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ABSTRACT
The inducers of cellular senescence as a determinant in organismal aging are complex and likely driven by a

combination of hormonal and metabolic factors. Lipids have recently been implicated as inducers of cellular

senescence in vitro and in vivo across human and animal models and more directly, the electrophilic products of lipid

peroxidation have been shown in a number of systems to initiate the senescence program. This review summarizes

recent research at the interface of lipid biology and senescence. The review will emphasize the types of electrophilic

lipids that induce senescence and how lipid scavengers are used to alleviate senescence burden and combat age-

related disease.
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INTRODUCTION
Senescence in whole organisms is characterized by a progressive 
loss of physiological function and integrity. Over time, cells suffer 
insults such as mitochondrial damage, double stranded DNA 
breaks, telomeric attrition and disruptions to proteostasis. 
Accrual of cellular damage over time can bring about several cell 
fates (e.g. apoptosis, necrosis, etc.), one of which is senescence. 
Cellular senescence is a cellular fate characterized by the 
confluence of processes including withdrawal from the cell cycle, 
cell enlargement, overexpression of cyclin-dependent kinase 
inhibitors (e.g., p16ink4a and p21Cip1), loss of nuclear envelope 
protein Lamin B1 and secretion of an array of inflammatory 
factors referred to as the SASP. Cellular senescence is thought to 
play a prominent role in the etiology of a growing list of diseases

associated with aging including cardiovascular disease,
neurodegenerative diseases and cancer [1].

Cellular senescence is often triggered by one or more forms of
cellular stress. Stressors can be endogenous factors such as
telomeric attrition or exogenous factors such as genotoxic
compounds or ionizing radiation [2]. Oxidative stress is such a
physiological stressor long associated with both senescence and
age-related pathologies [3]. In 1956, Denham Harmon outlined
the “Free Radical Theory of Aging,” wherein he proposed that
age-related degenerations can be “attributed basically to the
deleterious side attacks of free radicals on cell constituents” [4].
Lipids that make up the phospholipid bilayer can react with free
radicals to generate a diverse array of lipid electrophiles and such
lipids have been broadly implicated as senescence inducers [5].
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they are posited to mediate misfolding of the mitochondrial
membrane in senescent cells as well as immune cell recognition
of senescent and apoptotic cells [7].

Lipid peroxidation and 4-HNE have been studied in the context
of therapy-induced senescence [8]. Many topoisomerase
inhibitors used in anti-cancer chemotherapies, including
camptothecin and its derivatives, have been shown to induce
lipid peroxidation and subsequent accumulation of excess lipid-
derived electrophiles, including 4-HNE and 4-ONE. Through
alkylation of a critical cysteine residue in the active site of
topoisomerase I, 4-HNE can crosslink topoisomerase I and
DNA in a covalent complex leading to double-stranded DNA
breaks [9].

Recently, it’s been proposed that enhanced lipid peroxidation in
various age-related disease is a consequence of adverse
cardiolipin remodeling specifically by ALCAT1, an
acyltransferase that produces cardiolipin with highly
polyunsaturated conjugated acyl chains susceptible to lipid
peroxidation [10]. In contrast, tafazzin carries out a similar
acytransferase reaction but instead incorporates typically 18:2
acyl chains into cardiolipin that are more peroxidation resistant.
Genetic loss of tafazzin (Barth Syndrome) leads to cardiolipin
peroxidation and high amounts of 4-HNE [11]. A body of work
implicates ALCAT1’s role in an array of pathologies associated
with aging (Figure 1). In contrast, loss of function of ALCAT1,
either via pharmacological or genetic means, results in
amelioration of a number of age-related diseases including
obesity, type 2 diabetes, heart failure and diabetic
cardiomyopathy as well as a concomitant lowering of HNE
adduction [10].

The susceptibility of biological membranes to lipid peroxidation
is acknowledged as an important determinant of longevity
[12,13]. Famously long-lived species such as the naked mole rat
and the ocean quahog have been observed to possess
mitochondrial membranes that are especially resistant to lipid
peroxidation due to lower n-3 and n-6 polyunsaturated fatty acid
content [13,14]. In comparing strains of mice, others have
reported that lower n-3 PUFA content in the phospholipid
profiles of muscle and liver resulted in longer lifespans, an effect
that was attributed to reduced lipid peroxidation [12]. In
humans, centenarians have repeatedly been found to possess
lipidomes that are less susceptible to peroxidation than their
elderly counterparts, underscoring the significance of lipid
peroxidation in longevity [15].

