-related accumulation [58], and loss
[64,72,73] of histone methyl marks associated with heterochromatin
have been observed in several models. In the latter case, loss of
repressive methyl marks on histone tails can lead to the activation of
normally repressed genes, which is observed, for example, in some
aging nephropathies, where there is abnormal activation of collagen
genes, followed by tissue fibrosis and loss of function [74].

Post-translational modifications, mainly phosphorylation, of
nonhistone chromosomal proteins were also viewed to be age-related
[75]. Concluding, active or stochastic, several epigenetic events are
associated with aging, and can be responsible for age-associated
chromatin remodeling [55]. Age-related epigenetic changes have a
very strong negative impact on adult stem cell function and
proliferative capacity, thus leading to impaired tissue renewal and
organismal aging [22,76]. In addition, tt has been observed that stem
cells accumulate DNA double strand breaks (DSBs) with age, and that
repair or misrepair of such regions leads to alterations on epigenetic
marks with consequent transcription deregulation [77].

Telomere shortening has also been described as having a pivotal
role in inducing genome instability, leading to an aged phenotype [78].
In almost all organisms with linear genomes, telomeres cannot be
completely replicated after each cell division cycle, and shortens
gradually. As long as they become too short, cell cycle is arrested and
cells enter replicative senescence. The mechanism protects the
organism from perpetuating cells after a lifetime exposure of their
genomes to damage, which can lead e.g. to the development of cancer.
However, the decreased ability of tissue renewal, due to diminished
cellular proliferative potential, leads to an aged phenotype [79].
Paradoxically, the organism ages to avoid accumulation of genome
defects, but it also ages because of accumulation of genomic defects. In
this respect, genome defects, like DNA damage, are generally
associated with cell aging, either being responsible to elicit alterations
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in chromatin structure, or even as a result of altered chromatin
structure [80].

Concluding Remarks
It is clear from the results summarized above that, irrespective of

the big advance we experienced in the last 40 years about the
relationship between aging, chromatin structure, and gene expression,
much still needs to be done, since many of the available results are still
contradictory, preliminary, or valid for only some cell types.
Additionally, every study on this subject incurs in the same problem: a
clear relationship between changes in chromatin structure and the
aging process in a cellular level have been established, but we still do
not know if the aging is a consequence of altered gene expression
profiles, caused by changes in chromatin organization, or if this
structural and functional changes are a product of the aging process
itself. The only way to achieve this is to use aging models in which the
age-related molecular changes are screened along a more
comprehensive life interval, in order to find which comes first,
molecular or phenotypic changes. Of course, for economic aspects and
ethical issues on the use of laboratory animals, it is not an easy task to
complete, and obviously, much of the questions that still need to be
solved cannot be answered with in vitro studies.
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