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ABSTRACT

Smart Topological Data Analysis (STDA), previously employed to research the epidemiological dynamics associated 
with SARS-CoV-2, is applied to stock market sessions’ trading amplitudes for financial indexes and individual stocks, 
combining chaos theory, topological data analysis and machine learning. The methods employed uncover evidence 
of chaos-induced self-organized criticality in the daily trading amplitudes, used as a trading session’s volatility 
measure. The topological structure of the reconstructed attractors is researched upon, allowing us to characterize the 
dynamics of the underlying chaotic attractors and to link the main chaotic features to the markers of self-organized 
criticality, the implications of the research for finance, risk science and the complexity research are also addressed.

Keywords: Smart topological data analysis; Chaos theory; Financial volatility; Self-organized criticality; Chaos-
induced self-organized criticality; Risk science

INTRODUCTION

Risk science takes risk as its object of research producing theories, 
methodologies and methods to address risk in any context, with 
the development of machine learning and data science methods, 
risk science’s research tools and modeling are undergoing a 
fundamental change in both their methodological basis and in 
the types of solutions that risk science can offer different decision 
makers when dealing with risk. From data-driven probability 
profiling [1] to the prediction of target risk variables [2,3], machine 
learning and Artificial Intelligence (AI) solutions can provide with 
effective ways to research and manage risk in different contexts.

In [2,3], chaos theory, topological data analysis and adaptive AI, 
comprised of an adaptive artificial agent were combined to predict 
key epidemiological risk variables linked to COVID-19, showing 
an application of the new methods of risk science employing 
Smart Topological Data Analysis (STDA), combining chaos theory, 
machine learning and topological data analysis.

In the present work, we extend and apply these same methods 
to the analysis and prediction of volatility risk in financial 
markets. The volatility risk is a major point of interest for both 
the financial industry community and the academia involved in 
researching financial markets, indeed, volatility risk expresses the 
threat associated with financial prices’ fluctuations with higher 

volatility being linked to higher price fluctuation risk exposure 
with consequences for financial management.

The major problem with volatility risk is that financial volatility 
is not fixed but, instead, shows evidence of a complex nonlinear 
dynamics with strong turbulence markers [4-9], which has led to the 
complexity sciences and the, related, econophysics communities 
research interest on financial volatility dynamics [4-14]. Models 
leading to complex nonlinear dynamics that produce financial 
turbulence have included agent-based models, autoregressive and 
stochastic volatility models, quantum-based models and chaos 
theory-based models, including multi-asset artificial financial 
markets modeled with globally coupled chaotic maps [6-14]. These 
models show sufficient conditions for the emergence of financial 
market turbulence and have played a key role in the construction 
of economic and financial theory.

On the empirical side, the research on financial market dynamics 
has showed power law signatures that typically occur in Self-
Organized Criticality (SOC) dynamics [4-6,10,15,16] and chaotic 
markers [17-19], indicating the possibility of Chaos-Induced Self-
Organized Criticality (CISOC), evidence that is in particular 
consistent with Chen’s empirical results on color chaos in the 
markets [17]. In [10], it was shown that coupled nonlinear chaotic 
maps could lead to SOC in the financial dynamics, which adds to 
the hypothesis of chaos as one possible source of financial SOC.
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The work is organized as follows: in section 2, we present the 
main concepts and methods, in section 3, we present the main 
results, and in section 4, we provide the conclusions, discussing the 
implications of the present work for both finance and risk science.

MAIN CONCEPTS AND METHODS

Risk can be defined from its root in the Medieval Latin term 
resicum, which synthesized the concepts of periculum, with the 
meaning of peril, threat, and fortuna, with the meaning of fortune, 
luck, destiny and uncertainty, that is, one can speak of risk whenever 
one identifies threats, opportunities and there is an uncertainty in 
regards to the outcome, risk science, in turn, is concerned with 
fundamental and applied research on risk, with strong links to 
systems science and the complexity research [20], major lines of 
research that have an important bearing on risk science include the 
theory of SOC [10,15,16] and chaos [2,3,10,17-24].

The theory of SOC deals with the emergence of power law scaling 
in time and in event size in complex systems [10,15,16,24]. In the 
context of risk, which is a major line of applications of this theory, 
including examples such as earthquakes and financial turbulence 
[10,15,16,24], the occurrence of SOC in risk variables means that 
large events follow the same fractal order as the smaller events, which 
means that large catastrophes do not follow a separate dynamics 
from the system’s main dynamics, instead, they are produced by the 
system’s same dynamics that produces the smaller events.

Chaos theory, in turn, plays a major role in risk science, since it led 
to the distinction between the risk associated with external shocks 
that disrupt a system from without and the risk endogenously 
generated by the system’s own nonlinear dynamics [20].

Chaos, in deterministic nonlinear dynamical systems, corresponds to 
a family of dynamics that is characterized by bounded nonperiodicity 
with sensitive dependence upon initial conditions, characterized, 
in turn, by an exponential divergence of small deviations in initial 
conditions and random-looking spectral signatures upon signal 
analysis that are similar to those of a stochastic process, in this way, 
deterministic chaos can be characterized as a form of endogenous 
stochasticity in deterministic systems such that, even in the absence 
of noise, the dynamics will show random-like signatures and will 
have a fundamental unpredictability linked to the strength of 
the exponential divergence, measured by a positive maximum 
Lyapunov exponent [2,3,10,20-26].

While deterministic chaos characterizes closed systems with fixed 
dynamical equations, stochastic chaos is an open system’s dynamics 
that is characterized by a deterministic chaotic component and 
external noise terms that, in turn, can have different types of 
characteristics usually worked from within the theory of stochastic 
processes [2,3,10,22]. Stochastic chaos is a more complex type of 
stochastic process, since the deterministic component is chaotic 
and the feedback from the deterministic and noise components 
are processed in a complex nonlinear way by the system [2,3,10,22].

In nature, stochastic chaos is observable empirically in complex 
systems’ dynamics as the result of a self-organization that leads to 
an emergence of a noisy attractor, that is, even despite the noise 
(open system), the attractor’s dimensionality is stable and the 
markers of chaos, including positive Lyapunov exponents, can be 
identified [2,3,10,21,22].

In stochastic chaos, the strength of the noise is not sufficiently 
high to break the critical features of a chaotic attractor, namely, the 

In the present work, we build on these empirical studies, addressing, 
for an exchange-traded fund, two financial indexes and three 
companies’ stocks, the volatility of each trading session, measured 
by the trading session’s price amplitude, that is, the difference 
between the maximum and minimum price in the trading session, 
the prediction of this variable’s dynamics is critical for both 
financial trading and financial risk management.

Applying methods from chaos theory and STDA [2,3], we find, 
in the daily trading sessions’ amplitudes, for the different series, 
markers of SOC and of chaos, including, in this last case, low 
dimensional attractors, positive largest Lyapunov exponents and 
topological regularities in the reconstructed attractors that can be 
exploited by topological adaptive AI systems for prediction with 
high coefficients of determination and low error. 

We link the markers of SOC with the topological features of the 
attractor, with the evidence strongly supporting the hypothesis of 
CISOC. 

The series analyzed, in the present work, include the SPY, which 
is an Exchange Traded Fund (ETF) on the S&P 500, the Russell 
2000 and NASDAQ financial index series, which provide for the 
portfolio standpoint, and, for the company-level cases, we apply 
the methods to three aeronautical sector companies Lockheed 
Martin, Boeing and Airbus. The COVID-19 pandemic severely 
hit the aeronautical sector, however, our main findings show that 
all of the financial series exhibit evidence of a form of stochastic 
chaos characterized by low dimensional attractors, with positive 
largest Lyapunov exponents and a high level of predictability 
when employing an AI system equipped with topological adaptive 
learning, which learns to predict the target using the embedded 
phase points of the reconstructed attractor.

We analyze the dominant dimension in terms of permutation 
importance in the AI prediction and find that there is evidence 
of dynamical transitions between different dominant dimensions, 
transitions that follow Markov chain processes with near to 
maximum entropy equilibrium probabilities, extracted from the 
corresponding transition matrices, this evidence shows that the 
relation between the target signal and the reconstructed attractors 
does not decompose into a linear sum over the attractor’s degrees 
of freedom which comprise the different phase space dimensions, 
but, instead, the resulting nonlinear process should have nonlinear 
dependence upon some of the degrees of freedom, including the 
possibility of cross terms between different degrees of freedom such 
that the exploitable topological information associated with each 
dimension changes with time.

From an evolutionary computational standpoint, the emergent 
chaotic attractors’ exploitable topological signatures in signal 
prediction can be considered in terms of a computational symbolic 
dynamics with the symbol recorded at each step corresponding 
to the dimension with the maximum importance for the 
topological adaptive agent’s prediction of the target, the resulting 
computational dynamics is statistically characterized, as stated in 
the previous paragraph, by a Markov chain, with an equilibrium 
probability that is close to an equiprobable distribution over the 
different dimensions, which indicates that all dimensions are, in 
this case, relevant in predicting the target.

