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ABSTRACT

The present work addresses stochastic chaotic dynamics in network vector fields described by coupled stochastic differential 
equations, expanding on stochastic chaos in coupled map lattices. We study the example of a network with local coupling 
and ring topology with the vector field dynamics at each node being described by locally coupled stochastic differential 
equations given by the stochastic Lorenz system, the resulting local dynamics, mean field dynamics and synchronization 
patterns are researched for different coupling strengths and network sizes, showing the presence of a relation to the Lorenz 
chaotic attractor as well as multifractal scaling in the field dynamics and multifractal phase transitions. The relevance of the 
results for the research on the synergetics of complex systems and networked computation is addressed.

Keywords: Stochastic chaos; Network Vector Field Theory (NVFT); Synergetics; Complexity; Computational Field Theory 
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INTRODUCTION

Chaos in high-dimensional systems has been subject of research 
within the context of coupled nonlinear maps [1-5]. These models 
stand at the intersection between computer science, network 
science and nonlinear dynamics and are of particular relevance 
not only in the modeling of turbulence, coevolutionary dynamics, 
social and economic dynamics but also for dealing with computing 
systems that involve computing with non-binary values, including 
analog computation and machine learning models operating on 
real numbers [1,2,5,6].

The Coupled Map Lattices (CMLs) were among the first such models 
studied within chaos theory, expanding on the cellular automata 
discrete state framework to a continuous state computation [1-
6]. High-dimensional chaos, spatiotemporal intermittence and 
synchronization in nonlinearly interacting networks have been 
studied in detail in these models as reviewed in [1].

From a mathematical standpoint, we can look at cellular automata, 
CMLs and other dynamical (computing) network models that have 
been studied within complexity research, computer science and 
chaos theory as examples of scalar fields in networks. In the case of 
cellular automata, these scalar fields’ dynamics can be described by 
binary values or assume other values in a discrete set of numbers 
with the real-valued case corresponding to continuous state cellular 
automata and to the CML models [1,6].

Scalar fields in networks are such that each node in the network 

is characterized by a number as a computational output from the 
field’s computation and this number changes in accordance with 
a local computational rule based upon the network’s connections. 
This leads to a theory of network scalar field computation.

Indeed, from a systemic standpoint, a network scalar field is 
associated with a systemic dynamics where the field at each node 
in the network is characterized by an activity with a computational 
output that can be addressed mathematically on a numerical scale, 
in this sense, the field’s activity at each node has a numerical 
expression and can be addressed in terms of the computational 
rules leading to local changes in the numeric value (the scalar value) 
associated with each node in the network.

This type of computational model can be applied to different 
systems, including number of visits to a network of websites, airport 
traffic, malware propagation in networks, as just a few examples. 
Whenever we have a network and a characterization of each node 
in the network by dynamical scalar data then we can address the 
problem in terms of a network scalar field model.

Now, one can go beyond the scalar field model and work with vector 
fields. The difference in this case is that the field at each node in 
the network has a computational activity that is characterized by a 
d-dimensional vector as a computational output. This means that
the field’s activity at each node has a geometric expression as a
vector.

Thus, for a network with n elements we have  n × d  degrees  of 
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dynamics described by systems of nonlinear differential equations is 
that their study requires numeric integration. This also means that 
their stochastic counterparts also require such numeric integration.

The main integration method that we use in the present work 
is Roberts’ method for numeric integration which is a modified 
Runge-Kutta method that can be used both for Itô integrals and for 
Stratonovich integrals [10]. To understand this method, we begin 
by considering the standard one-dimensional SDE.

As a notation point, we use here capital letters for matrices and 
vectors and small caps for scalars. In this way, the standard one-
dimensional SDE used in Itô stochastic calculus can be written as 
[10]:

( ) ( ), ,d a t dt b t dw= +x x x ……………………... (1)

In the above general equation, a is a drift function and b affects 
the standard-deviation, both are addressed as smooth functions of 
the argument, dw corresponds to the infinitesimal increments of a 
Wiener process [10].

The Itô integral is formally addressed by the integration scheme for 
0 1 ... t :nt t t< < < =

( ) ( )( ) ( )t

,0
lim k k kn k

b t t w t
→∞

= ∆∑∫ b s, x dw x
……………………... (3)

( ) ( ) ( )1k k kw t w t w t+∆ = − ……………………... (4)

( ) ( ) ( )2
1~ N 0, , 0 0k k kw t t t wµ σ +∆ = = − = ……………………... (5)

The increments in equation (4) are independent and, as per 
equation (5), follow a zero mean Gaussian distribution with 
variance given by   1k k kt t t+∆ = −  and ( )0 0w = . In this way, we have 
Gaussian IID noise. 

