**Short Communication** 

# Link between Vitamin D and Cardiovascular Diseases

# Kharb Manju\*, Rathi Shikha and Jalwal Pawan

Department of Pharmaceutical Sciences and Research, Baba Mastnath University, Asthal Bohar, Rohtak, India

#### **ABSTRACT**

Over the last decades, cardiovascular diseases (CVD) effect is increasing very fast. This review article discuss the association between low level of 25-hydroxy vitamin and cardiovascular diseases. This review also tells us the direct effect of vitamin D on heart or on cardiovascular system may also be involved. Apart from regulating blood pressure, vitamin D also regulate endothelial and smooth muscle cell muscles, most studies support 25 (OH) vitamin D having protective effects on cardiovascular system. However this association of vitamin D and cardiovascular diseases is based on observation & ecological studies and thus is a matter of controversy. Adequate clinical data are not available to confirm these association. Unopposed activation of RAAS & generation of angiotensin promote arterial stiffing & endothelial dysfunction that proceed & contribute to the development of hypertension & also predictors of CVD risk.

Keywords: Cardiovascular diseases (CVD); Vitamin D; Calciferol; International unit (IU); 1- a -OH ase

## INTRODUCTION about VITAMIN D

Vitamin is also called calciferol. It exist in two form vitamin D2 and vitamin D3 which are called ergocalciferol and cholecalciferol. Vitamin  $D_3$  is also called "Sunshine vitamin" because this vitamin is synthesized in epidermis cell through UV radiation and it is also consumed from fish oil and supplements [1,2]. Deficiency of vitamin D is very common problem very often unrecognized and untreated, association with osteoporosis, muscles weakness, growth retardation in children, dental caries and also increase the risk of bone fracture in adults [2-6].

# SOURCES of VITAMIN D

- Vitamin D is obtained from man dietry sources like fatty acid fish or through the conversion 7-dehydrocholesterol as a prehormone in the skin from exposure to sun rays. Vitamin D is also obtained from plant in the form of ergosterol [6-10].
- Chiook salmon 40Z cooked (amount of vitamin D (IU) 410)
- Shrimp 40 Z cooked (amount of vitamin D (IU) 160)
- Multiple vitamin most brand (amount of vitamin D (IU) 400)
- Canned salmon, 350 Z (amount of vitamin D (IU) 30)
- Dannon fusion smoothie 100z (amount of vitamin D (IU) 80)
- Tuna light canned in water 3 oz (amount of vitamin D (IU) 200)

- Milk 1 cup (amount of vitamin D (IU) 200)
- Cod 40 z cooked (amount of vitamin D (IU) 63)
- Fortified breakfast cereals, most brand (amount of vitamin D (IU) 40)
- Margarine, fortified 1 Tbsp (amount of vitamin D (IU) 40)

# LEVEL of VITAMIN D in our BODY, EFFECTS of VITAMIN D and REQUIREMENT of VITAMIN D in our BODY

Requirement of vitamin D in our body is based on health recommended dietry allowance are 600 IU/d for individuals aged 1 to 70 years and 800 IU/d for older than 70 years under condition of minimum sun exposure. A survey is done by NHANES (National health& nutrition examination survey) which indicate that deficiency of vitamin D exists in more than half of US middle-aged & older women and more than a third of similarly aged men. In African-Americian individuals because of darkly pigmented skin there is less synthesis of vitamin D in response to sun exposure and also black have lower dietary & supplemental vitamin D intake than white [10-13].

Received date: February 02, 2019; Accepted date: February 18, 2019; Published date: February 25, 2019

Citation: Manju K, Shikha R, Pawan J (2019) Link between Vitamin D and Cardiovascular Diseases. Cardiovasc Pharm Open Access. 8: 251. doi: 10.35248/2329-6607.19.8.251

Copyright: © 2019 Manju K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<sup>\*</sup>Corresponding author: Manju K, Department of Pharmaceutical Sciences and Research, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana, 124001, India, Tel: +91 9416745816; E-mail: kharbmanju@gmail.com

#### Mechanism by which vitamin D prevent CVD

The mechanism for how vitamin D prevent CVD is not clear but several mechanism has been proposed individuals. Such as:

Receptors of vitamin D are present throughout the vascular system including endothelial cells, vascular smooth muscles & cardiomyocytes which produce 1-  $\alpha$ -hdroxylase enzyme. This enzyme converts 25-hdroxy vitamin D to calcitriol and this is the natural ligand of vitamin D receptor.