We also analyze the k-nearest neighbor graphs’ degree distribution 
and entropy measures, linking these last metrics to the major 
metrics associated with the reconstructed chaotic attractors and the 
markers of SOC.
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positive largest Lyapunov exponent, the dimensionality resulting 
from the finite number of degrees of freedom associated with the 
deterministic component, the invariance of the attractor and the 
fact that the dynamics still follows an attractor with topological 
signatures of chaos despite the noise, keeping the main topological 
structure of chaos which can be exploited by adaptive AI systems 
equipped with topological learning units [2,3,10].

A relevant topological feature of a chaotic attractor is the existence 
of a skeleton of unstable periodic orbits, since the attractor is 
confined to a region in phase space, the system’s dynamics will 
recurrently track down a neighborhood of a periodic orbit for a 
while, until the exponential divergence associated with the chaotic 
dynamics sets in and the dynamics diverges from the periodic 
neighborhood, approaching the neighborhood of another unstable 
periodic orbit, this leaves markers of order in the chaotic dynamics 
in the form of recurrences that will exist in the overall nonperiodic 
dynamics, recurrences can also be explained, in the case of strange 
chaotic attractors, by the stretching and folding dynamics that leads 
to the fractal structure of the attractor [24-26].

In this sense, a chaotic dynamics can be characterized by its 
nonperiodicity, the fact that it is bounded, the sensitive dependence 
upon initial conditions and the pattern of recurrences [2,3,26], 
which is a key factor, since it is where Smart Topological Data 
Analysis (STDA) can be applied, in an empirical setting, for both 
the characterization of the chaotic dynamics and the prediction 
process, even without knowing the equations of motion associated 
with the chaotic attractor, STDA is also especially effective when 
dealing with stochastic chaos [2,3].

The methods of STDA were applied in [2,3] to the analysis and 
prediction of epidemiological series associated with SARS-CoV-2, 
in which a noisy chaotic dynamics near the onset of chaos was 
uncovered.

Considering a risk variable that follows a uni-dimensional time 
series, the first step in the application of chaotic time series analysis, 
using STDA, involves the choice of the embedding parameters 
for attractor reconstruction. Indeed, in accordance with Takens’ 
embedding theorem [25], given a sample time series ( ), 0,1,..., 1x t t T= − , 
assuming that the series is generated from an attractor in a 
d-dimensional Euclidean phase space, the time series can be 
formally expressed as an observation function ( ) ( ( ))x t g p t= , where

( )p t is a point in the d-dimensional Euclidean phase space. If ( )p t is in 
an attractor, which is a dynamical invariant, then, the sequence ( )p t  
is a trajectory in the attractor, and ( )x t results from that trajectory 
[2,3,25,26]. In this case, ( )p t can either be a flow (continuous time 
process) or the result of a map (discrete time-process).

When neither the equations of motion that may describe ( )p t nor the 
observation function structure g are known, from Takens’ theorem, 
it follows that using an appropriate time delay and embedding 
dimension d, one can reconstruct an attractor’s orbit ( )p t using 
d-dimensional tuples built from the time series ( )x t , the method 
is based on using an appropriate time delay h and embedding 
dimension d in Euclidean space, the phase point is thus given by 
[2,3,25,26]:

( ) ( ( ( 1) ),..., ( 2 ), ( ), ( )).............................(1)p t x t d h x t h x t h x t= − − − −

From the reconstructed trajectory p(t), if the dynamics is in an 
attractor one can research the main attractor’s properties including 
recurrence structure, Lyapunov exponents and other topological 
features, employing topological data analysis, machine learning 

can also be applied here using topological features of the data for 
prediction, which is a key part of STDA, as shown in [2,3].

While different methods can be used for delay embedding, not 
all methods are generalizable, for instance, the use of false nearest 
neighbors for the dimension estimation only works if there is a 
stable attractor, when there are bifurcations with change of attractor 
stability, the dimensionality of the attractor can change, yet delay 
embedding can still be applied in prediction and bifurcation 
analysis, however, the false nearest neighbors method cannot be 
applied to the full series, as shown in [2].

An effective alternative method that provides good results even 
when bifurcations occur was proposed and used in [2] to deal with 
the bifurcation that occurred for the Oceania region in the number 
of new cases per million of COVID-19 confirmed infections and 
the new deaths per million from COVID-19, this same method was 
successfully applied to the analysis of the number of hospitalizations 
from COVID-19 in [3].

Given a set of alternative embedding dimensions, the method 
is based on choosing the embedding dimension that maximizes 
the predictability of the series using topological information, this 
involves employing an adaptive AI system that uses sliding window 
learning to predict the target series ( )x t  from an embedded point 

( 1)p t − , and thus is capable of relearning, adapting to recurrence 
patterns, this AI system is equipped with a topological learning 
unit, either using k-nearest neighbors or a radius learner [2,3], and 
in this way is able to use the topological features of the data and 
adapt to these features in predicting the target.

Deploying this AI for different embedding dimensions, one can 
select the dimension that leads to the best results in terms of 
maximizing the coefficient of determination (R2), in this way, we 
are choosing, from a set of embedding dimensions, the dimension 
that leads to the maximum exploitable topological information in 
predicting the target, thus, we know that we have a good embedding 
in terms of capturing the topological order present in system’s 
dynamics [2,3], and can, from that embedding, apply topological 
data analysis methods to better characterize the system’s dynamics, 
the resulting embedded trajectory can, therefore, be used to analyze 
the corresponding dynamics. This adaptive topological AI-based 
method is effective both in dealing with bifurcations associated 
with changes in attractor stability, as shown in [2], as well as in 
cases of noisy attractors [2,3].

In the present article, the target risk variable is the daily trading 
amplitude, which, for a risky asset with price ( )S t can be built from 
the daily trading session’s maximum ( )maxS t and minimum ( )minS t prices, 
the target series is thus the daily volatility measured by the trading 
session’s amplitude: 

( ) ( ) ( ).............................................(2)max minv t S t S t= −

Now, given the time series ( ), 0,1,..., 1v t t T= − . As a signal analysis method, 
we first apply rescaled range (R/S) analysis to characterize the 
memory pattern of the series estimating the Hurst exponent [6,24]. 
The Hurst exponent provides for a numeric characterization of the 
memory pattern of a time series. In the case of white noise, the 
exponent is equal to -0.5, while, for Brownian noise, it is equal to 
0.5, a stronger persistent process is a black noise process which is 
characterized by a Hurst exponent greater than 0.5, this type of 
persistence often occurs in risk dynamics like natural disasters [24], 
it was also identified in the COVID-19’s epidemiological data, 
from spectral analysis [2,3].
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The estimation of the Hurst exponent involves dividing a time 
series into non-overlapping intervals of length s, and, then, for 
each subseries of length s estimating the respective range and 
the standard deviation, calculating the mean of the quotients of 
the calculated ranges by the respective standard deviations, this 
calculation is repeated for different sizes s and then the Hurst 
exponent is extracted by fitting a straight line for the log-log plot of 
the calculated means and sizes, the log-log straight line is evidence 
of a power law scaling in the temporal dependence of the data [24].

A major characteristic of financial volatility is long memory with 
slow decaying autocorrelation functions, which means that we are 
not dealing with white noise processes, a point that also excludes 
white chaos as an underlying process, that is, chaos with a white 
noise spectrum. While white chaos has a white noise spectrum, 
chaos with a power law scaling in the rescaled range analysis is more 
complex, it can range from differentiable flows to chaotic maps 
that show turbulence markers in generated series that are close to 
power-law noises and Chaos-Induced Self-Organized Criticality 
(CISOC) [2,3,10,17,27].

As previously stated, SOC is characteristic of a wide range of risk 
dynamics, there are two main features of SOC. One feature is 
temporal scaling associated with long- memory processes. In the 
case of different risk problems, such as those related to natural 
disasters and other risk variables these often show a Hurst exponent 
greater than 0.5, which is characteristic of persistent noises (black 
noises) [2,3,24]. The second feature of SOC is scale invariance in 
the probability distribution, a feature that also occurs in different 
risk variables including earthquakes [15,16,24]. Chaos, as stated, 
is one possible source of these features [2,3,10,17,26,27], in [10] a 
financial model based on coupled chaotic maps was already capable 
of generating both of these features, constituting an example of 
CISOC.

To identify a possible presence of SOC in the daily financial 
amplitudes we apply not only the R/S analysis to estimate the 
Hurst exponent for each series, but we also perform a histogram 
analysis, following [15,16], and plot the histogram in a log-log 
scale, fitting a linear regression line, if a linear scaling is present, 
this indicates a level of scale invariance in the size of the market 
volatility events, that is, a fractal law associated with the event size 
distribution [10,15,16].

After analyzing the markers of SOC, we apply the delay embedding 
method for attractor reconstruction, in order to evaluate the 
hypothesis of CISOC. The first step is the choice of the embedding 
lag. There is no unique general method for choosing the embedding 
lag, the first zero crossing of the autocorrelation function is a 
possible method, however, in the case of color chaos, that is, chaos 
that does not have a white noise spectrum and that shows long 
memory with power law decaying autocorrelations, which occurs 
for persistent processes, and more strongly so in chaotic dynamics 
with strong persistence, that is, chaos leading to signals with Hurst 
exponents higher than 0.5, we find that the first zero crossing of 
the autocorrelation function can sometimes lead too long lags for 
embedding, since the autocorrelation function is slow decaying due 
to the persistent signal [2,3].