The above is the formal basis for stochastic calculus in one-
dimensional systems, that is, systems with a stochastic scalar 
variable that depends upon the Wiener innovation, leading to basic 
processes that are related to one-dimensional Brownian motion. 
While formal solutions can be built, the basic issue when a and b 
are not constant is that we may need to employ numeric integration, 
we follow the modified Runge-Kutta method introduced in [10] for 
the Itô calculus approximation, which sets kt h∆ =    and defines the 
following integration algorithm:

( )( ) ( )( ) ( )(2 1 1 1 1, ,k k k k kk ha t t k b t t k w t+ += + + + ∆ +x x ………... (7)

( ) ( ) 1 2
1 2k k

k kt t+

+
= +x x

……………………... (8)

( ) ( ) ( ) ( )t , ~ N 0,1k k kw t hz z t∆ = ……………………... (9)

With 1ks = ± 1ks = ± with 1/2 probability. In the type of problems that we 
will be working on, the function b is a fixed scalar which means 
that we have the basic scheme:

( )( ) ( )(1 ,k k kk ha t t b w t= + ∆ −x
……………………... (10)

( )( ) ( )(2 1 1,k k kk ha t t k b w t+= + + ∆ +x
……………………... (11)

Given these last two equations, applying equation (8), we get the 
simplified scheme:

( ) ( ) ( )( ) ( )( ) ( )1 1
1

, ,
2 2

k k k k k
k k

a t t a t t k b w t
t t h +

+

+ + ∆
= + +

x x
x x

…………... (12)
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freedom related to the field’s computational activity, with d 
corresponding to the number of field vector components. In the 
deterministic context, such a computation can either be addressed 
in terms of a mathematical model as involving a discrete time 
update rule, or it can be addressed as a flow, in the last case we have 
a large system of coupled differential equations for the field’s 
dynamics.

When dealing with chaotic dynamics in this context, we are led to 
an expansion of the theory of chaos in spatially extended systems, 
a theory that has been strongly developed in coupled nonlinear 
maps as reviewed in [1], but that can be expanded to network vector 
fields characterized by coupled differential equations rather than by 
coupled maps.

In this context, there is a continuous dynamics of the field at each 
node, a dynamics that depends upon the network’s connections, 
leading to continuously changing geometric transformations of the 
vector at each node in terms of both magnitude and direction.

Now, such as we can transition from a deterministic map to a 
stochastic map in the context of a coupled map models [1-3], We 
can also transition from the coupled deterministic flow of the 
network vector field to stochastic field dynamics.

In regards to the mathematical modeling, the difference is that 
instead of working with deterministic differential field equations 
we work with stochastic differential field equations. From a systems’ 
dynamics standpoint this means that we have an open network’s 
dynamics with the network field’s dynamics being such that the 
field computation depends both upon the local nearest neighbours’ 
field configuration and upon external stochastic environmental 
fluctuations leading to an external noise source.

In the context of a network vector field characterized by chaotic 
dynamics this leads to stochastic chaos in network vector fields, 
characterized by nonlinear stochastic differential equations. 
The study of such systems is particularly relevant in the context 
of the synergetic of complex networks as well as for networked 
computation with real numbers [7-9].

In the current work, we analyze a vector field on a ring network with 
the field vector components updated in accordance with coupled 
stochastic Lorenz equations characterized by additive Wiener noise, 
we study both the local and collective dynamics of such a system, 
for different network sizes and coupling strengths.

In section 2, we review the main methods, including numeric 
integration methods and the field equations. In section 3, we study 
the example network field dynamics characterized by the coupled 
Lorenz system in a ring network and, in section 4, we conclude 
with a final reflection on the work’s main results in the context 
of complexity research, computational field theory and synergetic.

MATERIALS AND METHODS

Stochastic chaos in nonlinear dynamics can be worked in two settings, 
stochastic nonlinear maps, which is a discrete time approach and 
stochastic differential equations (SDEs), in both cases, the main 
point is that, if we “turn off” the noise process, the corresponding 
nonlinear deterministic dynamics can be chaotic, that is, bounded, 
nonperiodic with sensitive dependence upon initial conditions 
showing random trajectories. In the case of systems described by 
stochastic differential equations, this means that when the noise 
process is “turned off” the corresponding system of equations is a 
standard deterministic system of differential equations.

The main issue regarding chaotic dynamical systems that have a 
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1 k k k k kk ha= (t (t )) b+ (t, ,x x (t )) ( w (t )∆ −
……………………... (6))khs

)khs
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0 0 0
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( )
( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

,

t t

a t X t t t
t t t

σ

ρ

β

 −
 
 = − −
 
 − 

y x

x y xz

x y z
……………………... (19)

Replacing on equation (13) we can write explicitly the stochastic 
Lorenz SDE in vector format, in the equation below we omit the 
explicit temporal dependence for simplification:

( ) 1

2

3

b
σ

ρ
β

 −   
    = − − +    
     −    

y xdx dw
dy dt x y xz dw
dz xy z dw

……………………... (20)

When b=0, we get the deterministic Lorenz equations, which, for 
the parameters in figure 1, as stated, lead to a chaotic dynamic with 
the strange attractor structure comprised of two spirals [11,12]. The 
dynamics is smooth, but nonperiodic, bounded to the attractor 
and with sensitive dependence upon initial conditions. The 
topological process that leads to chaos, in this case, is linked to a 
stretching splitting and merging process [11,12], the final attractor 
has a fractal structure in three-dimensional Euclidean space, thus, 
the trajectories follow the fractal geometric structure.