Lipid-derived electrophiles induce cellular
senescence

Biogenic electrophiles have the ability to modify biomolecules
with nucleophilic moieties such as nucleic acids and proteins
(Figure 1). Lipid electrophiles will react with primary amines to
form Schiff bases; this involves the addition of an aldehyde to an
amine to make an imine. The predominant lipid elecrophile-
protein products are Michael adducts wherein nucleophilic
attack occurs on the beta carbon in the alpha/beta unsaturated
chain. Further rearrangement can result in stable imidazole and
hemi-acetal groups linking the peptide foundation to the akyl
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The connection between oxidative stress, cellular senescence and 
aging enjoys thorough coverage by literature reviews. This review 
uniquely examines biogenic electrophiles as senescence 
inducers, a less explored aspect distinct from oxidative stress, 
with implications for aging and therapeutic intervention. In this 
review, we will examine evidence relating to the association 
between lipid peroxidation and aging, electrophilic lipid 
peroxidation products as senescence inducers and scavenging of 
lipid peroxidation products as anti-aging therapies.

LITERATURE REVIEW

Lipid peroxidation potentiates cellular senescence
and correlates inversely with longevity

Lipid peroxidation occurs when radical oxygen species, produced 
in the course of normal metabolism, react with lipid species 
those that comprise the phospholipid membrane. Although this 
can physically occur anywhere in the cell, the high content of 
oxygen radicals in the mitochondrion makes this organelle a 
central node in lipid peroxidation of biological membranes [5]. 
Membrane lipids with acyl chains containing multiple double 
bonds (i.e., polyunsaturated fatty acids) are particularly 
susceptible to peroxidation due to the resonance stabilization of 
the resulting lipid radical. A major class of such compounds 
include α,β-unsaturated alkenals such as 4-HNE, 4-HHE, 
acrolein, crotonaldehyde and malondialdehyde. Another lipid 
class is dicarbonyls comprised of species such as 4-ONE, glyoxal 
and methylglyoxal (Figure 1). Due to the stochastic nature of 
radical reactions that mediate lipid peroxidation, the sum total 
of lipid-derived electrophiles are a heterogenous mixture of all 
these compounds [6].

Lipid peroxidation is recognized as a driver of cellular 
senescence, specifically for the manner in which peroxidation 
can remodel biological membranes [5]. As polyunsaturated fatty 
acids in the membrane are oxidized, the polarity they acquire 
cause them realign from the internal hydrophobic regions where 
they originate to the external aqueous side of the lipid bilayer. 
These protuberances have been termed “lipid whiskers” and
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Figure 1: Graphical schematic of lipid electrophile biogenesis 
following peroxidation of the mitochondrial membrane and 
downstream effects leading to cellular senescence.



phenotype associated with BLIS and the stochastic nature of 4-
HNE adduction.

Malondialdehyde: MDA is a dicarbonyl that tautomerizes to an 
enol. MDA is widely used as a biomarker of lipid peroxidation. 
Post-translational modification of proteins by MDA is thought 
to play a role the etiology of many age-related disease states [29]. 
However, to our knowledge, MDA has not been demonstrated 
to directly induce senescence in vitro and thus, molecular 
mechanisms tying MDA to cellular senescence remain an area 
for active investigation.

Glyoxal and methylgloxal: GO is a diketal byproduct of lipid 
peroxidation or the autoxidation of glucose. GO reacts with 
proteins to form AGEs, one of which is CML, a common 
biomarker used to index AGE biosynthesis. At concentrations 
ranging from hundreds of micromolar to millimolar, GO causes 
cellular senescence in human skin fibroblasts and bone-marrow 
derived, immortalized mesenchymal stem cells, as well as a 
concomitant increase in CML [30,31].

MGO, a related dicarbonyl produced in lipid peroxidation and 
glycolysis, induces senescence in murine adipose-derived stem 
cells. In cocultures with endothelial cells, stem cells made 
senescent with MGO were found to have hampered pro-
angiogenic signaling capacity [32].

Acrolein: Acrolein is the simplest unsaturated alkene and is may 
be generated endogenously as a byproduct of lipid peroxidation 
or introduced exogenously as an environmental toxicant 
commonly found in air pollution and cigarette smoke. Acrolein 
has been shown to induce cellular senescence and accelerated 
telomere shortening in two different lines of human lung 
fibroblasts [33,34].

Scavenging biogenic electrophiles attenuates
senescence

Abatement of carbonyl stress via direct sequestration or 
enhancement of biogenic electrophile disposal enzymes has been 
shown to effectively decrease senescence burden and ameliorate 
age-related disease.

TA293: Cytosolic hydroxyl radicals were found to generate 
oxidized phospholipids, which in turn, were determined to enact 
cellular senescence independent of TLR4 signaling and 
inflammatory response activation. In a mouse model of 
enhanced oxidative stress, administration of a small molecule 
hydroxyl radical scavenger (TA293) normalized levels of oxidized 
phospholipids and blunted expression of senescence markers SA-
β-galactosidase, p21 and p16 in lung and kidney [35].