The possibility of using the first zero crossing of the partial 
autocorrelation function provides, in these cases, for a better 
solution than the first zero crossing of the autocorrelation function. 
The other possibility would be the use of the mutual information 
function, as introduced in [28], however, and again, in series with 

strong persistence, this method may also lead to an embedding that 
produces a squeezing of the attractor around a diagonal in phase 
space, this is the case for instance in the COVID-19 epidemiological 
data worked in [2] which had black noise spectra, after initial tests 
with the mutual information, the squeezing effect led us to work 
with the quarantine period instead of the mutual information 
which led to better results.

In the present work, we also identified Hurst exponents greater 
than 0.5, in this case, we found good results from using the first 
zero crossing of the partial autocorrelation function to select the 
lag. The partial autocorrelation also decays, in our analyzed series, 
with a power law scaling, which is another indicator of SOC, but 
does not lead to too long lags for embedding, since the first zero 
crossing occurs sooner than that of the autocorrelation function.

Now, for the dimension estimation, we work, as previously 
stated, with a similar method to the one used in [2] to deal with 
a bifurcation and in [3] for the US and Canada’s hospitalizations 
from COVID-19, in which a machine learning algorithm, using 
topological adaptive learning, was used to identify the embedding 
dimension, from a range of alternative dimensions, for which 
the best performance in target prediction could be obtained, in 
this way, from a range of alternative dimensions one would select 
the dimension for which the maximum exploitable topological 
information could be extracted by an adaptive topological learner 
[2,3]. 

In this method, one uses a nearest neighbors’ machine learning 
algorithm that exploits topological information, either a radius 
learner or a k-nearest neighbors’ learner, in the present work, we 
will be using the k-nearest neighbors’ algorithm, which will support 
the subsequent topological data analyses.

The method involves deploying an adaptive AI system that uses 
the topological regularities in the embedded trajectory to predict 
the target series, using a sliding window of size w for relearning, in 
order to perform the single period prediction for the next period’s 
trading amplitude ( 1)v t + , that is, the agent forms the following 
conditional expectation:

[ ( 1) | ( ), , ] ( ( ), , , )............................(3)E v t p t w k f p t w k t+ =

where we denoted by [ ( 1) | ( ), , ]E v t p t w k+  the prediction for ( 1)v t +

conditional on the phase point ( )p t , on the window learning size w
and on the number of nearest neighbors k. The AI is trained using 
the feature set of embedded points { ( 1),..., ( 1)}p t w p t− − − and target 
variable values{ ( ),..., (t)}v t w v− . In this way, the AI learns to predict the 
next value of the target using the previous value of the embedded 
phase point, which means that the prediction function on the 
right of equation (3) may change with time t. The relearning allows 
the AI to adapt to attractor epochs making the method especially 
robust in the case of turbulent and noisy series, which is effective 
when dealing with open systems and stochastic chaos [2,3].

Following [2,3], given a set of dimensions 0 1, ,..., Nd d d  we identify 
which dimension leads to the best prediction performance of 
the target series, using the R2 score as a performance metric for 
selecting the dimension, this dimension corresponds to the 
embedding dimension for which the adaptive topological learner is 
able to extract the most information from the topological structure 
of the embedded trajectory in order to predict the target series [3], 
which means that, from the set of alternative embeddings, we use 
an embedding where the most topological order is captured, this 
embedding can then be used to apply topological data analysis and 
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importance of each feature in the training data, scored by the R2 
score, the permutation importance is a machine learning method 
that can be generally applied allowing one to calculate each 
feature’s importance [30]. In this case, each feature corresponds to 
each phase space dimension, thus, for each training set of the best 
performing adaptive topological learner, in each sliding window 
(re)learning instance, we calculate the effect on R2 from permuting 
each dimension, the AI system’s reliance on each dimension for 
prediction will be determined in terms of the way in which its 
prediction is affected by changing the order of the dimensions.

If a specific dimension is more important than the others in the 
prediction of the target, then, it is a dominant dimension being 
used by the AI in the prediction of the target. Thus, for instance, if 
a dynamics is characterized by an autoregressive linear combination 
of the embedding tuple, with no nonlinear dependences, then, with 
each relearning, the order of importance of the dimensions will be 
fixed, and the dimensions’ importance will not change significantly. 
Also, even if we do not have an autoregressive linear combination 
associated with the embedding process, a given dimension may be 
stably more impactful than the others, in which case, the dominant 
dimension will also be dynamically stable.

By contrast, chaotic systems with multiple degrees of freedom 
may be characterized by nonlinear functions of the degrees of 
freedom, including possibly cross-products of the different degrees 
of freedom which means that the importance of each phase space 
dimension in the system’s dynamics for the prediction of the target 
is expected to change with time, depending on the trajectory in the 
attractor. This means that the sliding window relearning process 
will lead to changes in the dominant dimension, which in turn 
provides for the basis of a symbolic computational analysis directed 
at the dominant dimension. In this case, we apply the following 
method:

• Step 1: We extract the dominant dimension for each relearning 
step of the topological learner obtaining a time series given 
by the symbolic sequence of dominant dimensions, using the 
permutation importance ordering of the dimensions;

• Step 2: We divide the symbolic sequence in two halves (two 
subsamples) and calculate the transition matrix for each 
subsample and, also, for the full sample;

• Step 3: We extract the stationary Markov equilibrium 
distribution from the full sample transition matrix and each 
subsample’s transition matrices;

• Step 4: We apply the chi-square test in order to test whether 
each subsample’s equilibrium distribution is equal to the full 
sample’s equilibrium distribution.

If, at the end of step 4, the null hypothesis of the chi-square test is 
not rejected, then, we have evidence favorable to the stationarity of 
the equilibrium distribution extracted from the transition matrix, 
in which case, we can analyze the equilibrium distribution for 
the transition between dominant dimensions, which allows us to 
identify the dynamical computational pattern associated with the 
dominant dimension (symbolic) dynamics in target prediction for 
the adaptive topological learner.

When the chi-square test’s null hypothesis is not rejected and the 
equilibrium distribution has a high probability associated with a 
specific dimension, then, this is evidence that there is a specific 
dominant degree of freedom, and, in that case, we need to consider 

nonlinear dynamical analysis methods in order to characterize the 
attractor.

The R2 score also provides for an indicator of the degree to which 
the topological features of the attractor allow for the prediction of 
the target series’ next value, providing, also, with an approximation 
to the level of noise present in the data.

For the number of k nearest neighbors, the value should be selected 
as not too low, nor too high, in the present work we set it to 40% 
of the learning window size. The learning window also needs to be 
considered, in this case, too long windows can lead to a smoothing 
of the predictions, too short windows are insufficient for learning. 
In the present case, we use a 10-day window for learning, which 
corresponds 10 trading days, equivalent to two trading weeks.

After having obtained an embedding using the above method, 
we employ Eckmann et al. method for the Lyapunov spectrum 
estimation [2,29]. This method allows one to estimate the spectrum 
of Lyapunov exponents for a multidimensional attractor. The 
method allows one to set a matrix dimension and study the 
behavior of the exponents for increasing embedding dimensions 
d with d not smaller than Md , we set the matrix dimension to the 
embedding dimension extracted from the adaptive topological 
AI method described above. The presence of positive exponents 
is evidence favorable to chaos, namely, if we find a convergence 
of the Lyapunov spectrum as the embedding dimension increases 
and some of the exponents converge to positive values, then, this is 
evidence favorable to a chaotic attractor.

We expect that, dealing with dissipative chaos, the sum of the 
exponents will be negative, so we will have positive and negative 
exponents. Besides the Lyapunov exponents, we also address the 
topological structure of the attractor applying a k-nearest neighbors’ 
analysis based on three parts.

The first part of the k-nearest neighbors’ topological analysis is the 
predictability analysis, where, using the previously obtained delay 
embedding parameters, we evaluate the performance of the adaptive 
agent for different values of k in a range of values. This allows us 
to calibrate the value of k, within the range, that leads to the best 
prediction performance, this is the number of neighbors that 
maximize the exploitable information by an adaptive topological 
learner.

We begin by calculating, for different values of k, the R2 from 
the adaptive learner, using the previously obtained embedding 
dimension and lag, and use this to analyze the pattern of 
predictability for a range of values of k-nearest neighbors, this, 
in turn, provides us not only with an analysis for the topological 
predictability of the system’s dynamics for different number of 
nearest neighbors but also provides us with a way to calibrate the 
subsequent topological analyses which will require a selection of 
the k parameter for further analyses of the attractor’s topological 
profile [2,3].

After selecting the value of k that leads to the highest predictability, 
we begin by reporting statistics that characterize the degree of 
predictability of the target series from the attractor, namely, the 
correlation coefficient of the adaptive AI’s predictions and the 
target values, the Root Mean Squared Error (RMSE) divided by 
the series’ amplitude, which provides for a relative estimate of the 
size of the RMSE given the data amplitude, and the R2 itself [2,3].

