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ABSTRACT

Cancer persistent cells are rare and commonly undetectable, which survive by entering drug-tolerant persistent 
states under cancer therapy. These cells, composed of genetic and non-genetic persistent cells, acquire drug 
resistance adapting to the drug treatment environment through various mechanisms, including genetic evolution, 
epigenetic modification, transcriptional regulation, proteomics interaction, cell metabolism remodeling, and cell-
cell communication. Aside from the robust fundamental understanding of cancer persistent cells we have gained in 
the past decade, rapid development of single-cell multi-omics in recent years provides new insights to understand the 
persistence state from the perspective of multi-omics.
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INTRODUCTION

Over the past decade, many studies have done prospective research 
on cancer persistent cells [1]. Sharma et al., used the PC-9 lung 
adenocarcinoma cell line treated with erlotinib and chemotherapy 
to show that after nine days of drug exposure, a small fraction 
(0.3%-5%) of viable quiescent cells survive, which eventually 
acquired drug resistance and resumed proliferation in the presence 
of the drug [2]. They termed this subpopulation of slowly cycling 
quiescent cells as Drug-Tolerant Persistent Cells (DTPs). Following 
this, numerous papers have concentrated on the features of DTPs 
utilizing the PC-9 cell line models [3,4]. Subsequently, a few 
research used Patient-derived xenograft (PDX) mouse models to 
investigate the mechanism of DTP [5-8]. Because standard 2D cell 
culture made it impossible to generate and mimic DTP cell models, 
several researchers employed 3D cultivation of patient-derived 
cancer cell samples into organoids for pharmacological treatment 
to simulate DTP cell models. The key role of these persistent 
cells is currently still unknown. In 2016, researchers discovered 
cancer persistent cells can operate as remnant cancer cells and go 
undetected through numerous medication therapies by remaining 
dormant, and eventually, a few gain classical genetic resistances 
thus encouraging cancer recurrence [9].

These aforementioned studies are more focused on experimental 
aspect of cancer persistent cells. With the recent development 
of high-throughput sequencing technologies, multi-omics play 
a significant role in studying the gene expression, molecular 
characterization, and mechanisms of cancer persistent cells. To 
find the biological weaknesses of these persistent cells, Hangauer 

et al., use RNA sequencing (RNA-seq) to examine the differences 
in gene activity between untreated breast cancer cell lines and 
persistent cells (cells that survived nine days of treatment with the 
high-dose drug lapatinib). They discovered that cancer persistent 
cells have high gene activity in typical mesenchymal cells but 
low expression of certain genes that respond to oxidative stress. 
Meanwhile, they show that GPX4 dependence develops in cancer 
persistent cells, suggesting a potential therapeutic approach to 
prevent the development of acquired drug resistance [10]. In a 
high mesenchymal therapy-resistant cell state, their research has 
previously discovered that cancer cells need the lipid hydroperoxides 
GPX4 for surviving [11].

Furthermore, single-cell sequencing uses advanced Next-generation 
sequencing (NGS) technology to analyze the sequencing data 
from individual cells, enabling a better understanding of the 
function of a single cell in relation to its surroundings and a 
higher resolution of cellular distinctions in the microenvironment. 
Single-cell sequencing has emerged as a powerful set of methods 
for analyzing complicated populations and examining rare cells. 
The convergence of these technologies produced the first genome-
wide single-cell RNA [12] and DNA [13] sequencing (scRNA-seq 
and scDNA-seq) methods for mammalian cells. In recent literature, 
two articles examined the mechanism of cancer persistent cells 
using scRNA-seq technology. In Triple-Negative Breast Cancer 
(TNBC) 3D-culture models, Dhimolea et al., reported newly 
acquired transcriptional profile and gene signatures of cancer 
chemo-persistent residual cells produced from docetaxel persistent 
organoids. Watermelon, a high complexity expressed barcode 
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lentiviral library allowing simultaneous tracing of each cell’s clonal 
origin, proliferative and transcriptional states, was established by 
Aviv Regev and colleagues to examine this unusual, transiently 
resistant, proliferative persistent cell population. They demonstrated 
that cycling and non-cycling persistent cells develop from discrete 
cell lineages with distinct transcriptional and metabolic strategies 
[14]. Furthermore, using pooled CRISPR-Cas9 technology, Wood 
et al., identified a PRC2-NSD2/3-mediated MYC regulatory axis 
as a drug-induced AP pathway whose ability to confer resistance 
to bromodomain inhibition and sensitivity to BCL-2 inhibition 
templates an evolutionary trap in Acute Myeloid Leukemia (AML) 
cells treated with various chemotherapies [15].