When stochastic coupling is introduced, with additive noise, the 
displacement in the state vector leads to a stochastic walk on the 
attractor, as can be seen in figure 1 for b equal to 2 and 3. Thus, the 
attractor continues to lead the dominant dynamics as a geometric 
order parameter, however, the noise coupling leads to a nowhere 
differentiable trajectory on the attractor, contrasting with the smooth 
differentiable curves that are present in the deterministic case. 

While these results are associated with stochastic chaos with a 
coupling of a low-dimensional nonlinear deterministic system 
to an additive noise source, we will be dealing here with high-
dimensional nonlinear dynamics in networked systems, in this way, 
the deterministic component is high-dimensional and the main 
equations need to be reviewed for this context, namely, it implies 
the transition to field equations.

As reviewed in the previous section, such systems have been object 
of research in the context of coupled deterministic and stochastic 
maps [1-5], with CMLs being one of the major examples [1]. As 
reviewed in the introduction, these maps actually deal with scalar 
fields in networks updated in accordance with a nonlinear rule that 
depends upon the neighbourhood coupling.

In the present work, we go beyond the scalar field model and expand 
it to deal with a vector field on the network, which means that the 
field’s computational dynamics at each node can be described by 
a vector.

In this way, given the node set  , we deal with 
an undirected graph described by an adjacency matrix A , where 
A

nm
=1  if there is an arc connecting the nodes n and m and 0 

otherwise. The network vector field dynamics is formally addressed 
by a mapping:

……………………... (21)

In the above equation,  corresponds to the time coordinate, thus, 
at each node n and time t, X maps to a d dimensional real vector:

( )
( )

( )

1

2

,
,

(n, t)

,d

n t
n t

X

n t

 
 
 =  
 
 
 



x

x

x ……………………... (22)

Now, the extension to a multidimensional stochastic process 
requires some care. In our applications, the basic process is given 
by the vector SDE working with d dimensional vectors:

( ),dX a t X dt bdW= + ……………………... (13)

Where  and the Wiener process W is an d-dimensional 

IID with a multivariate normal distribution with null vector mean, 
a rank d diagonal covariance matrix with diagonal equal to the 
numeric integration time step h and W(0) is the null vector. In this 
case, equations (10) to (12) lead to the vector numeric integration 
process addressed in [10]:

( ) ( ) 1 2
1 2k k

k kt t+

+
= +X X

……………………... (16)

With kS   being a d-dimensional vector with entries +1 or -1 each 
selected independently with probability 1/2, of course, since, in 
our case, b is a fixed scalar, the sum in equation (16) leads to the 
part dependent upon kS  becoming a null vector not really having 
impact on the numeric integration.

If b is equal to 0, the above equations lead to a Runge-Kutta 
method of integration of deterministic differential equations, by 
contrast if a is constant and b is fixed and different from 0, we get 
a basic Brownian motion numeric integration scheme with drift 
parameter a.

In Figure 1, we show the simulation where the equations for a 
correspond to the Lorenz system in the chaotic phase [11], in the 
figure, we show the Lorenz chaotic attractor taking b equal to 0 
(left), which provides for the deterministic dynamics and taking b 
equal to 2 (middle) and 3 (right) which correspond to stochastic 
Lorenz dynamics.  As can be seen from the example, when b 
is set to 0 we get the standard Lorenz chaotic attractor, as b 
is raised the attractor shape is still present however there is a 
random motion in the attractor which comes from the additive 
stochastic component.

Figure 1: Simulation of the stochastic SDE with a following the Lorenz 
equations, b=0 (left), 2 (middle) and 3 (right), X(0)=(3,1,1.5), 200,000 
steps of 0.001 size are plotted after the first 10,000 were dropped for 
transients σ=10, ρ=28, β=2.667.

Working from equation (13), the main equations, in vector format 
using column matrix representation, are given by:

( )
( )
( )
( )

t
X t t

t

 
 

=  
  
 

x

y

z ……………………... (17)

( )dX t
 
 =  
 
 

dx
dy
dz ……………………... (18)

1k+stochastic vector such that the increments W∆ (t ) W= (tk ) W− (t )  k are

1 k k kk = ha (t , X (t )) + b (∆W(t ) − ……………………... (14))khs

( , X (t ) +2 +k 1 k 1 kk = ha t k ) + b (∆W(t ) + ) ……………………... (15)khs
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equal to the number of components of the vectors (n, t)X . It turns 
out that, in the case of two or three-dimensional space, this visual 
representation for both (n, t)X  and ( )X t〈 〉  provides for a relevant visual 
picture on the geometry of the field’s dynamics, as we will see in the 
next section.

In the present work, f is given by the Lorenz equations, so that we 
get the following local field equation SDE, where we omitted the 
temporal index and used the node as subscript index to simplify 
the notation:

( )
( ) 1, 1,

2, 2,

3, 3,

1
n n n nn

n n n n n n

n n n n n n

b
σ ψ

ε ρ ε ψ
β ψ

      −          = − − − + +       
         −        

y x dwdx
dy dt x y xz dw
dz x y z dw ……………………... (28)

If b is equal to zero, we get a deterministic coupled field dynamics 
driven by the Lorenz equations with local mean field coupling. 
Otherwise, we get a stochastic coupled field dynamic. 