Secondly, for each of the best values of k, we obtain the permutation 



6

Gonçalves CP

Int J Swarm Evol Comput, Vol. 12 Iss. 05 No: 1000331

the possibility of an autoregressive model with that dimension as a 
regressor and then add progressively the remaining dimensions and 
evaluate the statistics for the autoregressive process performance in 
prediction.

When the chi-square test’s null hypothesis is rejected or the 
equilibrium distribution does not have a dimension standing out 
with a probability higher than the others, then, we find that there 
is a variability in the change of dominant dimension in prediction 
which is evidence favorable to a dynamics that features nonlinear 
dependences including possible cross-products of degrees of 
freedom, which may occur for a multidimensional chaotic attractor.

In order to better characterize the Markov equilibrium distribution, 
when the chi-square test’s null hypothesis is not rejected, we calculate 
the Shannon entropy of the distribution and compare it to the 
maximum entropy, the closer the distribution is to the maximum 
entropy, the greater the evidence of dimension importance change 
corresponding to nonlinearities or cross-products of degrees of 
freedom that may change, in terms of evolutionary computational 
dynamics, the importance of each dimension in the prediction of 
the target.

These analyses are directed at the predictability of the target 
series and the dimensions’ importance, which not only provides 
for an evaluation of the possible performance of an adaptive AI 
system that can be deployed for risk management but also allows 
one to characterize the type of dynamics and the degree to which 
the reconstructed attractor contains information relevant for the 
prediction of the target, including the relevance of each degree of 
freedom corresponding to a different phase space dimension.

The third part of the k-nearest neighbors’ topological analysis is the 
k-nearest neighbors’ graph analysis. This is an undirected graph for 
which the vertices correspond to each phase point and the edges 
connect each phase point to its k-nearest neighbors. This graph 
provides for another representation of the topological structure of 
an attractor’s recurrences. In this case, we use the value of k that 
leads to the highest coefficient of determination, obtained in the 
first part of the k-nearest neighbors’ topological analysis, in this 
way, we can analyze the complexity of the recurrence evaluated 
in terms of the number of k neighbors for the best performing 
topological learner in the prediction of the target.

To characterize the complexity of the k-nearest neighbors’ graph we 
analyze the degree distribution and calculate two entropy measures, 
namely, the relative degree entropy [2], which ranges from 0 to 1, 
where 0 corresponds to the case where each node has the same 
degree and 1 to the case where we get an equiprobable distribution 
over the degree values for a randomly selected degree [2].

A second entropy measure that we calculate is the Kolmogorov-
Sinai (K-S) entropy for the graph [2], which provides for relevant 
information on the recurrence structure. Indeed, considering 
the adjacency matrix, we obtain a topological binary transition 
matrix from each phase point to each of its k-nearest neighbors. 
Considering a random walker that follows the nearest neighbor 
adjacency, the K-S entropy is the dynamical entropy of the Markov 
process on the k-nearest neighbors’ graph, in this sense, it provides 
for a measure of the rate at which information is generated by the 
graph of k-nearest neighbors’ adjacencies, providing for a measure of 
the topological complexity of the attractor’s recurrences addressed 
in terms of the graph’s adjacency matrix [2]. We then perform an 
analysis of the relation between the two entropy measures and 

Figure 1: Daily trading sessions’ amplitudes for the SPY (left), the 
NASDAQ (middle), and the Russell 2000 (right).

previously calculated major statistics such as the R2 (predictability 
performance), largest Lyapunov exponents and Hurst exponents, as 
well as fractal scaling in the signal distribution.

RESULTS AND DISCUSSION

The dataset was obtained from Yahoo Finance and is comprised 
of the daily series of trading sessions’ amplitudes calculated using 
equation (1), for the Exchange Traded Fund (ETF) SPY, which is 
an ETF that is aimed to track the financial index S&P 500, for 
the NASDAQ, which covers the technological sector and for 
the Russell 2000 index, which covers small caps. The individual 
companies for which the daily trading session amplitudes were 
calculated are Lockheed Martin, Boeing and Airbus, below are 
the periods covered for each series along with the stock market 
identifier (“tick”) inside brackets:

• SPY (SPY)-from 29-01-1993 to 08-05-2023, size: 7623 daily 
observations.

• NASDAQ (^IXIC)-from 12-12-1984 to 08-05-2023, size 9678 
daily observations.

• Russell 2000 (^RUT)-from 10-09-1987 to 08-05-2023, size 
8986 daily observations.

• Lockheed Martin (LMT)-from 03-01-1977 to 08-05-2023, 
11687 daily observations.

• Boeing (BA)-from 02-01-1962 to 08-05-2023, 15443 daily 
observations.

• Airbus (AIR.PA)-from 03-09-2001 to 08-05-2023, 5567 daily 
observations.

In Figure 1, we show the time series charts for the daily trading 
sessions’ amplitudes obtained for the SPY (left), the NASDAQ 
(middle) and the Russell 2000 (right), in Figure 2, we show the time 
series charts for the daily trading sessions’ amplitudes obtained for 
Lockheed Martin (left), Boeing (middle) and Airbus (right). The 
markers of turbulence, including large jumps, volatility buildups 
and clustering, can be seen in each of the series, which reinforces 
the evidence of turbulence in financial volatility both at the single 
company level and at the level of the ETF and the two stock market 
indexes.

Figure 2: Daily trading sessions’ amplitudes for Lockheed Martin (left), 
Boeing (middle) and Airbus (right).
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As shown in Table 1, all series exhibit evidence of long range 
dependence, with Hurst exponents all higher than 0.75, with the 
strongest persistence found for the SPY, Lockheed Martin and 
Boeing, all with Hurst exponents above 0.85, these are followed 
by the Russell 2000 and NASDAQ indexes, which have Hurst 
exponents lower than 0.85 but higher than 0.83, finally, Airbus 
shows the lowest signal persistence, with a Hurst exponent of 
0.7512. In all cases, the long-range dependence is consistent with 
SOC.

Table 1: Hurst exponents estimated from R/S analysis and first lag with a 
zero crossing of the partial autocorrelation function.

 Hurst exponent Lag

SPY 0.8564 15

NASDAQ 0.831 15

Russell 2000 0.8392 19

Lockheed Martin 0.8522 17

Boeing 0.8503 17

Airbus 0.7512 14

In terms of embedding lag selection, the Russell 2000 has the 
longest period for the zero crossing of the partial autocorrelation 

function, in this case, 19 days, followed by the Lockheed Martin 
and Boeing series which have the first zero crossing at lag 17, next 
comes the SPY and the NASDAQ, which have the first zero crossing 
at lag 15 and, finally, comes the Airbus series, with the lowest first 
zero crossing of the partial autocorrelation function, which occurs 
at lag 14.

While the Hurst exponent indicates very slow decaying 
autocorrelations, if we consider the partial autocorrelations’ 
decay we not only get long lags for the first zero crossing but also 
a power law decay in the partial autocorrelations, with slopes 
ranging between -1.5 and -1.3, (-1.293 for the SPY, -1.2376 for the 
NASDAQ, -1.3539 for the Russell 2000, -1.2663 for Lockheed 
Martin, -1.2231 for Boeing and -1.5136 for Airbus) as shown in 
Figure 3, which reinforces the strong persistence of the process 
consistent with SOC. This evidence means that market volatility 
will tend to cluster for a long time, which is typical of a turbulent 
dynamics with periods of lower volatility clustering together and 
then periods of high volatility also clustering together.

The power law decay in temporal dependence is, as stated, indicative 
of SOC. A second marker of SOC is found from the analysis of the 
histogram for each series, as shown in Table 2 and Figure 4. We 
find that each histogram has a convergence to power law decay.

Figure 3: Partial autocorrelations decay with lag until first zero crossing, plotted in log-log scale and with fitted line.

Table 2: Estimated slopes from Figure 4, along with regression R2 and p-values associated with each slope.

 Slope R2 p-value

SPY -3.0683 0.9572 0

Nasdaq -2.9142 0.9286 0

Russel 2000 -3.2618 0.943 0

Lockheed Martin -3.1816 0.9435 0

Boeing -2.9665 0.9567 0

Airbus -3.2171 0.9264 0
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In Table 3, we report the dimension with the best performance 
of the k-nearest neighbors’ adaptive learner, measured by the 
coefficient of determination.

Table 3: Optimal embedding dimensions and corresponding adaptive 
agent’s R2, selected from a set of dimensions from 2 to 15, for an adaptive 
artificial agent with 10 trading days sliding learning window and a k-nearest 
neighbors’ learning unit, setting k to 4 and using a Euclidean metric.

Dimension R2

SPY 5 58.77%

NASDAQ 8 72.68%

Russell 2000 6 67.19%

Lockheed Martin 2 71.57%

Boeing 8 73.15%

Airbus 2 57.51%

We find, in each case, an overall high level of topological 
predictability of the series with good performance by the adaptive 
agent, the best prediction performance is obtained for an eight-
dimensional embedding in the case of the NASDAQ and Boeing 
with an R2 of 72.68% and 73.15%, respectively.

