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ABSTRACT

Telomere protects the chromosomes in normal cells, and their shortening due to cell divisions and oxidative stress 
induces telomere shortening causing chromosomal instability. Telomerase is an enzyme that adds TTAGG telomeric 
repeats at chromosomal ends. The activity of telomerase enzyme plays a significant role in initiation and progression 
of cancer cells. In cancer cells the telomere length is maintained by telomerase enzyme. Cancer cells survive due 
to the activity of telomerase enzyme due to which the length of telomere is maintained and cell evades cell death 
mechanisms. In cancer cells telomere shortening or dysfunctional telomeres suppress cancer progression and 
development due to the activation of cellular senescence pathway. In this review we summarize telomere structure, 
function and the role telomere plays in cancer development and progression. Hermen J. Muller and Barbara 
McClintock identified telomere as a structure present at the ends of the chromosomes. The word telomere is derived 
from the Greek word “telos” which means ends and “meres” means part. Shorter telomere length or the complete 
absence of telomere induces end to end fusion of the chromosomes and ultimately cause cellular senescence or 
cell death. James D Watson in 1970s termed end replication problem in which during DNA replication, the DNA 
dependant polymerase does not replicates completely at the 5' terminal end leaving small regions of the telomere 
uncopied. In 1960 Leonard Hayflick and his colleagues identified that the human diploid cell can undergo limited 
number of cell divisions in culture. The maximum number of divisions that a cell can achieve in-vitro is known as 
Hayflick limit which was termed after leonard Hayflick. When the cells reaches to a limit where they can no longer 
divide will eventually go under biochemical and morphological changes that eventually leads to cell cycle arrest, a 
process known as “cellular senescence. The telomerase is an enzyme that functions to add telomere repeats to the 
ends of the chromosomes and was identified in 1984 by Elizbeth and her collague. The presence of telomerase 
enzyme activity was also identified in human cancer cell lines by Gregg in 1989. Another study conducted by Greider 
and associates showed the absence of telomerase enzyme in normal somatic cell. Shay and Harley in 1990s detected 
the presence of telomerase activity in 90 out of 101 human tumor cell samples isolated from 12 different tumor types, 
whereas they have found no activity in normal somatic samples (n=50) isolated from 4 different tissue types. Since 
then various studies on 2600 human tumor samples have shown the telomerase activity in around 90% of different 
tumor cells. The existence of telomerase activity in cancer cells clearly demonstrates a major role of this enzyme in 
cancer pathogenesis. Telomeres plays a critical role in cancer, aging, Progeria (premature aging) and various other age 
related disorders due to which telomere and telomerase enzyme are recently an active area of research.
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INTRODUCTION

Chromosome ends are protected from degradation and irregular 
DNA repair by non-coding structures called telomeres. These are 
heterochromatin domains involve various tandem DNA TTAGGG 
repeats which are bound to a large number of specialized proteins 
[1-12]. These non-coding structures maintain genomic integrity 
of normal working cells, and successive cell divisions causes 
their shortening which result in chromosomal instability [13,14]. 
Telomeres have a major role in determination of cell fate and 

ageing on the basis of previous repetitive cell divisions and DNA 
destruction happened due to cellular response against growth and 
stress stimulations [15]. The length of telomeres is maintained by 
telomerase by adding repetitive Guanine-rich sequences [16,17]. 
It is an enzyme which is unidentifiable in most human somatic 
cells. In damaged cells the dysfunctional telomere which is a result 
of excessive telomere attrition or disruption of telomere structure 
may cause chromosomal instability through end – end fusion of 
unprotected chromosomes [18-20]. The activity of telomerase 
is shown in stem cells, gamete and cancer cells [21]. In somatic 
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cells of human beings, proliferation capacity is highly limited and 
senescence results approximately after 50-70 population doublings 
[22,23]. In normal cells, the telomeric DNA is not duplicated 
completely by the replication machinery of the cell, which leads 
to the shortening of telomeres after each cell division [24,25]. As a 
result, telomeres become too short thereby blocking any further cell 
proliferation. This phenomenon is known as replicative senescence 
- a potential protection mechanism against cancer [26-28]. Telomere 
progressive length shortening reduce cell proliferations but also 
responsible for tumorigenesis by causing chromosomal instability [29].