The stochastic coupling is the difference between a closed network 
and an open network. In the closed network, the field’s computation 
at each node has an open dynamic due to the local coupling to 
its neighbours but the full network is closed, by contrast, in the 
open network, the field is affected by environmental stochastic 
fluctuations that affect the field computation at each node.

As stated, due to the local mean field coupling the field’s 
computation at each node will be affected not only by the stochastic 
fluctuations at that node but also by the stochastic fluctuations of 
its nearest neighbours.

From a computational standpoint, we are dealing with networks 
with nonlinearly interacting nodes affected by external noise, 
which is a relevant point for current technological frameworks 
that include machine learning with networked models working 
on floating point data, with adaptive and possible coevolutionary 
contexts leading to coevolutionary stochastic dynamics.

A main issue that is raised in this context is the characterization of 
the collective dynamics depending on both the coupling parameter 
and the network size. One analysis that is relevant regards the 
characterization of the scaling of the network mean field vector as 
given in equation (27). 

Indeed, in complex systems, fractal and multifractal scaling is a 
common occurrence [12,13], the issue then of possible multifractal 
scaling associated with the network mean field value dynamics is a 
relevant analysis.

Given a signal u(t), multifractal  scaling can be expressed in terms  of 
the moments’ order relation for different lags  s [13]:

( ) ( ){ } ( ) ( )log ~ qH logE u t u t s q q s − −  ……………………... (29)

Thus, the dependence upon the order  is given by the product of the 
order by the generalized Hurst exponent H (q)  which can be a nonlinear 
function of the moment order. One way to estimate the function H (q) 
is through the application of Multifractal Detrended Fluctuation 
Analysis (MFDFA) with polynomial fitting, which is a robust method 
in the detection of monofractal versus multifractal scaling.

The method that we use is described in detail in [14], involving the 
estimation of a detrended fluctuation function Fq  which scales 
with the lag s as:

~ SH(q)
qF ……………………... (30)

Given the above definitions, the network field dynamical 
configuration matrix can be written as:

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

0, 1, 1,
0, 1, 1,

(t)

0, 1, 1,d d d

t t N t
t t N t

X

t t N t

 −
 

− =  
 
 − 





   



x x x

x x x

x x x ……………………... (23)

Each column of this matrix coincides with the field vector at a 
specific node, while each row corresponds to a component of the 
field vector along the full network. Now, using the adjacency matrix 
we can extract the local mean field vector for each node as:

( )
( )

( )

( )

( )

( )

1

1
0

1
1

2 2
01

0

1

0

,
,
, ,1(n, t)

,
,

N

nm
m
N

nm
mN

nmm

Nd

nm d
m

A m t
n t
n t A m t

A
n t

A m t

ψ

ψ
ψ

ψ

−

=

−

=−

=

−

=

 
 

   
   
   = =   
   
      

 
 

∑

∑
∑

∑




x

x

x
……………………... (24)

That is, we have the local mean field value for each component 
resulting from the weighted sum of connections of each node with 
its neighbours, with equal weights, the normalizing factor here 
is the degree of the node. Considering a local weighted average 
associated with the local mean field coupling, we get an extension 
to the continuous time context from the basic scheme used in 
coupled maps [1], thus, the main SDE is now a field equation of 
the form:

( )( ) ( )(n, t) a , , ,dX t X n t dt bdW n t= + ……………………... (25)

( )( ) ( ) ( )( ) ( ), , 1 , , ,a t X n t f t X n t n tε εψ= − + ……………………... (26)

The stochastic vector dW has a diagonal covariance matrix and 
is IID for each node, which means that there is no correlation 
between the additive noise source at each node and also for each 
vector component. That said, the deterministic part introduced 
by the drift vector as per field equation (26), by including local 
mean field coupling, will incorporate both the deterministic and 
stochastic fluctuations by way of the local mean field coupling, in 
this case, the drift field vector has a local mean field coupling that 
is akin to the CMLs’ local mean field coupling using a weighted 
average model, which introduces a diffusive pattern of coupling [1].

To address the resulting network field dynamics, it is useful to study 
both the dynamics at each node but also the network mean field 
vector, which is a d-dimensional vector:

( ) ( )
1

0

1 ,
N

n
X t X n t

N

−

=

〈 〉 = ∑
……………………... (27)

The approach based on the analysis of the global mean field 
dynamics has been employed in CMLs of one-dimensional 
nonlinear maps as a way to research these networks’ collective 
dynamics [1], in this context, the mean field value is a scalar, for 
a vector field, as per equation (27), that value is a vector with 
the same number of components as the field vector described in 
equation (22), therefore, using equation (27), we can implement 
a d-dimensional representation of the mean field dynamics in 
Euclidean space to study the mean collective dynamics.

Likewise, we can also represent in d-dimensional Euclidean space the 
dynamics of the vector field for each node. For up to three-dimensional 
vectors, this approach provides for a visual representation, in which we 
plot each column of the matrix in equation (23), which corresponds to 
each field vector value (n, t)X , in a Euclidean space with dimensionality 
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Figure 2: Simulation of three nodes’ ring network deterministic field 
dynamics for each node (top) and corresponding network mean field 
(bottom), b=0, σ=10, ρ=28, β=2.667 numerical integration step size 
0.01, 50,000 data points shown after the first 10,000 were dropped for 
transients, initial values selected at random for each node with uniform 
distribution in the interval [-40,40], with the coupling varying from 0.1 
to 0.3 in steps of 0.1.