In the case of Lockheed Martin and Airbus, the optimal embedding 
dimension is 2, with an R2 71.57% and 57.51%, respectively. For 
the Russell 2000, the optimal embedding is six-dimensional, 
with an R2 of 67.19%, for the SPY the optimal embedding is five-
dimensional with an R2 of 58.77%.

The resulting optimal dimensions vary considerably, indicating 
that different financial series can have different attractor 
dimensionalities, but they are all low dimensions. Now, using these 
embedding dimensions we estimated the Lyapunov spectrum for 
each series, as shown in Table 4 and Figure 5.

As can be seen in Figure 5, there is a convergence for all series, 
in Table 4, we show the estimated spectrum, the largest exponent 
is always positive, which, along with the high predictability results 
obtained from the embedding, indicating a strong deterministic 
signal but with some noise, is evidence favorable to a stochastic 
chaotic dynamics associated with each attractor.

There are two features that allow us to characterize the distribution, 
first, in the convergence to the power law, the lower values have a 
lower frequency than expected from the power law which means that 
there are laminar periods in the daily trading sessions’ amplitudes’ 
dynamics, however, these periods have a lower probability than 
they would have under the power law scaling. The second feature, 
is the power law itself, after the fifth class in the histogram, the 
dynamics follows the power law scaling with high R2 values for the 
fitted regression, all above 90%.

The regression was estimated on the power law decaying region, 
which is the dominant region of the distribution. This region 
indicates that the turbulence has a fractal scaling in its distribution, 
with the fractal dimensions equal to the symmetric of the slope 
estimated in Table 2 and Figure 4, which means that there is a 
statistical scale invariance associated with the frequencies of events, 
with the same process responsible for the large events (large jumps) 
being responsible for the lower jumps, apart from the lower laminar 
periods before the convergence to the power law.

A relevant point of the fractal scaling in the dominant power law 
region is that the fractal dimension, corresponding to the symmetric 
of the slope, is, in each case, close to 3 and statistically significant, 
the fact that the values are all close to each other for different series 
and lengths, lends a high consistency to the distribution structure.

These features, along with the long-range power law dependence 
both in the Hurst exponent and in the decay of the partial 
autocorrelations provides strong evidence of SOC in the financial 
series.

Now, the main point is the source of SOC, more specifically the 
possibility of it being induced by a chaotic process (CISOC), as 
discussed in the previous section. To investigate this possibility, we 
perform multiple delay embeddings setting the first zero crossing 
of the partial autocorrelation function and varying the embedding 
dimensions from 2 to 15. Then we employ an adaptive topological 
learner to predict the daily amplitude series using the reconstructed 
attractor, with a 10 trading day sliding learning window and a 
k-nearest neighbors’ learning unit, setting k to 4, which represents 
40% of the size of the training window.

Figure 4: Histograms class centers and relative frequencies using 50 bins for each series, plotted in log-log scale, with estimated regression line after 
the convergence.
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and in the statistical distribution, in this sense there is evidence 
favorable to CISOC.

Now, if we calculate the correlation between the Hurst exponent 
and the zero crossing lag, we obtain a positive intermediate 
correlation of around 0.5498, which means that the series that 
have a higher Hurst exponent also tend to have a later zero crossing 
of the partial autocorrelation function, however, other factors 
enter into play, in this case, the exponential divergence of nearby 
trajectories associated with largest positive Lyapunov exponents as 
we just saw, this is a characteristic of power law chaos, or color chaos 
[17], which characterizes CISOC [2,3,10,27]. In CISOC, the power 
law decay in correlations leads to a long-range dependence and, 
thus, to a stronger mirroring of neighboring cycles, which leaves a 
marker in the recurrence structure, on the other hand, the positive 
largest Lyapunov exponent, which tends to be low, characterizes an 
exponential divergence of nearby trajectories.

The correlation between the largest Lyapunov exponents and 
the Hurst exponents is, in this case, negative and approximately 
equal to -0.3103, which is a weak correlation. A stronger negative 
correlation is obtained between the largest Lyapunov exponent 
and the corresponding attractor dimensionality, in this case, the 
correlation is negative and, to a four decimal places’ approximation, 
equal to -0.8773.

Considering the fractal dimensions associated with the power 
law decay in the statistical distribution of trading amplitudes’ 
fluctuations, which are the symmetric of Table 2’s slopes, we find 
that there is a positive correlation of approximately 0.4638 between 

In the case of the attractors with dimensions higher than 2, we 
find that the largest Lyapunov exponents are close to each other 
in terms of value, however, there is a division between the SPY 
and the NASDAQ, both with a largest Lyapunov exponent slightly 
higher than 0.0014, and then we have Boeing and the Russell 2000 
with Lyapunov exponents close to 0.0011. In the case of the two-
dimensional attractors we get a convergence to a higher value of 
the largest Lyapunov exponent, in the case of Lockheed Martin to 
0.00401 and in the case of Airbus to 0.00297.

For the higher dimensional attractors, we find that the SPY and 
Russell 2000 both have two positive Lyapunov exponents with the 
remaining exponents being all negative. For the NASDAQ and 
Boeing we get three positive Lyapunov exponents, with the third 
having a value close to zero, 0.00016, in the case of NASDAQ, 
and 0.00002, in the case of Boeing. The sum of the Lyapunov 
spectra is negative for all attractors, however, in the case of the 
two-dimensional attractors it is close to zero, indeed, for Lockheed 
Martin the spectrum sum is around -0.00001 while for Airbus 
it is around -0.00073. The positive but low values of the largest 
Lyapunov exponents can be explained by the strong persistence 
and power law decay in correlations.

For all series, the high predictability with some noise, the Lyapunov 
spectrum convergence and positive Lyapunov exponents with a 
negative spectra sum constitute evidence consistent with a form 
of stochastic chaos with noise resilient low-dimensional attractors 
underlying the daily trading sessions’ amplitudes, which are 
characterized by power law scaling in the temporal correlations 

Figure 5: Lyapunov spectra estimation for each series.

Table 4: Estimated Lyapunov spectra for each series at the end of the convergence.

Lyapunov exponents SPY NASDAQ Russell 2000 Lockheed Martin Boeing Airbus
L1 0.00143 0.00145 0.00119 0.00401 0.00106 0.00297
L2 0.00024 0.00076 0.00038 -0.00401 0.00048 -0.0037

L3 -0.00114 0.00016 -0.00037 0.00002

L4 -0.00271 -0.00039 -0.00114 -0.0004

L5 -0.00677 -0.00093 -0.00231 -0.00097

L6 -0.00177 -0.00544 -0.00162

L7 -0.00297 -0.00265

L8 -0.00685 -0.00599
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Boeing 0.8611 3.12% 73.96%
Airbus 0.7716 4.20% 58.82%

As shown, in Table 6, in each case, we get a strong positive linear 
correlation between the AI’s predictions and the target series 
using the reconstructed attractor. For the NASDAQ, Russell 2000, 
Lockheed Martin and Boeing the correlation is higher than 0.8, 
for the SPY and Airbus the correlation is lower but near 0.8. This 
means that the AI’s predictions match well the daily trading sessions’ 
amplitudes’ fluctuations, so that it can be effectively employed in 
predicting these amplitudes, that is, there is exploitable topological 
information in the reconstructed attractor that allows the adaptive 
topological learner to predict the target series using the adaptive 
topological learner.

Considering, now, the RMSE divided by the data amplitude, we 
find, in all cases, that the RMSE is low when compared to the series 
amplitude, ranging from 3.12% to 5.72%. These results, along 
with the high R2 values show that there is a strong deterministic 
component in the system’s dynamics which is noise resilient, in 
this sense, we find that the reconstructed attractor’s topological 
structure can be effectively exploited by an adaptive artificial agent 
equipped with an adaptive k-nearest neighbors’ learning algorithm, 
further reinforcing the previous results on the presence of noise-
resilient chaotic attractors underlying the daily trading amplitudes’ 
dynamics.

Regarding the predictability of each financial series we find that the 
results depend on the indicator, indeed, while all financial series 
have high predictability indicators, if we order them in terms of 
predictability, we find that, using the relative error indicator which 
is the RMSE divided by the series’ amplitude, the series with the 
highest error per series’ amplitude is the SPY (5.72%), followed 
by the Russell 2000 (5.11%), Airbus (4.20%), NASDAQ (4.12%), 
Lockheed Martin (3.31%) and Boeing (3.12%).

On the other hand, if we use the R2 score, we find that the worst 
performance is obtained for Airbus (58.82%), followed by the SPY 
(60.34%), the Russell 2000 (68.53%), Lockheed Martin (73.06%), 
NASDAQ (73.63%) and, finally, Boeing (73.96%). Despite the 
differences in the orderings obtained for two indicators, we find that 
there is a pattern that leads to two blocks in terms of predictability, 
in one block we have the SPY, Russell 2000 and Airbus, for this 
block, while showing a high performance in predicting the target 
series, the AI has a lower performance than for the second block 
which is comprised of NASDAQ, Lockheed Martin, and Boeing.

