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Introduction
Diabetes mellitus is a devastating and complex metabolic disease, 

expected to affect over 500 million people worldwide by the year 2030; 
up from 350 million in 2010 [1]. Approximately 95% of patients suffer 
from type 2 diabetes, and its prevalence is expected to increase in the 
future [2]. Furthermore, the age of onset for type 2 diabetic patients is 
trending toward earlier onset in adulthood [3]. Diabetes is associated 
with severe long-term micro- and macrovascular complications, and 
carries a high rate of morbidity and mortality. Indeed, both type 1 
and 2 diabetes are a significant public health concern with numerous 
debilitating complications, leading to a constant increase in treatment 
costs. 

Currently, both type 1 and type 2 diabetes can be treated with insulin 
analogues and Pramlintide. Pramlintide or Amylin is a 37-residue 
peptide hormone that delays gastric emptying, and endorses satiety and 
inhibits glucagon secretion; averting post-prandial prickles in blood 
glucose levels. Recombinant modifications of insulin can act faster 
and longer, similar to endogenous insulin [4]. The following drugs are 
used to treat type 2 diabetes: 1) Metformin, augments insulin release, 
2) Sulphonylureas (Thiazolidinediones (TZDs) and Meglitinides),
increase insulin sensitivity, 3) Bromocriptine, antagonizes dopamine

D2 and serotonin receptors, 4) Glucagon-like peptide 1 (GLP1) 
analogues, 5) Alpha-glucosidase inhibitors, 6) Dipeptidyl peptidase 4 
(DPP4) inhibitors, and 7) Sodium-dependent glucose cotransporter 2 
(SGLT2) inhibitors [5-11]. 

The physiological control of blood glucose levels can only be 
restored effectively by replacing the β-cell mass [12]. β-cells in the 
pancreatic islets of Langerhans are responsible for the production of 
insulin and much of the pathology of diabetes losses can be attributed 
to the loss of β-cell number and function [13,14]. In patients with 
type 1 diabetes, the onset of overt disease is assumed to occur when 
the β‑cell mass falls below 20% of the normal range [15,16]; whereas 
in patients with type 2 diabetes, the β‑cell mass is unable to meet the 
increased insulin demands of the body [17]. Eventually, the β‑cell mass 
in type 2 diabetes also declines to 40–60% of the normal range. Indeed, 
in both type 1 and type 2 diabetes, restoration of a functional β‑cell 
mass constitutes the central goal of diabetes therapy [18,19]. Exploring 
ways to protect or expand pancreatic β-cell mass and function could be 
an effective therapeutic approach, and β-cell replacement represents an 
attractive therapeutic prospect. Stem cells, particulary the pluripotent 
stem cells, demonstrate strong self-renewal abilities and potential to 
differentiate into all cell types of the body, making them a supreme cell 
source for regenerative medicine and tissue engineering [20-22]. In this 
review, we address some of the major advancements that could lead to 
regenerative therapy for diabetes mellitus. 

Human Embryonic Stem Cells
Human embryonic stem cells (hESCs) have the ability to form 

cells derived from all three germ layers [23]. hESCs can be induced 
to differentiate into fetal-like pancreatic cells in vitro using a 33-day, 
7-stage protocol [24]. The differentiation protocols for inducing hESCs 
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into β-cells involves activation of Wnt and transforming growth factor 
β (TGFβ) signaling pathways [25-27]. Fibroblast growth factor (FGF) 
10, retinoic acid and activin are used to induce the differentiation 
of hESCs into Pdx1 expressing cells [28-30]. Other markers used to 
identify definitive endoderm include SOX17, brachyury protein, FGF7, 
FoXa2, CXC-chemokine receptor (CXCr) 4 and Cerberus [31-35]. 
Definitive endoderm 1 and 2 (iDe1 and iDe2) have been shown to 
induce the construction of ultimate endoderm from mouse and human 
ESCs with about 70–80% efficiency, which is much higher than the 
differentiation induced by activin or nodal [36,37]. The next in vitro step 
is to reproduce the formation of the pancreatic dorsal anlage. This step 
is dependent on simultaneous retinoic acid signaling and inhibition of 
Hedgehog signaling, both of which have been effectively reproduced 
[38]. Activin a in conjuction with Wnt3a, as well as iDe1 and iDe2 
in combination with FGF10 are capable of inducing development of 
endoderm cells into pancreatic progenitors in vitro [39]. Indolactam V 
activates protein kinase C signaling after treatment with Wnt3a, activin 
a, FGF10, cyclopamine and retinoic acid and results in induction of 
pancreatic progenitor cells expressing Pdx1 with close to 50% efficiency 
[40-42]. miR-375 has a critical role in early development since miR-375 
is highly expressed in definitive endoderm and regulates expression of 
Mtpn and Pdk1 genes. Controlling the expression of miR-375 could 
also assist mature hESCs-derived β-cells [43,44].