Aminoguanidine: Aminoguanidine is a scavenger of dicarbonyls 
such as GO and MGO. In two different strains of rat, 
aminoguanidine was demonstrated to attenuate age-related 
declines in renal and cardiovascular function, presumably 
through prevention of AGE accumulation. In primary human 
vascular endothelial cells, glyoxal-induced senescence as 
measured by p21 expression and formation of CML was 
abrogated with coadministration of aminoguanidine [36].
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chain of the lipid electrophile [16]. Detection of reduced 4-HNE 
Michael adducts through the use of an antibody is frequently 
utilized to index biosynthesis of 4-HNE via Western blotting or 
ELISA [17]. Proteins that are alkylated by lipid electrophiles 
represent a major form of proteotoxicity and are targeted for 
degradation by the proteasomal apparatus [18]. Often, lipid 
alkylation will result in a loss in function for an adducted 
enzyme, as thiol and lysine groups in active sites tend to 
participate in chemistry critical for enzymatic catalysis. 
Accumulation of 4-HNE protein adducts have been observed in 
cellular senescence models in vitro as well as aging models in vivo 
in multiple tissue types [19,20].

Aside from amino acid side chains alkylation, 4-hydroxyalkenals 
can also form exocylic adducts with nucleic acids. 4-HNE can 
make Michael adducts directly with nucleosides to form a 
cyclized proprano-adduct. Alternatively, epoxidation of 4-HNE 
through prior autoxidation or interaction with other peroxides 
imparts the capacity to form etheno-adducts [21]. Since these 
etheno-adducts are removed through base excision repair and 
excreted from the cell, they are under investigation as potential 
biomarkers for DNA damage caused by 4-HNE and other 
biogenic aldehydes [22]. Multiplicity of reactive sites on some 
lipid electrophiles confers the ability to cross-link biomolecules 
(Figure 1). Aberrant protein aggregates, DNA crosslinks and 
protein-DNA complexes are all known features of several 
pathologies [23].

While oxygen radicals such as superoxide have biological half-
lives measured in micro or milliseconds, these biogenic 
electrophiles can exist in their free state for minutes to hours. 
Therefore, these compounds can, theoretically, exert effects far 
more distant from their site of genesis than radical oxygen 
species. Excess 4-HNE adduction has been observed in multiple 
models of senescence, including replicative and irradiative 
senescence, posing the possibility that lipid-derived electrophile 
generation is a feature of multiple modes of senescence [19,24]. 
Direct exposure to lipid-derived electrophiles themselves cause 
cells to senesce in vitro, as documented in a body of work 
summarized as follows.

4-Hydroxynonenal and 4-Oxo-2-Nonenal: The chemistry of 
medium chain lipid-derived enals, particularly 4-HNE, has been 
well characterized and 4-HNE is known to exert genotoxicity and 
proteotoxicity through induction of carbonyl stress, a shared 
feature of multiple degenerative pathologies. 4-HNE and 4-ONE 
have been shown to induce cellular senescence in a number of 
cell culture models. A recently published study using IMR90 
fibroblasts and murine adipose progenitor cells demonstrated 
the capacity of 4-HNE and 4-ONE to induce cellular senescence 
and provided detailed characterization of the accompanying 
senescence program, carbonyl stress, mitochondrial dysfunction 
and genotoxicity. The authors of this study termed this 
senescence program BLIS [25]. The observed incidence of BLIS 
spans multiple cells models and species, including human 
placental cells, human foreskin fibroblasts and bovine 
endothelial cells [26-28].

A comprehensive understanding of the molecular mechanism 
accounting for BLIS remains elusive due to the pleiotropic
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family of enzymes that metabolize biogenic aldehydes by
conjugating them to thiols in glutathione. In C elegans, ectopic
expression of murine glutathione-s-transferase A4 or
overexpression of glutathione-s-transferase 10 were associated
with a longer lifespan while gene silencing of glutathione-s-
transferase 10 was associated with a shorter one; an effect was
recapitulated in mice [46]. In a study of the transcriptomes
associated with 15 lifespan-lengthening interventions in mice,
the gene most frequently upregulated (in 9 interventions) was
GstA4 [47]. To our knowledge, biogenic electrophile disposal
function has never been studied with regards to human
longevity.

A significant obstacle to research in biogenic electrophiles as
endogenous senescence inducers is the complexity of the
molecular mechanisms underlying electrophile-induced
senescence. Indeed, multitude cell signaling mechanisms are
proposed to play a role in establishing the senescent phenotype.