We expected the two financial indexes (Russell 2000 and NASDAQ) 
along with the ETF (SPY) to be less predictable than the single 
companies’ shares, since the financial indexes and the ETF can 
be linked to financial portfolios, with the SPY being linked to the 
behavior of the S&P 500, while the single companies’ data would 
tend to have stronger patterns. However, this hypothesis does not 
seem to hold, indeed, while the SPY and the Russell 2000 can be 
grouped together, the Airbus is also grouped in the less predictable 
group, while the NASDAQ is grouped in the most predictable 
group, furthermore, the NASDAQ is the second most predictable 
series in terms of the R2, which is a strong evidence against the 
hypothesis that financial diversification would lead to a lower 
exploitable pattern in volatility risk.

The presence of high-jumps in volatility and turbulence in the 
financial indexes implies that there are global synchronized 
dynamics, which is another relevant point regarding financial 
diversification and the diversifiable risk, namely, there is no fixed 

the largest Lyapunov exponent for each series and that dimension.

In terms of the relation between these fractal dimensions and 
the underlying attractor dimensionality, we find a strong negative 
correlation of around -0.7267 between the attractor dimensionality 
and these fractal dimensions, which means that the higher the 
dimensionality of the attractor, the lower tends to be the fractal 
dimension associated with the statistical distribution’s power law 
decay. The correlation with the Hurst exponent and the attractor 
dimensionality is positive but weaker, approximately 0.4498.

These results effectively link the main chaotic metrics of the 
reconstructed attractors (largest Lyapunov exponent and the 
estimated attractor dimensionality) with the main SOC metrics.

Considering, now, the prediction performance, using the previously 
obtained embedding parameters, we find, as reported in Table 5, 
that the adaptive AI’s performance, measured in terms of the R2 
metric, increases with the number of k nearest neighbors, for the 
number k varying from 2 to 6. For all financial series, the best 
prediction performance is obtained for 6 nearest neighbors, except 
for Boeing, where the best prediction performance is obtained for 
5 nearest neighbors.

Table 5: R2 prediction score of the adaptive AI as a function of the number 
of k nearest neighbors used in prediction with k varying from 2 to 6, using 
a sliding learning window of 10 trading days.

 2 3 4 5 6
SPY 54.06% 57.11% 58.77% 59.60% 60.34%

NASDAQ 67.86% 70.70% 72.68% 73.06% 73.63%
Russell 2000 61.28% 65.16% 67.19% 67.97% 68.53%

Lockheed 
Martin

65.25% 69.60% 71.57% 72.68% 73.06%

Boeing 67.03% 70.57% 73.15% 73.95% 73.72%
Airbus 48.68% 54.20% 57.51% 58.15% 58.82%

As shown in Table 5, for the NASDAQ, Lockheed Martin and 
Boeing we get a prediction performance, for the best performer, 
that exceeds the 73% R2 score, followed by the Russell 2000, for 
which the adaptive topological learner gets a score of 68.53%, then 
comes the SPY with a score of 60.34% and finally Airbus with a 
score of 58.82%. In this way, the AI is capable of capturing more 
topological information with the increase in the number of nearest 
neighbors, reducing the prediction error. These results reinforce the 
argument that the underlying attractor has exploitable topological 
information for the prediction of the target series, reinforcing the 
hypothesis of noise-resilient chaos leading to both low dimension 
attractors and to noise-resilient topological patterns.

These results are reinforced by analyzing the other prediction 
metrics, using the number of neighbors that leads to the highest 
R2 (that is, 6 for all the series and 5 for Boeing), we show the other 
prediction metrics in Table 6, to provide for a more complete 
picture of the prediction performance of the adaptive AI, and to be 
better able to evaluate the degree to which the topological structure 
of the underlying attractor contains exploitable information to 
predict the target risk variable.

Table 6: Prediction performance of the adaptive AI in one step ahead 
prediction.

 Correlation RMSE/Amp R2

SPY 0.7816 5.72% 60.34%
NASDAQ 0.86 4.12% 73.63%

Russell 2000 0.8295 5.11% 68.53%
Lockheed Martin 0.8563 3.31% 73.06%
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overall diversification risk reduction, instead, the diversification 
risk reduction depends upon the market phase, in the turbulent 
phase, the diversification risk reduction is lower.

So far, our empirical findings show that there is a strong link 
between the underlying reconstructed attractor and the target 
series, also, since the target series exhibits evidence of SOC, we find 
strong evidence of a form of stochastic chaos inducing SOC in the 
financial volatility series, a point that was argued and researched in 
[10] in an artificial financial market model.

From a risk science standpoint, our findings so far constitute 
a major example of the phenomenon of turbulence with fractal 
signatures typical of SOC having origin in an underlying noisy 
chaotic process, with a noise resilient low dimensional attractor, 
this hypothesis will be further reinforced by the topological data 
analysis that we will perform.

Addressing, now, the dominant dimension analysis, calculating the 
dominant dimension used by the topological learner, and using 
the permutation importance to calculate the importance of each 
dimension in the adaptive AI’s predictions, we begin with the SPY, 
the NASDAQ and the Russell 2000.

In Table 7, following the approach explained in the previous 
section, we show the chi-square test’s p-values for the equilibrium 
probabilities extracted from the Markov transition matrices for each 
subsample when compared with the full sample. As can be seen 
from Table 7’s results, the null hypothesis is not rejected for either 
subsample in the case of the SPY and Russell 2000 and, in the case 
of the NASDAQ, the chi-square test is only statistically significant 
for a significance level of 10%, with the null hypothesis not being 
rejected for a 5%, 2.5% and 1% significance levels. Overall, the 
results indicate that there is a dynamical stability of the stationary 
probability, in this way, we can proceed with the analysis of each 
equilibrium distribution.

Table 7: Significance levels (p-values) of the chi-square test for dynamical 
stability, obtained from splitting the full sample in two halves, for the SPY, 
NASDAQ and Russell 2000.

First half subsample
p-value

Second half subsample
p-value

SPY 0.483 0.4968

NASDAQ 0.0941 0.0873

Russell 2000 0.4629 0.4628

In Table 8, we present the Markov equilibrium distributions, 
rounded to the fourth decimal place, for the three financial series 
in order of increasing embedding dimension, these probabilities 
are the equilibrium distributions extracted from the full sample 

transition matrices shown in Tables 9-11.

Table 8: Equilibrium distributions for the SPY, Russell 2000 and 
NASDAQ, extracted from the transition matrices shown in tables 9, 10 
and 11.

Dimension SPY Russell 2000 NASDAQ

d0 0.212 0.1767 0.1202

d1 0.1899 0.1705 0.1224

d2 0.2034 0.1633 0.1272

d3 0.2026 0.1687 0.1262

d4 0.192 0.165 0.1266

d5  0.1557 0.1238

d6   0.1335

d7   0.1202

Table 9: Transition matrix for the SPY, obtained from the full sample.

 d0 d1 d2 d3 d4

d0 0.4653 0.1443 0.128 0.1343 0.128

d1 0.1672 0.4035 0.1373 0.1505 0.1415

d2 0.1382 0.1402 0.4472 0.1447 0.1297

d3 0.1444 0.1314 0.1549 0.4379 0.1314

d4 0.1262 0.1434 0.1448 0.1428 0.4428

Table 10: Transition matrix for the Russell 2000, obtained from the full 
sample.

 d0 d1 d2 d3 d4 d5
d0 0.3983 0.1173 0.1192 0.1185 0.1268 0.1198
d1 0.1354 0.4102 0.1202 0.1202 0.107 0.107
d2 0.1455 0.1317 0.3759 0.1124 0.1221 0.1124
d3 0.1148 0.1242 0.1275 0.4192 0.1061 0.1081
d4 0.1249 0.1133 0.114 0.1215 0.4014 0.1249
d5 0.1252 0.1201 0.1288 0.1165 0.1302 0.3792

As can be seen from Table 8, in each case, the Markov equilibrium 
probabilities are distributed close to the equiprobable distribution, 
corresponding to the inverse of the embedding dimension, with 
a few dimensions having a value slightly above the equiprobable 
distribution values and others below, which explains why the 
Markov equilibrium probabilities’ Shannon entropy is only slightly 
lower than the maximum entropy distribution, indeed, for the 
SPY, the entropy is up to a four decimal places approximation 
2.3207 bits, while the maximum entropy is ln(5)/ln(2) which is 
approximately 2.3219 bits, for the Russell 2000, the entropy is 
approximately 2.5839 bits, while the maximum entropy is ln(6)/
ln(2) which is around 2.5850 bits, finally, for the NASDAQ, the 
entropy is approximately 2.9992 bits, while the maximum entropy 
is ln(8)/ln(2) which is equal to 3 bits.