As results from Figure 2’s simulation, we find that while the field 
dynamics at each node, for low coupling, follows the main Lorenz 
attractor, that is, the field dynamics at each node has the main 
Lorenz attractor shape as a geometric dynamical order parameter 
(figure 2, top), due to the low coupling, the field at each node 
is following different trajectories on the attractor, this leads to a 
complex network mean field dynamics (figure 2, bottom), which 
shows two spiraling regions linked to the two spirals of the Lorenz 
attractor, but there is a more complex dynamics at the center 
region. This is because the dynamics is not synchronized, due to 
the low local mean field coupling strength.

As the local mean field coupling strength is increased, the field 
dynamics still follows the Lorenz geometry, however, the at each 
node becomes progressively more synchronized with the rest of the 
network (Figure 3, top), in this way, the network mean field starts to 
progressively reflect the low dimensional attractor structure (Figure 
3, bottom).

Figure 3: Simulation of three nodes’ ring network deterministic field 
dynamics (top) and corresponding network mean field (bottom), b=0, 
σ=10, ρ=28, β=2.667, numerical integration step size 0.01, 50,000 data 
points shown after the first 10,000 were dropped for transients, for the 
same initial conditions than figure 2, with the coupling varying from 0.4 
to 0.7 in steps of 0.1.

For local mean field couplings from 0.5 until 0.6, we, therefore, find 
that the network (global) mean field reflects the three-dimensional 
Lorenz attractor, with the field dynamics showing a synchronized 
trajectory that follows the attractor structure, contrasting with the 
low coupling case shown in figure 2 bottom and figure 3 in the case 

This last function is estimated for each component of the network 
mean field vector, thus, for each component of the network mean 
field described in equation (27), we apply MFDFA in combination 
with spectral analysis to characterize the scaling in the network 
mean field vector components’ dynamics. We also analyse the 
distribution for the network mean field vector’s displacements 
in comparison with the multivariate Gaussian distribution, these 
displacements are given by:

( ) ( )
1

0

1 ,
N

n
d X t dX n t

N

−

=

〈 〉 = ∑
……………………... (31)

In practice the displacements are, actually, evaluated from the 
numerical simulation, so that the normality test is applied to the 
estimated displacements from the simulated trajectory, using a 
small simulation step, taking the variation of the mean field values 
as an approximation.

Multifractal processes can include a multifractal Gaussian processes 
and also non-Gaussian processes [13], while these processes can be 
directly simulated in a predesigned stochastic process definition, 
that is, top-down, an approach that is developed in Mandelbrot’s 
work [13], their occurrence in networked nonlinear dynamical 
systems may depend upon the interaction profile and system 
size, in this sense, the approximation to the Gaussian regime 
or deviations from that regime are the result of the complex 
nonlinear dynamics and both Gaussian and non-Gaussian 
dynamics can occur depending upon the network profile and 
field dynamics.

In this way, we research the profile of the multifractal process 
and also the distribution profile for different network sizes and 
local mean field coupling. While different network topologies are 
possible, we will be working with the one-dimensional lattice model 
with N nodes and ring topology, where each node is connected to 
itself and with the left and right node, with periodic conditions 
at the border, this connectivity structure thus follows the cellular 
automata scheme [6].

Having presented the main concepts and methods we now 
address the main results from the simulation of the resulting 
vector field.

RESULTS AND DISCUSSIONS

In all the simulations that follow we use the network topology 
addressed in the previous section with one specific point in the 
adjacency matrix we consider a self-link of each node, therefore, 
each node is connected to itself and to the left and right neighbors 
with periodic boundary conditions at the border, leading to 
the ring-like topology. Given this network structure, the most 
elementary network is the one with three nodes and periodic 
boundary conditions. In this case, each node is connected to the 
remaining two, forming a triangle.

Considering the deterministic dynamics first and the system’s 
equations formulated in the previous section, we show, in figure 2 
top, the plot of the three nodes’ dynamics in the three-dimensional 
Euclidean space spanned by each of the three components of the 
field’s vector. 

The plot shows the vector field dynamics without noise at each 
node with different colors, for local mean field couplings of 
0.1, 0.2 and 0.3, respectively, from left to right, the remaining 
parameters are the ones that lead to the usual Lorenz chaotic 
attractor [11,12].
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Figure 5: Same simulation as in Figure 4, but with added simulation 
(in black) of the deterministic dynamics obtained for the same initial 
conditions.

Figure 6: Field components’ x versus y axis projection of three nodes’ 
ring network mean field dynamics b=0.01, σ=10, ρ=28, β=2.667 
numerical integration step size 0.01, network coupling of 0.7, 50,000 
data points are shown after the first 10,000 were dropped for 
transients, initial values selected at random for each node with 
uniform distribution in the interval (-40,40).