Several interesting connections between senescence,
disturbances in redox signaling, mitochondrial dysfunction and
disruption of sirtuin signaling have been observed coincident
with BLIS, brought on by exposure to medium chain lipid
electrophiles such as 4-HNE and 4-ONE [25-28]. Mitochondrial
dysfunction, itself an effector of cellular senescence, is a well-
documented sequela of 4-HNE exposure [11]. One study found
that part of BLIS is mediated by upregulation of pro-oxidant
thioredoxin-interacting protein downstream of Peroxisome
Proliferator Activated Receptor γ activation [28]. 4-HNE is
known to possess the capacity to alkylate nuclear acetylase
sirtuin 1, an inhibitor of p53 signaling and senescence.
Interestingly, development of BLIS coincides with loss of SIRT1
and concurrent promotion of overall protein ubiquitination and
acetylation [26]. Mitochondrial dysfunction and proteasomal
degradation of acrolein-modified Werner’s syndrome protein, a
helicase involved in telomere maintenance and DNA repair,
mediate acrolein’s senogenic effects of acrolein [33].

The primary challenge of studying protein adducts of biogenic
electrophiles are their diversity; characterization of post-
translational modifications by lipid electrophiles are required for
their quantification in vivo. Moving forward, researchers in the
aging field can leverage increasingly complicated metabolomic,
proteomic and transcriptomic technologies to fully elucidate
complex molecular mechanisms basis biogenic electrophile-
induced senescence.

CONCLUSION
Through generation of extremely reactive lipid electrophiles,
lipid peroxidation can initiate a cascade of biomolecular and cell
signaling modifications that ultimately lead to cellular
senescence and potentiation of age-associated pathologies. Lipid
electrophiles represent a diverse set of endogenously-generated
senogenic compounds that accumulate with age. Scavenging
lipid electrophiles represents a potential therapeutic method for
alleviating age-related and degenerative disease. Further work
should be done to glean a more complete understanding of
molecular mechanisms underlying lipid electrophiles’ adverse
influence on physiological aging.
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Glyoxalase 1: GLO1 is a member of the glyoxalase enzyme 
system that detoxifies glyoxal by conjugation to glutathione. 
Aged rats that overexpressed GLO1 exhibited lower closed 
proteins in renal tissue compared to their wild-type 
counterparts, coincident with reduced senescence markers (p53, 
p21 and p16) as well as improved markers of kidney function. 
Experiments done in vitro in the same study demonstrated that 
overexpression of GLO1 attenuates markers of senescence 
induced through exposure to the genotoxic topoisomerase 
poison, etoposide [37]. These results suggest that excessive 
glyoxal generation could be a common feature of multiple 
models of cellular senescence.

Ethanol: Exposure of human aortic endothelial cells to ethanol 
partially rescued serially passaged cells from replicative 
senescence through induction of ALDH2. As ALDH2 is a major 
detoxification enzyme for biogenic electrophiles, an increase in 
ALDH2 activity would be expected to relieve carbonyl stress. 
Indeed, it was found that ALDH2 induction through moderate 
ethanol exposure resulted in lower 4-HNE adducts. Of note, it 
was found that ethanol promoted nuclear translocation of 
SIRT1 [38].

Carnosine: L-carnosine is a dipeptide of histidine and beta 
alanine that’s abundant in millimolar concentrations in tissues 
with high bioenergetic demand such as skeletal muscle and 
brain. It is an aldehyde scavenger that makes an irreversible 
adduct with 4-HNE and other biogenic aldehydes, effectively 
acting to sequester reactive electrophilic moieties. Tissue 
quantity of L-carnosine is regulated by carnosine synthase and 
carnosinase, which biosynthesize and degrade carnosine, 
respectively.

L-carnosine has been shown to have anti-senescence effects in 
vitro [39]. Concurrent treatment of fibroblasts undergoing BLIS 
with a stoichiometric excess of L-carnosine with continuous 4-
HNE exposure results in amelioration of the senescent 
phenotype as measured by SA-β-galactosidase activity and p21 
expression [25]. Culturing fibroblasts with L-carnosine reduces 
8-hydroxyguanine adducts upon starvation challenge, protects 
serially passaged cells from oxidative stress and telomeric 
shortening and rescues UV-exposed cells from DNA double 
stranded breaks and SIRT1 loss [40-43].

Studies in vivo evaluating degenerative disease have also seen 
benefits from carnosine. In mice fed a high fat and high sugar 
diet, L-carnosine administered in drinking water both improved 
metabolic parameters and reduced markers of senescence in 
adipose [25]. In a progeroid mouse model (SAMP8), treatment 
with L-carnosine rescued mitochondrial function and 
attenuated senescence-associated cognitive decline [44]. A 2023 
meta-analysis of nine clinical studies testing the efficacy of L-
carnosine against age-related disease concluded that L-carnosine 
demonstrated clear benefits in ameliorating type 2 diabetes and 
neurodegenerative disorders [45].

DISCUSSION
Capacity to metabolize lipid-derived electrophiles seems to play a 
significant role in age-related disease and longevity. A major 
constituent of the electrophile disposal apparatus is GSTs, a
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