hESCs have been differentitated into cells capable of synthesizing 
insulin, glucagon, somatostation, pancreatic polypeptide and ghrelin 
[45]. Therefore, they represent a novel alternative source for targeted 
therapies and regenerative medicine for diabetes. One approach is 
derived on the similarities of pancreatic β-cells and neuroepithelial 
development [46]. The other approach is based on reproducing the 
individual sequential steps that are known in normal β-cell ontogenesis 
during fetal pancreatic development. The hESC cell line, PKU1.1, can 
be induced to differentiate into insulin-producing cells (IPCs) using 
both protocols [47]. Although these hESC-derived cells containing 
insulin are similar to that of human islets, the cells lack the main 
function of glucose-stimulated insulin secretion in vitro. However, 
hESCs have been shown to secrete insulin in response to glucose after 
transplantation into immune deficient mice [48]. The final stages of 
differentiation to derive functionally mature β-cells from hESCs must 
occur in vivo [49]. 

Induced Pluripotent Stem Cells
Embryonic stem (ES) and induced pluripotent stem (iPS) cells have 

potential applications in regenerative medicine for diabetes. Although 
iPS cells are a potential alternative to hESCs [50,51], their application 
is still limited in many countries. iPS cells have been engendered from 
mouse and human somatic cells by introducing SOX2 combinations of 
Kruppel-like factor 4 (KlF4), NANOG, octamer-binding transcription 
factor (OCT) 4, Myc protooncogene protein (c-MYC) and lin-28 
homolog a (LIN28) [52]. Usage of the oncogenes, c-MYC and KLF4, 
raises the uncertainty of potential tumor formation [53,54]. This risk 
of using reprogrammed cells has been lowered by employing valproic 
acid, a histone deacetylase inhibitor that enables reassemble of primary 
human fibroblasts with only two factors, OCT4 and SOX2 [55]. The 
initial use of retroviruses or lentiviruses to deliver transcription factor 
genes raised the chance of viral integration into the host genome 
increasing the risk of tumorigenicity. Novel protocols have been 
developed that use repeated transfection of expression plasmids in 
iPS cells without any evidence of plasmid integration [56]. Although 
current protocols for this reprogramming are developing rapidly and 

no longer require the use of oncogenes and viral vectors, it is unclear 
whether iPS cells are truly equal to hESCs with respect to pluripotency 
[57]. 

Lentiviral overexpression of the reprogramming factors OCT4, 
SOX2, NANOG and LIN can induce the formation of iPS cells 
from umbilical cord blood [58,59]. Due of a juvenescent cell source, 
umbilical cord blood use addresses some of the concerns that arise from 
the use of adult somatic cells, such as accumulation of mutations over 
the lifetime of an organism [60]. Currently available differentiation 
protocols generate IPCs at a very low frequency. Furthermore, due to 
the lack of well-distinguished pancreatic beta cell-specific cell surface 
markers, it is difficult to purify IPCs from a mixed cell population. 
One of the main reasons for this limitation is insufficient PDX1 
expression in the embryoid body (EB) or definitive endoderm (DE)-
derived precursors [61]. However, ectopic expression of pancreatic 
and duodenal homeobox 1, an essential pancreatic transcription factor, 
in mouse ES cells results in improved differentiation into IPCs [62]. 
Unfortunately, iPS cells, if produced from a type 1 diabetic patient 
and transplanted back into the donor, would still be targeted by the 
immune system. Despite their limitations, the value of IPCs lies in their 
ability to generate both immune cells and β-cells and the potential to 
expand our understanding of autoimmune destruction of β-cells. 

Although much progress has been made in this area, applications 
in clinic are still very limited. Transplanting encapsulated pancreatic 
progenitors derived from hESCs into diabetic recipients is a strategy 
that is now being explored in the Australian Diabetes Therapy Project 
[63]. There are still important issues to be addressed before this 
treatment is widely applicable, including difficulties in maintaining 
insulin independence, low success rates of islet isolation, multiple 
donor requirements, and side effects associated with the use of 
immunosuppressants.