Table 11: Transition matrix for the NASDAQ, obtained from the full sample.

 d0 d1 d2 d3 d4 d5 d6 d7

d0 0.3621 0.101 0.1044 0.1018 0.094 0.094 0.0661 0.0766

d1 0.1009 0.3598 0.094 0.0974 0.1 0.0761 0.0974 0.0744

d2 0.0987 0.0913 0.3676 0.0954 0.088 0.0913 0.0929 0.0748

d3 0.083 0.0896 0.0954 0.3784 0.0929 0.073 0.1062 0.0813

d4 0.0884 0.0876 0.0843 0.0843 0.3678 0.0983 0.0959 0.0934

d5 0.0861 0.0878 0.0827 0.081 0.1089 0.3722 0.1038 0.0776

d6 0.0745 0.0854 0.0893 0.0933 0.0752 0.1003 0.3793 0.1027

d7 0.0792 0.0827 0.0957 0.0748 0.0836 0.087 0.1062 0.3908
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Table 15: Transition matrix for Airbus.

 d0 d1

d0 0.6675 0.3325

d1 0.3686 0.6314

Table 16: Transition matrix for Boeing.

 d0 d1 d2 d3 d4 d5 d6 d7

d0 0.3637 0.0983 0.0983 0.0923 0.0901 0.0896 0.0945 0.0733

d1 0.1028 0.3724 0.1028 0.0924 0.0899 0.076 0.0859 0.078

d2 0.0851 0.1031 0.3691 0.0907 0.0851 0.101 0.0907 0.0753

d3 0.0884 0.0868 0.079 0.3671 0.0915 0.1097 0.0889 0.0884

d4 0.0774 0.0977 0.0897 0.0961 0.3529 0.0966 0.0993 0.0902

d5 0.0908 0.0858 0.0943 0.0853 0.0888 0.3696 0.0923 0.0933

d6 0.084 0.0866 0.0881 0.0871 0.0926 0.0876 0.383 0.0911

d7 0.0787 0.1094 0.088 0.0938 0.0938 0.1065 0.0926 0.337

Table 17: Degree entropy and K-S entropy for each of the KNN graphs.

 Degree entropy K-S entropy

SPY 0.1985 3.1545

NASDAQ 0.226 3.2756

Russell 2000 0.2067 3.1921

Lockheed Martin 0.1801 4.1859

Boeing 0.2007 3.0331

Airbus 0.1641 3.0555

Considering the Markov equilibrium probabilities (Table 13) 
extracted from the transition matrices (Tables 14-16), we find that, 
for Lockheed Martin and Airbus, the distribution extracted from 
the transition matrices for the dominant dimension in terms of 
permutation importance shows a similar profile with the first 
dimension having a probability slightly higher than 52% of having 
the highest permutation importance in prediction of the target 
series and the second dimension having a probability slightly 
higher than 47% of having the highest permutation importance in 
the prediction of the target series, therefore, in both cases, we have 
a lower but close to the maximum entropy Markov equilibrium 
distribution of 1 bit, with an entropy, up to four decimal places, 
of 0.9988 bits, in the case of Lockheed Martin, and 0.9981 bits, 
in the case of Airbus. In the case of Boeing, the entropy for the 
Markov equilibrium distribution is, up to a four decimal place 
approximation, equal to 2.9984 bits which is also close to the 
maximum entropy of 3.

In this way, we are again led to similar findings to those obtained 
for the ETF and the two financial indexes, namely, there is evidence 
of a Markov process transition between the dominant dimension in 
prediction importance for the adaptive topological learner.

The transition matrices for the two-dimensional attractors show a 
higher probability of the next dimension with highest importance 
being the current dimension with highest importance in prediction, 
so there is some persistence in the process. In the remaining cases, 
while the modal class, in the conditional probability distributions 
calculated in the transition matrices, is always the current class, 
there is a higher probability of a switch to one of the other 
dimensions as the most important in prediction in the next trading 
session rather than remaining with the same dimension.

The major implication of the Markov equilibrium distribution 
analysis is that there is no single dominant dimension in prediction, 
there is, instead, evidence of a Markov process transition between the 
dominant dimension in prediction importance for the topological 
learner. This evidence is contrary to a fixed linear autoregressive 
generator process for each trading session’s volatility, since such 
a process, upon delay embedding would imply that phase space 
dimensions would have fixed importance on the prediction of the 
target’s dynamics.

Considering, now, the companies’ data, for the chi-square test 
(Table 12), we find that the null hypothesis is not rejected for either 
subsample, in the case of Lockheed Martin and Boeing, and in the 
case of Airbus the test is statistically significant for a significance 
level of 10% and 5%, but not for a 2.5% and 1% significance. 
Again, there is evidence, in the case of Lockheed Martin and 
Boeing, of a dynamical stability of the stationary probability, in 
the case of Airbus there is some change in the sample, sufficient 
to reject the null hypothesis for a 10% and a 5% significance level, 
however, this change is insufficient to reject the null hypothesis for 
a 2.5% and 1% significance.

Table 12: Significance levels (p-values) of the chi-square test for dynamical 
stability obtained from splitting the full sample in two halves, for Lockheed 
Martin, Airbus and Boeing.

First half subsample
p-value

Second half subsample
p-value

Lockheed Martin 0.2972 0.3092

Airbus 0.0265 0.0278

Boeing 0.3508 0.3546

The equilibrium distribution for Airbus for the full sample is up 
to a four decimal places approximation equal to 0.5257 for the 
first dimension and 0.4743 for the second dimension, while for 
the left subsample these values are, respectively and also up to a 
four decimal places approximation, 0.5047 and 0.4953, and for the 
right subsample these values are, respectively, 0.5466 and 0.4534.

In Tables 13 to 16 we show, the equilibrium distributions extracted 
from the full sample transition matrices between the phase space 
dimensions (Table 13), the full sample transition matrix for 
Lockheed Martin (Table 14), the full sample transition matrix for 
Airbus (Table 15) and the full sample transition matrix for Boeing 
(Table 16).

Table 13: Equilibrium distributions for Lockheed Martin, Airbus and 
Boeing, extracted from the transition matrices shown in tables 14, 15 and 
16.

Dimension Lockheed Martin Airbus Boeing

d0 0.5208 0.5257 0.1203

d1 0.4792 0.4743 0.1315

d2   0.1267

d3   0.1257

d4   0.1223

d5   0.131

d6   0.1297

d7   0.1128

Table 14: Transition matrix for Lockheed Martin.

 d0 d1

d0 0.6772 0.3228

d1 0.3509 0.6491
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topological data analysis is fundamental for a better understanding 
of the dynamical patterns. In this case, the main topological 
analysis tool is, as addressed in the previous section, the k-Nearest 
Neighbors’ graph (KNN graph) and the graph entropy measures 
evaluated by the degree relative entropy and the Kolmogorov-Sinai 
(K-S) entropy as well as the graph’s degree distribution.

In this case, as can be seen from Figure 6, the reconstructed 
attractors’ KNN graphs show a complex neighborhood structure, 
considering the degree distribution, in Figure 7, we find an overall 
pattern that has a faster than power law decay, except for the case 
of Lockheed Martin, which shows a region of power law decay in 
the degree distribution. In this way, the topological structure of 
Lockheed Martin stands out over the other financial series’ KNN 
graphs, as a graph with a scale-free structure.

Considering the results in context, we find strong evidence that the 
daily trading amplitudes for both the portfolio reference series and 
the individual companies’ stocks are characterized by underlying 
chaotic attractors with strong topological signatures that can be 
exploited by an adaptive k-nearest neighbors’ topological learner, 
and such that there is a transition between dimensions in terms of 
prediction importance, with the sliding window adaptive learning 
process, which means that the topological information associated 
with specific phase space dimensions for the next period prediction 
changes with time, which is an evidence more favorable to a 
nonlinear complex dynamics than to a fixed linear autoregressive 
dynamics associated with the delay embedding.

Now, considering that the adaptive topological learner extracted 
information from the k-nearest neighbors, the k-nearest neighbors’ 

Figure 6: KNN graphs for each reconstructed attractor.

Figure 7: Degree distribution for each KNN graph.
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In Table 17, we show the degree entropy relative to the maximum 
entropy [2,3], thus, scaling between 0 and 1, and the K-S entropy 
of these graphs. The degree entropy is far from 1, showing a far 
from maximum degree entropy value for any of the reconstructed 
attractors’ KNN graphs, the correlation between the two entropies, 
for these graphs is negative, but weak in strength, with a value 
of -0.2095, we also find, in the degree entropy, a strong pattern 
related to the predictability, and to the Lyapunov exponents, Hurst 
exponents and attractor dimensions, as can be seen from Table 18.

Table 18: Correlations between table 17’s entropy values and the R2, 
largest Lyapunov exponents, Hurst exponents and dimensionality of the 
reconstructed attractors.

Correlations Degree entropy K-S entropy

R2 0.5361 0.4045

Hurst exponent 0.5732 0.3318

Largest Lyapunov exponent -0.7301 0.7599

Attractor dimension 0.8849 -0.4946

From Table 18’s results, we find that the degree entropy is 
positively correlated with the prediction performance and the 
Hurst exponents as well, which means that the attractors with 
higher values of the degree entropy tend to be associated with the 
daily trading amplitude series with higher Hurst exponents and 
tend to be more predictable by the topological learner. These also 
tend to be the attractors with the higher dimensionality, indeed, 
the degree entropy is positively and strongly related to the attractor 
dimension, with a correlation of 0.8849, in a four-decimal places 
approximation. The K-S entropy shows weaker correlations with 
these three metrics, but it is strongly correlated with the largest 
Lyapunov exponent, with a correlation of 0.7599.