The standard deviation, in this case, shows a nontrivial dynamics, 
that depends upon the network size, indeed, for the stochastic 
network with noise coupling equal to 0.01 and nearest neighbors’ 
coupling of 0.7 addressed above, we find that the network mean field 
and the local field dynamics at each node follow a strange attractor 
as an order parameter with strong synchronization, however, that 
synchronization is not static, that is, the field dynamics exhibits 
fluctuating dispersion, as we will see, this dispersion exhibits 
multifractal scaling.

Since there are fluctuations in the standard deviation, in Figure 
7, we calculate, for different simulations of the network with 
increasing number of nodes, the mean of the spatial standard 
deviation around the network mean field, shown in orange, the 
minimum of that standard deviation, shown in blue, and the 

of a local coupling of 0.4.

This is an example that fits well a pattern addressed in Haken’s 
synergetics [7-9], in the sense that the system’s collective dynamics 
tends to become synchronized with compression in the degrees 
of freedom, in this case, the full number of degrees of freedom, 
counted in terms of the number of dynamical variables, is nine, 
three vector components multiplied by three nodes, but the field 
dynamics is synchronized leading to a network mean field dynamics 
that follows the three-dimensional Lorenz chaotic attractor.

Further increasing the local mean field coupling from 0.6 to 
0.7 we find, however, that there is a bifurcation in the dynamics 
going from synchronized chaotic dynamics to a, also synchronized, 
periodic dynamics with the field dynamics following a closed curve 
in the geometric space spanned by the field vector components, as 
can be seen in figure 3, where the 0.7 local mean field coupling 
value leads to the same curve in both the field dynamics at each 
node and in the network mean field. In this way, we now have a 
periodic, rather than chaotic, order parameter characterizing the 
network field’s dynamics.

This periodic dynamics is unstable in regards to noise, that is, noise 
can lead it to a new fractal attractor, as shown in Figure 4. Indeed, 
with low noise, the closed periodic curve becomes the seed to a new 
fractal attractor that shares some similarities with Lorenz’ attractor 
but with a few slight differences, namely, a twistor-like shape 
appears at the center between the two spirals, as shown in Figure 4. 
The dynamics is still highly synchronized so that the same attractor 
shape appears in both the field dynamics at each node and in the 
network mean field, as can be seen in Figure 4.

Figure 4: Simulation of three nodes’ ring network stochastic field 
dynamics (left) and corresponding network mean field (right) b=0.01, 
σ=10, ρ=28, β=2.667 numerical integration step size 0.01, network 
coupling of 0.7, 100,000 data points are shown after the first 10,000 
were dropped for transients, initial values selected at random for each 
node with uniform distribution in the interval (-40,40).

The twistor-like shape is linked to the periodic structure in the 
noise-free dynamics, the noise, in this case, leads to the strange 
attractor forming from that seed structure, as can be seen in Figure 
5, which superimposes the attractor for the deterministic dynamics 
and the attractor for the corresponding stochastic dynamics.

To better visualize the difference with respect to the Lorenz attractor 
we show, in Figure 6, the projection for the x and y components.

The synchronization dynamics for the network can be evaluated 
from the dispersion around the network mean field, thus, we can 
calculate the network standard deviation around the network mean 
field over time, the higher the standard deviation, the lower the 
global network synchronization.
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nonstationary with respect to the standard deviation, which is an 
important finding since it shows that stochastic chaos in network 
fields, with strong coupling can still exhibit diversity in values, with 
fluctuating deviations from the network (global) mean field.

In Figure 9, we show the simulation of the network mean field 
values for each field component, as per equation (27), and the 
standard deviation around that mean field for a network of 100 
nodes, the dynamics seems turbulent both for the mean field and 
the standard deviation.

Figure 9: Mean field and standard deviation for 100 nodes network, 
100,000 steps simulation after the first 10,000 steps were removed for 
transients, and the remaining parameters the same as those in Figure 8.

Figure 10: Dynamics of the field for the 100 nodes for Figure 9 
simulation shown in three-dimensional euclidean space.

The field dynamics at each node still follows the dynamics of the 
overall Lorenz attractor geometry with its two spirals, as shown in 
Figure 10, which represents the dynamics of the vector field at each 
node in the three-dimensional space spanned by the three field 
components.

 Applying multifractal analysis methods to the network mean field 
dynamics from Figure 10’s simulation, we uncover the presence 
of multifractal scaling in both the mean field values and in the 
standard deviation around the mean field, for each field component. 
The generalized Hurst exponents are all situated above 2, with the 
highest exponents holding for the negative orders, and the lowest 
exponents holding for the positive orders, with a descending overall 
sigmoid curve-like shape holding for both the mean field and the 
standard deviation dynamics as shown in Figures 11 and 12, for a 
100 nodes’ network.

maximum of that standard deviation, shown in green, calculated 
from 100,000 simulation steps, with network sizes ranging from 3 
to 200.

Figure 7’s results show that, for a local mean field coupling of 0.7, 
noise coupling of 0.01 and low network sizes, the dispersion in 
the network field values is low, with the minimum, maximum and 
mean value of the standard deviation of the network field values 
around the global mean field being close to each other, indicating 
that, while the dispersion in the field values changes over time, the 
fluctuations in the standard deviation are low, as are the values of 
the standard deviation, which indicates a strong synchronization 
dynamics in each field component.