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) have pro-angiogenic and 

immunomodulatory properties and the remarkable ability to expand, 
making them extremely attractive from a therapeutic perspective. 
Moreover, they are easily procurable from virtually every tissue [64]. 
One source of MSCs can be found in the bone marrow stroma. Bone 
marrow-derived stem cells (BMSCs) are an invaluable source of adult 
pluripotent stem cells. An early study reported that transplantation of 
c-kit expressing bone marrow-derived cells resulted in localization to 
ductal and islet structures and enhanced insulin secretion. Although 
occurring in low frequency, these results suggest that BMSCs have the 
ability to differentiate into β-cells [65]. Si found that autologous MSCs 
transplantation in a rat model of type 2 diabetes resulted in enhanced 
insulin secretion, increased islet numbers in pancreas and ameliorated 
insulin sensitivity, suggesting functional effects of autologous MSCs 
inoculum on insulin target tissues [66]. 

Preliminary studies have also tested the graft-promoting effects 
of BMSC transplantation in a cynomolgus monkey model. Allogenic 
BMSC transplantation significantly enhanced islet engraftment and 
function [67]. When human BMSCs were transplanted into NOD/scid 
mice with streptozotocin-induced pancreatic damage, enhanced insulin 
secretion and reduced hyperglycemia was observed. Interestingly, the 
human BMSCs mainly engrafted into the pancreas and the kidney, 
whereas no cells were detected in the spleen, lung or liver [68]. 

Since the effects of single MSC transplantation are relatively 
short (lasting for a period of four weeks), multiple intravenous 
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transplantations were performed and efficiently restored long-
term blood glucose homeostasis in streptozotocin-induced diabetic 
mice. Despite the induced β-cell differentiation, about fifty percent 
of donor cells engrafted were surrounding the central veins in liver 
[69]. These data provide important clues about how to develop 
effective antirejection therapies and the results suggest that BMSC 
transplantation may be useful in ameliorating insulin secretion and 
improving tissue repair in patients with diabetes mellitus.

Recently, clinical application of autologous MSC transplantation 
in type 2 diabetes patients was reported to get prospective success. 
Estrada performed a phase 1 study in 25 patients with combined 
MSC transplantation and hyperbaric oxygen treatment and they 
found improved metabolic variables including fasting plasma glucose, 
C-peptide, HbA1c and calculation of C-peptide/glucose ratio, as well 
as reduced insulin requirements in these patients [70]. Another clinical 
study revealed that autologous MSC transplantation in 10 patients 
efficiently reduced insulin dependence, with three patients achieving 
insulin independence for some time. Importantly, no serious adverse 
effects were reported [71]. Although the underlying mechanisms are 
currently unclear, BMSCs may clearly become the ideal choice in 
therapeutic applications for diabetes.

Pancreatic Duct Cells
Several factors have been found to promote proliferation of β-cells. 

Brennand et al. in 2007 demonstrated that β-cells have the ability 
to sustain themselves through slow replication [72,73]. However, 
the mechanism remains unclear and the numbers of new β-cells are 
inadequate. Almost twenty years ago, pancreatic duct cells were 
found to possess the ability to form new islets with β-like cells [74]. 
In addition, adult exocrine pancreatic cells have been changed into 
functional β-cells through the combination of epidermal growth 
factor (EGF) and leukemia inhibitory factor (LIF) in vitro [75]. It is 
believed that the pancreatic duct, acinus and islet are derived from 
pancreatic duct epithelial cells after birth. Therefore, pancreatic duct 
epithelial cells are assumed to represent the main source of stem cells 
for pancreatic regeneration. 

New β-cell formation from mouse ducts has been observed under 
suitable conditions [76,77]. Several strategies have been reported to 
produce insulin-expressing cells or β-like cells from rodent duct cells. 
Important growth factors including exendin-4, glucagon-like peptide 
1 (GLP1), activin A, hepatocyte growth factor and betacellulin were 
reported to drive induction of insulin expression in pancreatic duct cell 
lines [78-83]. It has also been demonstrated that induction of insulin-
producing cells from pancreatic duct cells can be achieved through 
adenoviral-mediated gene transfer technology by expressing Pdx1, 
neurogenin-3 (Ngn3), neurogenic differentiation factor (NeuroD) or 
paired box protein 4 (Pax4) [84]. However, these methods pose the risk 
of unexpected genetic modifications in target cells.