STRUCTURE AND FUNCTION

Cellular chromosomes face wide challenges regarding their fate and 
survival i.e. how chromosomal ends can be protected from DNA 
degradation and breakdown and how to avoid double-strand breaks 
processing and recognition. There are multiple solutions for such 
complications [15]. The main solution to this problem in diverse 
organisms as mammals, telomeres consisted of G-rich tandem 
repeats added by a specialized enzyme named as telomerase. It is a 
reverse transcriptase enzyme made of proteins and RNA subunits [30].

Telomere

Telomeric DNA structures are typically present at 3’ends of a G-rich 
single stranded overhang, ranging from 50 to 300 nucleotides. This 
structure is further folded back on duplex telomeric DNA and 
form a “T-loop” structure also called as telomeric loop structure 
[15,31]. The number of G-rich repetitions in telomeric structures 
varies among different species and also varies in different telomeres 
present in single organism. In all vertebrates especially humans, 
the sequence is d(TTAGGG) which is bound to a complex of six 
proteins called as shelterin [32]. Shelterin includes TRF1, TRF2, 
interacting factors Rap1 and Tin2 and Pot1-TPP1 heterodimers 
[33-35].

Telomerase

Telomeres replicate by a specialized semi-conservative DNA 
replication mechanism and telomerase is highly responsible for 
length maintenance [36]. Telomerase a specialized complex of rib 
nucleoproteins consisted of protein counterpart (Tert) and a RNA 
component (Terc). If telomerase is absent, DNA polymerase fails to 
synthesize ends of DNA lagging strands which leads to progressive 
shortening of telomeres in each round of cell division [37]. Hence, 
telomeres are responsible for regulating life span of cells through 
telomerase suppression and telomeric shortening [38]. The 
telomere is shortened in cancer cells and telomerase activity is very 
high.

Function

Telomeres perform numerous functions such as chromosome 
stability, transcription of other genes nearby, chromosomal 
nuclear localization, segregation during the anaphase, homologous 
recombination in meiotic cells and DNA double strand breaks 
repair [39,40]. Various mechanisms and regulatory pathways are 
linked to the telomeres representing the importance of telomere 
homeostatic regulation. Most of the mechanisms discussed so 
far are part of cancer cells, therefore we can say that telomeres 
play major role in cancer progression [41,42]. Telomeres perform 

numerous functions such as chromosome stability, transcription of 
other genes nearby, chromosomal nuclear localization, segregation 
during the anaphase, homologous recombination in meiotic cells 
and DNA double strand breaks repair [39,40]. Various mechanisms 
and regulatory pathways are linked to the telomeres representing 
the importance of telomere homeostatic regulation. Most of the 
mechanisms discussed so far are part of cancer cells, therefore we 
can say that telomeres play major role in cancer progression [41-43].