Figure 7: Mean (orange), minimum (blue) and maximum (green) of the 
network standard deviation for each field component around the mean 
field values for 100,000 simulation steps after the first 10,000 steps were 
dropped for transients, network sizes ranging from 3 to 200, in steps of 
1, b=0.01, σ=10, ρ=28, β=2.667 integration step size 0.01, network 
coupling of 0.7, initial values selected at random for each node with 
uniform distribution in the interval (-40,40).

Thus, in the case of strong coupling for low number of nodes, 
while the field dynamics exhibits strong synchronization it also 
exhibits a turbulent dynamic for each field component, with peaks 
in dispersion occurring around a strongly synchronized dynamics, 
as shown in Figure 8, for the 3 nodes network.

Figure 8: Network standard deviations for each field component with 
100,000 steps, for the three nodes’ network, after the first 10,000 steps 
were dropped for transients b=0.01, σ=10, ρ=28, β=2.667 integration 
step size 0.01, network coupling of 0.7, initial values selected at random 
for each node with uniform distribution in the interval (-40,40).

If the number of nodes is increased, however, we find that, even 
with local mean field coupling, the field exhibits a sharp rise in 
dispersion with the interval of variation for the standard deviation 
rising significantly, as can be seen in Figure 7, this occurs in a 
way that the maximum dispersion exhibits high values, with the 
minimum dispersion not increasing significantly with the increase 
in the number of nodes. In this region, the mean of the standard 
deviation starts to rise, until it converges to an almost flat line. 

The mean of the standard deviation around the mean field tends 
to stabilize with the increase in network size and the interval of 
variation for the maximum and minimum start to progressively 
decrease.

The fact that we have a non-null and, in some cases, even high 
interval of variation means that the spatial dispersion of the 
field components around the network mean field fluctuates, 
which means that there is no fixed spatial distribution, that is, 
the statistical distribution of the field values in the network is 
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Figure 14: Multifractal spectrum estimation for the network mean field 
components and same main parameters as in Figures 11 and 12, but 
with b equal to 0.01, and then from 0.25 to 3, increasing in steps of 
0.05, for a 100 nodes network (left) and a 3 nodes network (right).

For noise parameter b values of at least 1, we get a strong stochastic 
nonlinear dynamic with multifractal scaling for the network mean 
field. In the strong local mean field coupling regime, this scaling 
tends to occur with a power law decay in the power spectrum for 
the network (global) mean field’s vector components, therefore, 
besides the multifractal signatures we also have 1/f noise signatures 
in the “spatial” average dynamics, as shown in Figure 15 for a 100 
nodes network.

Figure 15: Power spectrum for the network mean field’s vector 
components (x, left, y middle and z right) in doubly logarithmic scale, 
for b ranging from 1 to 5 (top to bottom), calculated over 100,000 
steps, after the first 10,000 steps were dropped for transients, σ=10, 
ρ=28, β=2.667, integration step size 0.01, network coupling of 0.7, 
initial values selected at random for each node with uniform 
distribution in the interval (-40,40) and 100 nodes.

Figure 11: Multifractal spectrum estimation for the network mean field 
dynamics from Figure 10’s simulation for the x component (left), y 
component (middle) and z component (right), with 600 lags used and 
lags ranging from 1 to 2.5, moments order from -50 to 50, and  qn=200.

Figure 12: Multifractal spectrum estimation for the standard deviation 
around the network mean field values from Figure 11’s simulation for 
the x component (left), y component (middle) and z component (right), 
with 600 lags used and lags ranging from 1 to 2.5, moments order from 
-50 to 50, and qn=200.

The spectrum shape for the mean field, shown in Figure 11, holds for 
low noise levels, indeed, as the noise level is increased, there occurs 
a change in the spectrum shape, corresponding to a multifractal 
phase transition, with the spectrum leading to a decrease in the 
exponents and an inversion with the negative orders exhibiting the 
lower values and the positive orders exhibiting the higher values, as 
shown in Figure 13.

Figure 13: Multifractal spectrum estimation for the network mean 
field dynamics, with x component (left), y component (middle) and z 
component (right), and the same parameters as in Figures 11 and 12, 
but with b equal to 1.

The multifractal phase transition in the spectrum occurs for all the 
three field components, as shown in figure 14 (left) for 100 nodes 
network. However, the shape and changes in the spectrum depend 
upon the number of nodes in the network, as shown in figure 14 
(right) for 3 nodes.
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As shown in Table 2, for the weak local mean field coupling, 
deviations from the Gaussian distribution dominate, indeed, for 
b equal to 1, none of the network mean field displacement vector 
components have a Gaussian distribution with the p-value of the 
Jarque-Bera test being equal to 0, as the noise level is increased, the 
null hypothesis of the test is not rejected at a 5% and 1% levels 
for the x and y components, however, it is still rejected for the z 
component [15-18].

With strong local mean field coupling, Gaussian distribution also 
tend to dominate for low number of nodes and sufficiently high 
noise, as shown in table 3 and figure 18, for a local mean field 
coupling of 0.7.

