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A new type of hybrid finite element method with fundamental 
solutions as internal interpolation functions, named as HFS-FEM 
[1], was recently developed based on the framework of Hybrid Trefftz 
finite element method (HT-FEM) [2-4] and the idea of the Method of 

assumed fields (intra-element filed and auxiliary frame field) are 
employed and the domain integrals in the variational functional can 
be directly converted to boundary integrals without any appreciable 
increase in computational effort as in HT-FEM.the assumed intra-
element field was constructed by the linear combination of fundamental 
solutions at points outside the elemental domain under consideration, 
The independent frame field was introduced to guarantee the inter-
element continuity and the stationary condition of the new variational 
functional is used to obtain the final stiffness equations.
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As indicated in [1], The HFS-FEM of a heat conduction problem is 
constructed based on the modified variational below
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in which u is temperature, k is the thermal conductivity, an q represents 
the boundary heat flux. The boundary Γe  of a particular element e 
consists of the following parts

Γ = Γ ∪Γ ∪Γe ue qe Ie

Where Γ Ie  represents the inter-element boundary of the element ‘e’.

The HFS-FEM discussed here has the following features:

• Compared to the conventional FEM, the formulation calls for
integration along the element boundaries only, which simplify the 
calculation of stiffness matrix and is easy to generate arbitrary shaped 
elements.

Fundamental Solution (MFS) [5,6]. In this method, two independent 

Historically, research into the development of efficient finite 
elements has mostly concentrated on the following three distinct 
types of FEM [2,7-10]. The first is the conventional FEM. It is based 
on a suitable polynomial interpolation which has already been used to 
analyze most engineering problems. With this method, the solution 
domain is divided into a number of small cells or elements, and material 
properties are defined at element level [7]. The second is the natural-
mode FEM. In contrast, the natural FEM, initiated by Argyris and 
his co-workers [8], presents a significant alternative to conventional 
FEM with ramifications on all aspects of structural analysis. It makes 
distinction between the constitutive and geometric parts of the element 
tangent stiffness, which could lead effortlessly to the non-linear 
effects associated with large displacements. The final is the so-called 
hybrid Trefftz FEM (HT-FEM) [2,11]. Unlike in the conventional and 
natural FEM, the HT-FEM couples the advantages of FEM [7] and 
BEM [12]. In contrast to conventional FEM and BEM, the HT-FEM is 
based on a hybrid method which includes the use of an independent 
auxiliary inter-element frame field defined on each element boundary 
and an independent internal field chosen so as to a prior satisfy the 
homogeneous governing differential equations by means of a suitable 
truncated T-complete function set of homogeneous solutions. Inter-
element continuity is enforced by using a modified variational principle, 
which is used to construct the standard force-displacement relationship 
and establish linkage of frame filed and internal fields of the element. 
The property of non-singular element boundary integral appeared in 
HT-FEM enables us to construct arbitrary shaped element conveniently. 
However, the terms of truncated T-complete functions should be 
carefully selected in achieving desired results. Further, the T-functions 
may be difficult to generate for some physical problems. To remove 
the drawback of HT-FEM, the HFS-FEM, was recently developed for 
solving various engineering problems [13-19]. The proposed HFS-
FEM can be viewed as the fourth type of FEM which is significantly 
different from the previous three types discussed above. In the analysis, 
a linear combination of the fundamental solution at different points is 
used to approximate the field variable within the element. The HFS-
FEM inherits all advantages of HT-FEM and removes the difficulty 
occurred in constructing and selecting T-functions, so it may have 
more extensive applications than the HT-FEM. The employment of 
two independent fields also makes the HFS-FEM easier to generate 

arbitrary polygonal or even curve-sided elements. It also obviates 
the difficulties that occur in HT-FEM [2,3] in deriving T-complete 
functions for certain complex or new physical problems [14]. The 
HFS-FEM has simpler expressions of interpolation functions for intra-
element fields (fundamental solutions) and avoids the coordinate 
transformation procedure required in the HT-FEM to keep the matrix 
inversion stable [2]. Moreover, this approach also has the potential to 
achieve high accuracy using coarse meshes of high-degree elements, 
to enhance insensitivity to mesh distortion, to give great liberty in 
element shape, and accurately representing various local effects (such 
as hole, crack and inclusions) without troublesome mesh adjustment 
[2,19]. On the other hand, it should be pointed out that the developed 
HFS-FEM approach is different from the BEM [12], although the same 
fundamental solution is employed. Using the reciprocal theorem, the 
BEM obtains the boundary integral equation, which usually encounters 
difficulty in dealing with singular or hyper-singular integrals in 
practical analysis, while the weakness can be removed using HFS-FEM. 
Additionally, HFS-FEM makes it possible for a more flexible element 
material definition which is important in dealing with multi-material 
problems, rather than the material definition being the same in the 
entire domain in BEM.
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• The proposed model is insensitive to the mesh distortion and can
provide a good numerical accuracy.

• In contrast to the T-complete function used in HT-FEM, the
fundamental solution in HFS-FEM is easy to derive, and further, 
the determination of source points is easier to operate than selecting 
appropriate terms from T-complete series in HT-FEM.

• HFS-FEM can define the fundamental solution at element level
and thus can be flexibly used to analyze problems with different material 
properties. In contrast, BEM usually use the fundamental solutions 
defined in the full domain which is not convenient for such problems 
with different materials. Moreover, the nonsingular boundary integrals 
are used in the HFS-FEM, instead of singular or hyper-singular ones in 
the formulation of the conventional BEM.
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