

Short Communication

Advances in Protein-Based Therapeutics for Chronic Diseases

Michael Thompson*

Department of Molecular Biology, Harvard University, Boston, USA

DESCRIPTION

Protein-based therapeutics have become an integral part of modern biomedical science due to their remarkable ability to target disease pathways with high specificity. Unlike small molecule drugs, which often interact with multiple pathways and can generate undesirable side effects, protein therapeutics are designed to replicate, modulate, or block biological mechanisms that are directly involved in disease progression. Their precise mode of action has led to the development of monoclonal antibodies, recombinant proteins and fusion proteins that are increasingly being applied in the treatment of chronic and life-threatening diseases such as cancer, autoimmune disorders and metabolic syndromes [1].

One of the most significant breakthroughs in this field has been the development of monoclonal Antibodies (mAbs). These laboratory-engineered antibodies mimic the body's immune system by recognizing and binding to specific antigens. In oncology, monoclonal antibodies have revolutionized treatment by targeting proteins on the surface of cancer cells, thereby blocking signals that fuel tumor growth or by flagging malignant cells for immune destruction. A well-known example is immune checkpoint inhibitors, which target proteins such as PD-1 or CTLA-4, allowing the immune system to attack tumors more effectively. These therapies have led to remarkable improvements in survival for patients with melanoma, lung cancer and other aggressive malignancies. Beyond cancer, mAbs are also being used to treat chronic inflammatory conditions like rheumatoid arthritis, psoriasis and multiple sclerosis, offering relief where traditional drugs were either ineffective or associated with severe side effects [2].

Recombinant proteins represent another cornerstone of therapeutic innovation. By using genetic engineering techniques, scientists can produce large quantities of human proteins in host cells such as bacteria or yeast. These proteins are then purified and formulated for therapeutic use. A prime example is the production of recombinant insulin, which has transformed diabetes care [3]. Prior to recombinant DNA technology, insulin was extracted from animal sources, which often carried

impurities and posed risks of allergic reactions. Today, recombinant insulin analogs allow for tighter glycemic control and reduced long-term complications. Similarly, enzyme replacement therapies have emerged as life-changing interventions for patients with rare lysosomal storage disorders, such as Gaucher or Fabry disease, where the absence of a functional enzyme leads to severe biochemical imbalances. By replacing the missing enzyme, recombinant proteins can restore metabolic function and improve patients' quality of life [4].

A more recent advancement in this field is the development of fusion proteins, which are engineered molecules that combine functional domains from different proteins to enhance therapeutic potential. Fusion proteins are versatile because they can be tailored to achieve multiple functions simultaneously. For instance, receptor-ligand fusion proteins are being designed to block harmful signaling pathways in autoimmune diseases, thereby dampening excessive immune responses [5]. Other fusion proteins act as decoys, binding to circulating factors that would otherwise trigger inflammation or tissue damage. These molecules represent the convergence of biotechnology and synthetic biology, demonstrating how rational design can create therapies with highly specific functions that natural proteins alone cannot perform [6].

Despite their immense promise, protein-based therapeutics face significant challenges in production, stability and delivery. Proteins are inherently delicate molecules prone to denaturation or degradation when exposed to heat, light, or enzymatic activity. This necessitates stringent manufacturing processes, cold-chain storage and specialized handling, all of which increase costs and limit accessibility particularly in low-resource settings [7]. Delivery methods also remain a hurdle, as most protein therapeutics cannot be administered orally due to degradation in the gastrointestinal tract. Current approaches often rely on injections, which can reduce patient compliance. To overcome these barriers, researchers are developing advanced formulation strategies such as nanoparticle encapsulation, biodegradable hydrogels and long-acting injection systems that can release drugs over extended periods [8].

Correspondence to: Michael Thompson, Department of Molecular Biology, Harvard University, Boston, USA, E-mail: michael.thompson@harvardmed.us

Received: 28-Mar-2025, Manuscript No. BOM-25-29589; Editor assigned: 31-Mar-2025, Pre QC No. BOM-25-29589 (PQ); Reviewed: 14-Apr-2025, QC No. BOM-25-29589; Revised: 19-Apr-2025, Manuscript No. BOM-25-29589 (R); Published: 28-Apr-2025, DOI: 10.35248/2167-7956.25.14.429

Citation: Thompson M (2025). Advances in Protein-Based Therapeutics for Chronic Diseases. J Biomol Res Ther.14: 429.

Copyright: © 2025 Thompson M. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Looking ahead, the future of protein therapeutics is closely tied to innovations in molecular engineering, computational biology and gene editing. The growing availability of high-resolution protein structure data and advances in artificial intelligence-based modeling are enabling scientists to design proteins that fit their molecular targets with exceptional precision. Machine learning algorithms can now predict protein folding and guide the engineering of novel therapeutic molecules that were once impossible to design through trial-and-error methods. Moreover, the integration of gene-editing technologies like CRISPR-Cas9 opens up new frontiers. Instead of repeatedly administering protein-based drugs, it may become possible to engineer patients' cells to produce therapeutic proteins internally, offering long-term or even permanent solutions for certain conditions [9].

The global demand for safer and more effective treatments continues to rise as the burden of chronic and degenerative diseases grows worldwide. Protein-based therapeutics not only provide targeted solutions but also reduce the risks of off-target effects that are common with conventional small-molecule drugs. As research investment expands and technologies mature, these therapies are likely to become more accessible and affordable. This progress holds particular importance for addressing healthcare disparities, ensuring that breakthroughs in biomedical science reach patients across diverse populations and healthcare systems [10].

REFERENCES

 Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2005;102(39):13944-13949.

- Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma. 2017;58(9):2026-2039.
- Birkinshaw RW, Gong JN, Luo CS, Lio D, White CA, Anderson MA, et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat Commun. 2019;10(1): 2385.
- Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8(12):1566-1581.
- Leverson JD, Zhang H, Chen J, Tahir SK, Phillips DC, Xue J, et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate ontarget cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). CDD. 2015;6(1):1590.
- Honigberg LA, Smith AM, Verner E, Loury D, Chang B, Li S, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and Bcell malignancy. Proc Natl Acad Sci. 2010;107(29):13075-13080.
- 7. Wang E, Mi X, Thompson MC, Montoya S, Notti RQ, Afaghani J, et al. Mechanisms of resistance to noncovalent Bruton's tyrosine kinase inhibitors. N. Engl. J. Med. 2022;386(8):735-743.
- 8. Wierda WG, Allan JN, Siddiqi T, Kipps TJ, Opat S, Tedeschi A, et al. Ibrutinib plus venetoclax for first-line treatment of chronic lymphocytic leukemia: primary analysis results from the minimal residual disease cohort of the randomized phase II CAPTIVATE study. J Clin Oncol. 2021;39(34):3853-3865.
- Salvaris RT, Brennan J, Lewis KL. BTK is the target that keeps on giving: a review of BTK-degrader drug development, clinical data, and future directions in CLL. CA. 2025;17(3):557.
- Raponi S, Della Starza I, De Propris MS, Del Giudice I, Mauro FR, Marinelli M, et al. Minimal residual disease monitoring in chronic lymphocytic leukaemia patients. A comparative analysis of flow cytometry and ASO IgH RQ-PCR. Br J Haematol. 2014;166(3): 360-368.