The delivery of recombinant protein into cells through protein 
transduction represents an effective method for the induction the 
β-like cells. Noguchi found that the Pdx1 protein, which plays crucial 
role in regulating pancreatic β-cell differentiation and insulin gene 
transcription, can permeate cells and perform similar functions as 
endogenous Pdx1 protein. Importantly, Pdx1 transduced pancreatic 
duct cells results in enhanced insulin gene transcription [85]. Recently, 
Kaitsuka found that protein transduction of three proteins, Pdx1, 
NeuroD, and transcription factor MafA (MAFA), can induce mouse ES 
and iPS cells into insulin-producing cells with glucose-response. When 

transplanted into diabetic mice, these induced insulin-producing cells 
have the ability to restore normoglycemia [86]. 

When human pancreatic duct cells were sorted using a 
carbohydrate antigen 19-9 antibody (CA19-9, a duct marker) and 
cultured under serum-free conditions, they could expand and 
enhance insulin transcription [87]. These observations suggested that 
human pancreatic duct cells could be a source of stem cells for β-cell 
differentiation; however, the induced cells had limited expansion and 
insulin secretion was not confirmed in a glucose responsive manner. 
Hoesli found that using a CD90 antibody to deplete fibroblast-like cells 
from the human pancreatic duct cells greatly improved the expansion 
of cells [88]. This finding suggests that obtaining pure pancreatic duct 
stem cells is crucial. Based on the FACS-sorted method, Lee purified 
human pancreatic duct cells using a CD133 antibody and found that 
these sorted cells could maintain ductal phenotypes by a self-renewing 
ability. When the transcription factors MafA, Pdx1, Pax6 and Neurog3 
were co-expressed through an adenovirus-mediated transgenic system, 
CD133 plus cells cultured into spheres and had greatly enhanced 
insulin gene expression. Importantly, when transplanted into NOD 
scid gamma mice, the progeny of the CD133 plus cells showed insulin 
release in a glucose dependent manner and circulating human insulin 
was detected in the serum of host mice [89]. These data suggest that 
CD133 positive pancreatic duct cells could potentially be used in 
human β-cell replacement therapy if new strategies for safer expansion 
and differentiation are developed.

A significant amount of transdifferentiation takes place from 
intrahepatic biliary epithelial cells (IHBECs) through the use of certain 
transcriptional factors. The cells can express proteins characteristic of 
β-cells and secrete insulin [90,91]. Gordon Weir et al. [51] reported 
that the IHBECs were originally expanded using a novel collagen 
matrix protocol and these cells kept their biliary phenotype in culture. 
Ectopic expression of Pdx1, NeuroD or Pdx1-VP16, lead to β-cell genes 
(ins 1 and 2, PC 1 and 2) expressing the islet hormones glucagon and 
somatostatin. C-peptide expression was used as a biomarker to confirm 
β-like cells, and demonstrate the correct processing of insulin protein. 
β-cell functionality was proven by measuring insulin secretion in 
response to glucose. An interesting observation in this report was that 
the β-cell phenotype is only present in a sub-population of IHBECs, 
suggesting that not all IHBECs are able to transdifferentiate into a β-cell 
phenotype. This study strongly implies that it is possible to coerce the 
differentiation of IHBECs towards a β-cell phenotype, which supports 
the possibility that IHBECs have the potential to be useful for β-cell 
replacement therapy [92].

Conclusions 
Both type 1 and type 2 diabetes are among the most amenable 

diseases for treatment. Functional restoration of existing β-cells, 
transplantation of stem cells or stem cell-derived β-like cells might 
provide new opportunities for treatment (Figure 1). However, the 
use of stem cells to generate a renewable source of β-cells for diabetes 
treatment remains challenging, largely due to safety concerns. Current 
differentiation protocols that use viral vectors to generate induced 
β-cells result in low numbers of functional β-cells, and possible 
unexpected genetic modifications. While BMSC transplantation 
could improve metabolic variables with no obvious side effects, Tang 
reported that long-term culture of human BMSCs raises the risk of 
malignant transformation post transplantation [93]. Safety issues, 
including sources of cells, must be carefully evaluated before clinical 
applications. The definition of stem cells depends on the cell surface 
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markers, and their efficiency of differentiation greatly relies on the 
purity of cell source sorted by cell surface markers. Reports suggest 
that approximately 100,000 cells are needed for each recipient, but a 
low differentiation rate necessitate longer time in in vitro culture to 
develop adequate numbers of cells for transplantation. However, the 
longer culture time can increase the possibility of malignancy. Indeed, 
new technologies to improve differentiation efficiency are essential. 

Monitoring clinical trials closely will be key. Development of a 
transplant registry in combination with assessment and optimization 
of clinical protocols will help identify optimal cell types and cell surface 
markers for characterization, and may ultimately lead to safe, effective 
treatments. 
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