Indeed, considering the largest Lyapunov exponents, we find 
the difference in profile between the two entropy measures: The 
degree entropy is negatively and strongly correlated with the largest 
Lyapunov exponents (correlation of -0.7301) while the K-S entropy 
is positively and strongly correlated with the largest Lyapunov 
exponents (correlation of 0.7599). That is, the higher the value of 
the degree entropy, the lower tends to be the value of the largest 
Lyapunov exponents, while the higher the value of the K-S entropy 
for the KNN graph, the higher tends to be the value of the largest 
Lyapunov exponent.

This means that the two entropies provide for a different k-nearest 
neighbors’ topological profile analysis and connection to the main 
metrics. In this case, the higher the value of the degree entropy 
the lower tends to be the value of the largest Lyapunov exponent, 
the greater tends to be the exploitable topological information, 
persistence of the target series and the attractor dimension.

On the other hand, the K-S, which provides for the rate at which 
information is generated by the KNN graph, is, in this case, 
positively correlated with the exponential rate at which information 
is generated by the chaotic dynamics associated in this case with the 
exponential divergence of small deviations in initial conditions.

Finally, the degree entropy is also strongly and negatively correlated 
to the power law (fractal) scaling found in the histogram analysis, 
taken as the symmetric of the estimated slope in Table 2, the 
estimated correlation, not shown in Table 18, is -0.6315 which 
means that the higher the entropy value the lower tends to be the 
fractal dimension of the series’ distribution. This correlation is 
positive but low, in the case of the K-S entropy, with a value of only 
0.2303. Therefore, again, the degree entropy values are the critical 

values in the relation to the main statistics.

Considering the full scope of the results, we find that there is a 
strong relation between the reconstructed attractors’ main features, 
including its topological features, and the target series’ dynamics, 
which reinforces the consistency of the findings in regards to 
CISOC underlying the dynamics of the daily financial amplitudes.

CONCLUSION

Smart Topological Data Analysis (STDA), combining chaos theory 
with topological data analysis and machine learning applied 
to the daily financial amplitudes of the SPY, NASDAQ, Russell 
2000, Lockheed Martin, Boeing and Airbus allowed us to identify 
emergent low-dimensional noisy chaotic attractors with positive 
largest Lyapunov exponents and a strong topological structure 
that can be exploited by an adaptive AI system using a k-nearest 
neighbors’ learning unit and sliding window relearning, uncovering 
a strong predictability of the target series.

The evidence is of a form of stochastic chaos with low dimensional 
attractors underlying the long-memory and fractal scaling in 
the signal’s distribution, typical of chaos-induced self-organized 
criticality.

The STDA allowed us to link major topological features of the 
reconstructed attractors to the time series’ main properties, namely 
the fractal scaling in time and in the frequencies’ distribution. 
These findings reinforce two major lines of research within the 
complexity approach to finance and economics, the first being the 
fractal-based research pioneered by Mandelbrot the second being 
the chaos theory-based research.

Our results reinforce, in particular, Chen’s research into the 
presence of color chaos in the markets, and our previous research 
into financial market turbulence modeling using globally coupled 
chaotic maps that also induced SOC.

By calculating the dominant phase space dimension, from the 
permutation importance for the feature space comprised of the 
reconstructed attractor for the prediction of the daily amplitudes, 
used by the adaptive AI system, we found a pattern by which the 
adaptive learner’s dominant dimension changed with time.

These changes were found to be contrary to a linear autoregressive 
process that would be expressed by a simple autoregressive 
weighted sum over each degree of freedom resulting from the 
delay embedding, which means that the evidence is favorable to 
nonlinearities or possible interactions between degrees of freedom 
in the system’s dynamics. For the transition matrices between the 
different dominant dimensions in prediction, we found dynamical 
stability of the estimated stationary Markov distributions held in 
all cases at a 2.5% and 1% significance levels. These distributions 
were also found to be close to the maximum entropy, which, in this 
case, is close to a equiprobable distribution over the different phase 
space dimensions.

To better understand the attractor’s topological features we used 
KNN graph analysis and found a connection between the degree 
entropy of the KNN graphs and the prediction performance, 
largest Lyapunov exponents, Hurst exponents and the power law 
scaling in the daily amplitudes’ distribution. We also found links 
between the attractors’ largest (positive) Lyapunov exponents, the 
Hurst exponents, the attractors’ dimensions and the power law 
scaling of the distribution. These results allowed us to link the main 
attractor’s topological features to the SOC signatures, reinforcing 



15

Gonçalves CP

Int J Swarm Evol Comput, Vol. 12 Iss. 05 No: 1000331

10. Gonçalves CP. Coupled Stochastic Chaos and Multifractal Turbulence 
in an Artificial Financial Market. Int J Swarm Evol Comput. 2022 
11(7): 1000261.  

11. Schredelseker K, Hauser F. Complexity and artificial markets. Springer 
Science & Business Media. 2008.   

12. Palmer RG, Arthur WB, Holland JH, LeBaron B. An artificial stock 
market. Artif Life Robot. 1999;3:27-31.  

13. Lux T, Marchesi M. Scaling and criticality in a stochastic multi-agent 
model of a financial market. Nature. 1999; 397(6719):498-500.   

14. Farmer JD. Market force, ecology and evolution. Ind Corp Change. 
2002;11(5):895-953.   

15. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation 
of 1/f noise. Phys Rev Lett. 1987;59(4):381-384.  

16. Bak P, Paczuski M. Complexity, contingency, and criticality. Proc Natl 
Acad Sci.1995;92(15):6680-6696.  

17. Chen P. A random walk or color chaos on the stock market? Time 
frequency analysis of S&P indexes. Stud Nonlinear Dyn Econom. 
1996;1(2):87-103.   

18. Abbaszadeh MR, Nooghabi MJ, Rounaghi MM. Using Lyapunov’s 
method for analysing of chaotic behaviour on financial time series 
data: a case study on Tehran stock exchange. Natl Account Rev. 
2020;2(3):297-308.   

19. Song X, Niu D, Zhang Y. The chaotic attractor analysis of djia based 
on manifold embedding and laplacian eigenmaps. Math Probl Eng. 
2016;8087178.   

20. Gonçalves CP. Contributions to the categorical foundations of risk 
mathematics. 2010. 

21. Kaneko K, Tsuda I. Complex systems: chaos and beyond: chaos and 
beyond: a constructive approach with applications in life sciences. 
Springer Science & Business Media. 2001.   

22. Frey M, Simiu E. Deterministic and Stochastic Chaos. Comp Stoch 
Mech.1993:195-216.   

23. Puu T. Iterated Maps. Nonlinear Economic Dynamics, Springer. 
1997:77-112.   

24. Schroeder M. Fractals, chaos, power laws: Minutes from an infinite 
paradise. Courier Corporation. 2009.  

25. Takens F. Detecting strange attractors in turbulence. In Dynamical 
systems and turbulence, Springer. 1980:366-381.  

26. Kaplan D, Glass L. Understanding nonlinear dynamics. Springer 
Science & Business Media. 1997.   

27. Handel PH, Chung AL. Noise in Physical Systems and 1/f Fluctuations. 
IOS Press. 1992:151-157.   

28. Fraser AM, Swinney HL. Independent coordinates for strange 
attractors from mutual information. Phys Rev A. 1986;33(2):1134.  

29. Eckmann JP, Kamphorst SO, Ruelle D, Ciliberto S. Liapunov exponents 
from time series. Phys Rev A Gen Phys. 1986;34(6):4971-49769.  

30. Breiman L. Random forests. Mach Learn. 2001;45:5-32.   

the hypothesis of CISOC, also providing for an empirical example 
of CISOC, with direct links between the markers of SOC and the 
underlying chaotic attractors, which, in itself, is a relevant point for 
the study of SOC in complex systems’ science and in risk science.

From a risk science standpoint, the STDA methods employed in the 
present work to uncover and study a system’s dynamics associated 
with key risk variables can also be employed to other risk processes, 
in this way, the present work extends some of our previous works 
in epidemiology and, as stated above, links two major core theories 
for risk science: the theory of self-organized criticality and chaos 
theory.

It is important to stress that a stronger pattern in trading amplitudes, 
for the SPY, the NASDAQ and the Russell 2000 financial indexes, 
means that market turbulence in trading session volatility exhibits 
synchronized dynamics that is not diversifiable, which means that 
financial diversification, while relevant in reducing exposure to 
single asset risk, can still be insufficient to reduce risk exposure, 
especially, if the investment is focused on sector-specific stocks.

This last point is a mixed finding, since, on the one hand, it raises 
relevant issues regarding financial diversification, on the other 
hand, our results also mean that one can exploit the emergent 
chaotic dynamics and use the topological information to predict 
the next session’s volatility using the reconstructed attractor, in this 
way, risk management solutions for portfolio risk analysis need to 
consider the integration of STDA, chaos theory and the theory 
of self-organized criticality in their technological methods. Further 
studies are needed, however, to uncover more about the patterns of 
chaos in the daily trading sessions’ financial amplitudes.
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