MECHANISMS OF CELLULAR SENESCENCE 
INDUCTION AND THEIR CONNECTION WITH 
CANCER BIOLOGY 

Cellular senescence describes an irreversible growth arrest 
characterized by distinct morphology, gene expression pattern, 
and secretary phenotype [44-46]. It has always been found 
in literature but not yet proven that induction of senescence 
prevents the production and growth of cancers. Some new 
experiments show that this hypothesis is partly true but some of 
the gene functions occurring in senescence are also playing role 
in cancer development [47]. Recent researches disclose the issues 
regarding senescence phenotype and unpredicted possible results 
for organisms [48]. In cancer therapy used currently, the cellular 
senescence is expected to occur in tumor cells which show that 
therapy is going well but at the same time the senescence is also 
induced unwontedly in normal cells (non-tumor cells) which cause 
inflammation, secondary tumor and cancer. Cancer is a genetic 
disease and the risk factor of cancer increases with the growing 
age, so it is also considered to be an age related disorder [49]. 
When a normal cell over the period of time accumulates genomic 
aberrations due to which they acquire the ability of replicative 
immortality. Telomere shortens with every cell division causing 
genomic instability which induces genomic rearrangements and 
mutations that ultimately results in tumorigenesis [49,50]. The 
survival of cancer cells is heavily dependent on Telomere and 
associated shelterin protein complex [51-53]. The telomere length 
is maintained by an enzyme named as telomerase in majority of 
the cancer cells. The mechanism of telomere length and expression 
of telomerase enzyme involves epigenetic and posttranslational 
modifications and deep understanding of these mechanisms will 
provide targets for early cancer prognosis and also provides novel 
biomarkers for the development of therapeutics [54,55]. Aging 
may cause by senescence not only due to tissue accumulation of 
senescent cells but also due to loss of regenerative capacity of stem 
cell. Hence, these two processes i.e. functional loss of stem cells 
and senescent cell accumulation causes aging in result [44,56,57]. 
These cells may occur for a short time i.e. during embryogenesis or 
the process of wound healing and in these cases these cells either 
have positive effects such as tissue homeostasis and regeneration or 
adverse effects such that they may accumulate in tissues chronically 
which badly effects the microenvironment by loss of function 
of specific tissues increased secretion of pro-inflammatory and 
tissue remodeling factors. These factors then lead towards the pro-
carcinogenic microenvironment which promotes the formation of 
aging-associated cancers along with the occurrence of mutations 
over time [47,58].

TELOMERE HOMEOSTASIS AND CANCER

In order to understand the role of telomere in early stages of 
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cancer, we need to understand the mechanisms leading to telomere 
shortening, telomeric proteins and genomic instability associated 
with carcinogenesis [59]. Telomeric proteins play role in telomere 
homeostasis. These proteins include TRF1 (TTAGGG repeat 
factor 1), TRF2 (TTAGGG repeat factor 2) and Pot1 (protection 
of telomere protein 1) [60]. These proteins are involved in the 
direct recognition of the TTAGGG tandem repeats. The other 
three proteins TIN2 (TRF1 interacting nuclear factor 2, TPPI 
(TINT1, PIP1, PTOP1) and RAP1 (Repressor Activator Protein 1) 
bind indirectly to telomeres via TRF1, TRF2 and Pot1 [61,62]. All 
these proteins are called Shelterin proteins. As they form Shelterin 
complex. Shelterin and other proteins linked to it perform several 
functions involving telomere homeostasis and stabilizing the 
telomere complex [60,63]. Many of the telomeric proteins play 
role in various DNA repair mechanisms such as non-homologous 
end joining (NHEJ), homologous recombination (HR), base 
excision repair (BER) and nucleotide excision repair (NER) [64-
66]. Most of these DNA repair proteins also interact directly with 
the Shelterin complex. Although telomere maintenance and DNA 
damage repair are separate entities, but telomere ends must not be 
recognized as DNA damage [67-69]. Telomerase is composed of two 
main subunits, human telomerase RNA component (hTERC) and 
human telomerase reverse transcriptase (hTERT). The (hTERC) 
serves as a template for replication whereas the (hTERT) catalyzes 
telomere elongation as it contains a reverse transcriptase domain. 
Telomere stabilization is essential for cellular immortality which is 
achieved through the re expression of (hTERT) gene in most of the 
human cancer cells while the (hTERC) gene is essentially expressed 
[70,71]. This information indicates that telomere homeostasis play a 
major role in Cancer progression. Increased telomerase activity has 
been analyzed in almost all immortalized cell lines and 80-90% of 
human tumors [72]. Telomere homeostasis depends on structural 
telomere conformation as well as telomerase activity [73,74]. 