The calcitriol so formed inhibit proliferation of vascular smooth muscles and also regulate rennin-angiotensin system to lower BP may improving glycemic control, decrease coagulation and exhibit anti-inflammatory properties [13-16].

## Physiology of vitamin D

After entering into the body vitamin D follow the following route:

Vitamin D into the body bound to vit.D binding protein, liver 25-hdroxyvitamin D (25-(OH) D)

Under influence of PTH, 1- a -hydroxylase (kidney)

Hormonal vitamin D, 1,25-dihdroxy vitamin D

(1.25 (OH)2D)

Only the kidney 1- $\alpha$ -OH-ase significantly contributes to circulating level of 1,25-(OH)2 D level, the presence of external 1- $\alpha$ -OH-ase allow to convert 25 (OH) D 1,25 (OH)2 D.

Than circulating vit  $D_1$ , 25 (OH)2 enters into the cells where it needed, either in free form or in binding form.

## LINKS between VITAMIN D and CVD

The main aim of this article is to explain the association of vitamin D deficiency & CVD.

Deficiency of vitamin D can cause endothelial dysfunction, proliferation of smooth muscle cells, formation of foam cells, artherosclerosis.

The other function of vitamin D is glycemic control, insulin secretion & sensitivity, lipid metabolism, prevention of secondary hyperparathyroidism.

## REQUIREMENTS of VITAMIN D in our BODY

According to institute of medicine (IOM) the current vitamin D requirement is as follow

- 200 international unit (IU) per day for adults age 50 and younger.
- 400 (IU) per day for adults age 51 to 70 years.
- 600 (IU) per day for adults aged 70 ears.

The exact amount of vitamin D is not clear known, however man physician are now recommended 1000 IU to 2000 IU daily for mist adults

The extra amount of vitamin D can increase calcium absorption, which can cause kidney stone or kidney damage.

#### USES of VITAMIN D

Vitamin D has also been associated with prevention and treatment of diabetes, cancer, osteoarthritis and immune system disorder.

A growing number of studies support that low level of vitamin D increased the chances of heart diseases and that addition of vitamin D supplements can decrease the risk.

#### **CONCLUSION**

Several trials are done to know the connection between vitamin D deficiency and CVD but there is not yet any clear conclusive evidence.

## **REFERENCES**

- 1. Quyyumi AA, Patel RS. Endothelial dysfunction & hypertension :causes or effect. Hypertension. 2010;55: 1094.
- Holick MF. Vitamin D deficiency. N Engl J Med. 2017;357: 266-281.
- Looker AC, Dawson HB, Calvo MS, Gunter EW, Sahyoun NR. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone. 2002;30: 771-777.
- Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168: 1174-1180.
- Dobnig H, Pilz S, Scharnagl H. Independent association of low serum 25-hydroxyvitamin d and 1, 25-dihydroxyvitamin D levels with allcause and cardiovascular mortality. Arch Intern Med. 2008;168: 1340-1349.
- Martins D, Wolf M, Pan D, Zadshir A, Tareen N. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2007;167: 1159-1165.
- Khazai N, Judd SE, Tangpricha V. Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep. 2008;10: 110-117.
- Nibbelink KA, Tishkoff DX, Hershey SD, Rahman A, Simpson RU. 1,25(OH)2-vitamin D3 actions on cell proliferation, size, gene expression, and receptor localization, in the HL-1 cardiac myocyte. J Steroid Biochem Mol Biol. 2007;103: 533-537.
- Grimes DS, Hindle E, Dyer T. Sunlight, cholesterol and coronary heart disease. QJM. 1996;89: 579-589.
- Douglas AS, Dunnigan MG, Allan TM, J M Rawles. Seasonal variation in coronary heart disease in Scotland. J Epid Comm Health. 1995;49: 575-582.
- 11. Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997;30: 150-156.
- 12. Melamed ML, Michos ED, Post W, Brad Astor. 25-Hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med. 2008;168: 1629-1637.
- Giovannucci E, Liu Y, Hollis BW. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168: 1174-1180.
- Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117: 503-511.
- 15. Pilz S, März W, Wellnitz B, Ursula Seelhorst, Pammer AF. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008;93: 3927-35.

16. Rowling MJ, Kemmis CM, Taffany DA, Welsh J. Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxy-

cholecal ciferol actions in human mammary cells. J Nutr. 2006;136: 2754-2749.