Decreased local mean field coupling, on the other hand, can 
lead to a rejection of the Gaussian displacements for the network 
(global) mean field even with high noise, as shown in Table 4, 
which shows that for coupling of 0.1, only for the network mean 
field displacement vector x component does the displacement lead 
to the non-rejection of Gaussian distribution for sufficiently high 
noise, however, we still get multifractal spectra, as shown in Figure 19.

These results show that while multifractal scaling tends to occur 
in the network’s dynamics the nature of that multifractal scaling, 
the spectral signal properties of the network mean field and the 
statistical distribution of that mean field displacement vector 
depends upon different factors, which include the number of 
nodes, noise strength and local mean field coupling strength.

For a weak network coupling parameter of 0.1, while there is also 
a power law decay, the decay occurs first faster and then slower 
for the high frequency spectrum, as shown in figure 16, so that 
we do not get the large region of straight line decay in the high 
frequency spectrum as we get in the case with coupling parameter 
of 0.7, shown in Figure 15.

In the simulations from Figures 15 and 16, we find that the 
multifractal spectrum for the mean field is such that, for the network 
strong coupling of 0.7, the lower exponents occur for the negative 
orders and higher exponents occur for the positive orders, while 
for the weak coupling of 0.1 we get a reversed spectrum, with the 
higher exponents for the negative orders and the lower exponents 
for the positive orders as shown in Figure 17, this exemplifies well 
how, for different network couplings, multifractal phase transitions 
can occur.

Another difference between the mean field dynamics regards the 
statistical distribution for the mean field displacements. Indeed, 
in the strong coupling regime, for the coupling local mean field 
coupling parameter equal to 0.7, with high noise, the mean field 
displacements, approximated as explained in the previous section 
for the integration step size which in this case is 0.01, tend to follow 
a Gaussian distribution as shown in table 1, with the Jarque-Bera’s 
null hypothesis only rejected at 5% and 1% levels for the network 
mean field displacement vector z component for b equal to 1, and 
for the network mean field displacement vector y component for b 
equal to 3 (Table 1).

Figure 16: Power spectrum for the network mean field’s vector components (x, left, y, middle and z, right) in doubly logarithmic scale, for b 
ranging from 1 to 5 (top to bottom), calculated over 100,000 steps, after the first 10,000 steps were dropped for transients, σ=10, ρ=28, β=2.667, 
integration step size 0.01, network coupling of 0.1, initial values selected at random for each node with uniform distribution in the interval 
(-40,40) and 100 nodes.
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Figure 17: Multifractal spectra for Figure 15’s simulations (left) and Figure 16’s simulations (right) 600 lags used with the lags ranging from 1 to 2.5, 
moments order from -50 to 50, and qn=200.

Table 1: Jarque-Bera’s test for normality for the mean field displacement components for Figure 15’s simulations.

b x component y component z component

1 0.8719 0.3904 0.0058

2 0.8637 0.8143 0.0748

3 0.5453 0.0051 0.6655

4 0.7545 0.4516 0.8865

5 0.8661 0.8932 0.3644

Table 2: Jarque-Bera’s test for normality for the mean field displacement components for Figure 16’s simulations.

b x component y component z component

1 0 0 0

2 0.1838 0.6877 0

3 0.1969 0.2175 0

4 0.6306 0.1629 0

5 0.0798 0.1305 0

Table 3: Jarque-Bera’s test for normality for the mean field displacement components for 3 nodes network, local mean field coupling of 0.7 and the 
remaining parameters as those of Figure 15.

b x component y component z component

1 0 0 0

2 0.5626 0.2042 0.0026

3 0.1824 0.7362 0.4897

4 0.3825 0.3927 0.17

5 0.7049 0.6688 0.1913

6 0.9689 0.313 0.6054

7 0.5185 0.9263 0.9935

8 0.7135 0.0927 0.7607
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structure until, for large enough coupling, a transition to a periodic 
dynamics occurs, however, this dynamics is highly unstable with 
respect to noise, adding small noise level an attractor with a different 
shape is formed with the periodic dynamics’ geometry operating as 
the seed structure around which the attractor is formed.

We studied the network for different network sizes and coupling, 
uncovering turbulence in the synchronization dynamics, 
multifractal scaling in both the network mean field and in the 
standard deviation around that mean field, multifractal phase 
transitions, power law scaling in the power spectrum and also 
Gaussian and non-Gaussian distributions.

The occurrence of multifractal scaling, with local and mean 
field vector components following an attractor structure, is an 
important result when dealing with chaos in complex systems with 
noise, in this sense, the study of network vector field dynamics 
with equations that exhibit chaotic dynamics and their stochastic 
counterparts constitutes an important basis on which to research 
stochastic chaos in complex systems, especially given empirical 
findings of such dynamics in different systems when employing 
machine learning for attractor reconstruction.

The research into network scalar and vector fields characterized by 
stochastic nonlinear dynamics provides for a mathematical basis 
for the study of the synergetics of networks with complex, possibly 
stochastic chaotic dynamics, with implications for coevolutionary 
models of computation. Future research into the dynamics of 
network scalar and vector fields is needed, with implications 
for both the theory of hypercomputation in complex systems 
and the applied research to network dynamics, both natural and 
artificial.
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