TELOMERE LENGTH IN MULTISTEP 
CARCINOGENESIS

Telomere length deformities are universal in preinvasive stages 
of Carcinogenesis in human epithelial cells. Certainly, telomere 
shortening occurs mostly in early stage of bladder, colon, cervix, 
esophageal and oral cavity cancer [75,76]. This phenomenon is also 
observed in prostate cancer [77-79]. These observations indicate 
the role of telomere shortening in pre-invasive as well as invasive 
cancer. Therefore, we can say that deformity in the telomere length 
is the earliest and most frequent genetic alteration involved in 
the malignant transformation. Several (NHEJ) proteins present at 
telomeres play significant role in the telomere length homeostasis. 
These proteins are specifically involved in the telomeric structure 
maintenance, telomerase regulation and play a collective role in 
chromatin telomere structure by interacting with HP1 in human 
cells [80-81]. The significant role of these NHEJ proteins and 
DNA damage proteins present at telomeres integrate a highly 
regulated nucleoprotein complex [82,84]. This complex stabilizes 
the telomeres and induces cell cycle arrest [59,85]. 

ROLE OF TELOMERES AND TELOMERASE IN 
COLORECTAL CANCER

The third most common cancer is colorectal cancer and it is the 
major cause of deaths despite of its available treatments [87,88]. 

CRC arise from a multistep process of genetic and epigenetic 
events. Along with the heterogeneous characteristics in the 
molecular and biological aspects of CRC, the chromosomal 
instability is a trademark of tumorigenesis. These cancer cells 
restrain apoptosis thus adopt the ability to maintain unlimited 
proliferation [88]. In human somatic cells, telomeres are shortened 
at each cell division as a result of end replication problem. At the 
point when telomere length is reduced underneath a critical value, 
cellular senescence takes place. If this check and balance is skipped 
through inactivation of p53, cells may escape from this barrier 
and continue to divide, resulting in broad telomere attrition. 
Finally, its dysfunction cause genomic instability and cell death 
[89-91]. The degradation of telomeres due to the cell proliferation 
can be enhanced by specific alterations in the genes involved in 
CRC. Telomerase reverse transcriptase TERT plays catalytic role 
in telomerase complex, and activation of this TERT promotes the 
growth of cancer cells by conserving the length of telomeres thus 
promoting tumor formation/progression. TERT itself increases as 
the disease progresses [49,92,93]. Several examinations indicate 
that telomere shortening and telomerase activation play a vital 
role during cancer progression. Thus, the telomere length has 
developed as a clinical marker for risk, progression, and prognosis 
prediction for patients with malignant disorders, particularly with 
colorectal cancer CRC [94-96].

THERAPEUTICS STRATEGIES BASED ON 
TELOMERES AND TELOMERASE

The straightforward therapy is direct inhibition of telomerase 
activity (TA) [97]. This therapy aim is to destabilize the telomeres, 
telomere shortening and senescence. Another methodology is to 
utilize the TERT promoter to drive the expression of suicide genes 
or the replication of infections in cancer cells. Another tumor 
remedial approach is to straightforwardly target the telomere 
integrity promoting telomere dysfunction and cancer growth 
inhibition [98,99].

CONCLUSION

Until now cellular senescence was observed as an in-vitro 
phenomenon and its impact on human aging was very arguable, 
but now it has been proposed that senescent cells contribute to 
aging associated diseases and eventually lead to organism’s life 
and health span. Telomere length acts as an intracellular timer, 
restricting cell replication, this phenomenon is widely accepted 
nowadays as it is understood that by critical shortening or capping 
deficiency, telomeres restrict the cell proliferation. This occurs 
because critically shortened telomeres, which have become 
dysfunctional, play a key role in oncogenesis. They induce genetic 
rearrangements that disturb the oncogenes or tumor suppressor 
pathways. In recent years, the focus on senescence has been 
increased with respect to cancer research, as senescence is induced 
by tumor therapies on one hand and induced in other cells thereby 
enhancing secondary tumors on the other hand. Along with this, 
the accumulation of senescent cells can explain the increase in 
incidence of cancer with age. Cellular senescence also provides a 
model system for protumorogenic microenvironment that can be 
useful for drug screening. Pharmaceutically targeting the senescent 
cells will not only prove to be a novel tool in challenging aging-
associated pathologies, but also a counterpart to cancer therapy 
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to eradicate senescent cancer and non-cancer cells and alleviate 
the side effects. Repetitive domains, as well as two polyglutamine 
domains, which are intragenic microsatellites at the level of DNA 
are characteristic of genes encoding gliadins of the α-type. 
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