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DESCRIPTION
Paediatric hydrocephalus, characterized by the accumulation of 
Cerebrospinal Fluid (CSF) within the brain's ventricles, is a 
complex neurological condition that requires timely and 
effective treatment to prevent potential complications. In the 
paediatric population, addressing hydrocephalus is particularly 
critical because the developing brain is more vulnerable to the 
detrimental effects of increased intracranial pressure. Various 
treatment modalities have been developed to manage paediatric 
hydrocephalus, with the most common approaches being shunt 
placement, Endoscopic Third Ventriculostomy (ETV), and 
minimally invasive techniques [1-3].

Paediatric neurosurgeons and paediatricians play a critical role in 
evaluating and selecting the most appropriate treatment strategy 
for  each  child  with hydrocephalus. The objective  is  to  provide 
effective CSF diversion or drainage while minimizing the risks 
and potential complications associated with the chosen 
approach.

Shunt placement

Shunt placement is the most established and widely used 
treatment for paediatric hydrocephalus. It involves the insertion 
of a surgically implanted device that diverts excess CSF from the 
brain's ventricles to another part of the body, typically the 
abdominal cavity, where it can be reabsorbed. Shunts can be 
classified into various types, including Ventriculoperitoneal (VP) 
shunts and Ventriculoatrial (VA) shunts [4-6].

Endoscopic third ventriculostomy

Endoscopic Third Ventriculostomy (ETV) is a surgical procedure  
that creates a new pathway for CSF to flow out of the brain's 
ventricles by making an opening in the floor of the third 
ventricle. This procedure is especially suitable for some 
paediatric patients with obstructive hydrocephalus, where the 
blockage occurs at the level of the aqueduct of  Sylvius.  ETV  can 

be highly effective in select cases of paediatric hydrocephalus, 
particularly those with aqueductal stenosis. It offers the 
advantage of avoiding shunt placement and its associated risks 
and complications. ETV can promote a more natural CSF 
circulation pattern, potentially reducing the risk of certain 
complications [7].

Minimally invasive techniques

Advancements in technology have led to the development of 
minimally invasive techniques for managing paediatric 
hydrocephalus. These approaches include endoscopic 
procedures, such as Choroid Plexus Coagulation (CPC), 
ventriculocystostomy, and endoscopic septostomy. Minimally 
invasive techniques are associated with shorter hospital stays and 
reduced surgical trauma compared to traditional open 
procedures. They may be suitable for certain paediatric patients, 
especially those with cystic lesions or isolated obstructive 
components contributing to hydrocephalus. These techniques 
can be performed using smaller incisions, potentially resulting in 
less scarring and reduced postoperative pain [8-10].

CONCLUSION
The treatment of paediatric hydrocephalus is a complex and 
evolving field. Shunt placement, ETV, and minimally invasive 
techniques each have their advantages and limitations in 
managing this condition. The choice of treatment modality 
depends on various factors, including the underlying cause of 
hydrocephalus, patient age, anatomical considerations, and the 
experience of the medical team. As technology and surgical 
techniques continue to advance, ongoing research and clinical 
experience will contribute to refining treatment strategies and 
improving outcomes for paediatric patients with hydrocephalus. 
Tailored approaches that consider individual patient needs and 
characteristics will remain paramount in achieving the best 
possible results and optimizing the quality of life for these young 
patients as they grow and develop.
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