Although for clinical implications, the role of cancer persistent cells 
needs to be efficiently validated in clinical setting, it is undeniable 
that we have learned a lot through the lens of single-cell omics, 
such as the origination, identification, definition, characteristics, 
and mechanisms of cancer persistent cells. This paper provides a 
systematic review on cancer persistent cells from the perspective of 
single-cell multi-omics by integrating existing literature and newly 
developed single-cell techniques and related analysis methods.

MULTI-OMICS OF CANCER PERSISTENT CELLS

Genetic persistent cells and non-genetic persistent cells

Although successful therapeutic targeting of cancer persistent 
cells has yet to be realized, tremendous progress in understanding 
the mechanisms of persistence has been made, giving promising 
preclinical outcomes. Therapeutic resistance is typically driven 
by non-genetic adaptation processes as well as genetic evolution 
(Figure 1). There are two main hypotheses for the generation of 
drug-tolerant persistent in drug treatment. Some cancer cells have 
persistent features that pre-exist in origin tumors. These cancer cells 
are not sensitive to target drugs that can selectively survive in drug 
treatment as genetic persistent cells. Meanwhile, some cancer cells 
acquire persistent mechanisms under continuous drug treatment 
by phenotypic transition. We called these cancer cells non-genetic 
persistent cells. 

As a result, some cancer cells can escape treatment by acquiring a 
reversible persistent cell state. Cancer persistent cells are composed 
of genetic and non-genetic persistent cells. These cells are the 
discrete and usually undetected cells that survive cancer drug 

treatment and constitute a major cause of treatment failure [16].

Intrinsic and external factors of cancer persistent cells’ 
emerging

A basic and important question is how and when cancer persistent 
cells are produced. The emerging reasons are associated with 
resistance. Resistance to cancer drug treatment can be categorized as 
primary (intrinsic) and secondary (acquired) types [17]. The primary 
resistance is the absence of an objective clinical response treatment, 
while the secondary resistance is tumor recurrence after clinical 
response. As a result of these considerations, the accumulating 
evidence of cancer persistent cells has two components: intrinsic 
and external factors.

Intrinsic factors of cancer persistent cells’ emerging

Cell state and cycle: Cellular senescence is a significant and long-
lasting form of growth cessation in cell state and cycle. Previous 
studies have shown that therapy-induced senescence in tumor cells 
is not a permanent cell fate [18,19]. Recently, Tareq et al., have 
proposed that cellular senescence is a mechanism by which tumor 
cells might avoid pharmacological treatment and persist in a latent 
state for an extended period [20]. As a result, cellular senescence 
is a significant intrinsic element in the process by which some 
cancer cells turned into cancer persistent cells. According to this 
theory, cancer persistent cells may have the ability to self-renewal 
and disease recurrence.

GENE EXPRESSION AND TRANSCRIPTIONAL 
FACTOR LEVEL

Changes in gene expression and transcriptional factors frequently 
influenced cell proliferation levels. Cancer persistent cells usually 
display a slow proliferative rate in surviving the anticancer 
treatment [21-23]. It is unclear if the slow proliferative rate is 
pre-existing or produced by the drug treatment. Several studies, 
however, indicate that proliferation in multiple malignancies was 
a result of epigenetic regulatory changes in gene expression and 
transcriptional factor levels. Sharma and colleagues discovered that 
KDM5A expression relates to the slow proliferation phenotype 
of EGFR-mutated cancer persistent cells in human Non-Small 
Cell Lung Cancer (NSCLC). KDM5A reduces the level of H3K4 
methylation and thus represses the expression of cell-cycle-related 
genes in these cells. Cancer cell persistence can also be induced 
by transcriptional feedback to membrane receptor expression. 
Taniguchi et al., discovered that overexpression of the kinase 
receptor AXL contributes to cancer cell persistence in human 
NSCLC cells treated with an EGFR inhibitor in vitro [24]. Liau 
et al., found that the KDM6A/B histone H3K27me3 demethylase 
which is increased by cancer persistent cells can be triggered in the 
Notch1 intracellular domain.

METABOLISM PATHWAY CHANGE

Previous research has found that changes in metabolism can 
influence the formation of cancer-resistant cells. The pathway is 
primarily concerned with mitochondrial respiration and oxidative 
energy balance. Most cancer persistent cells have one trait: they 
consume less glucose and move more toward mitochondrial 
oxidative respiration. In KRASG12D-mutated mouse Pancreatic 
Ductal Adenocarcinoma Cancer (PDAC), Viale and colleagues 
demonstrated that cancer persistent cells rely on mitochondrial 
oxidative phosphorylation and upregulate the mitochondrial 
biogenesis master regulator PGC1a and the mitochondrial marker 

Figure 1: The development of drug resistance in a cancer persistent 
cell. Note: ( ) Sensitive cells, ( ) Genetic persistent cells, ( ) Pre-
existin persistent cells, ( ) Persistent cells by treatment, ( ) Non-
genetic persistic persistent cells.
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Mechanisms of cancer persistent cells’ emergence

Although some specific mechanisms of drug resistance have been 
studied in advance, the true mechanism of cancer persistent 
cell emergence and evolution is less well understood in cancer 
therapy. Following is an outline of potential mechanisms of cancer 
persistent cells evading pharmacological treatment. There are two 
kinds of mechanisms at molecular and cellular levels.

Mechanisms revealed at molecular level

Non-genetic mutations: Cancer persistent cells can be 
characterized under drug treatment for EGFR-mutant NSCLS. 
They found indications of non-mutational medication resistance 
in the survival of persistent cancer cells. Hata et al., found that 
acquired resistance produced by the EGFR gatekeeper mutation 
can emerge by the selection of pre-existing EGFR-positive clones or 
genetic evolution of initially EGFR-negative drug-tolerant cells [40]. 
Through clinical research and sophisticated cancer models, Marine 
et al., established that non-genetic pathways play a significant role 
in therapeutic resistance and cancer relapse.

Epigenomic modification: In cell development, epigenomic 
alteration is critical for controlling cell state and transcription. It 
is mostly comprised of DNA methylation, histone modification, 
and chromatin remodeling. Epigenomics changes the behavior 
of cancer persistent cells. For example, the epigenetic regulator 
histone H3K4 demethylase (KDM5A) limits the chromatin state 
for cancer persistent cells to survive under drug treatment pressure 
[41]. And the KDM5 and EZH2 inhibitors can decrease the number 
of cancer persistent cells in many cancer cell-line models [42,43]. 
Buenrostro et al., have found that increased methylation of H3K9 
and H3K27 can restrain the chromatin state for the survival of 
cancer persistent cells [44].

Transcriptional regulation: RNA-seq analysis can reveal the 
knowledge about the up or down-regulation of cancer persistent 
cells due to changes in gene expression and transcriptional 
factors. In EGFR-mutant NSCLC cells, kinase receptor (AXL) 
upregulation generated a slow-cycling cancer persistent cells state, 
which was activated by turning off the negative feedback loop to 
SPRY4 during drug treatment. Previous research has shown that 
AXL binding to its ligand, GAS6, and activation of the GAS6/
AXL axis causes EMT and leads to acquired resistance to several 
medicines used in cancer therapy [45-47]. Another transcriptional 
factor, FOXA1, can upregulate IGF-1R expression via accessible 
chromatin at the IGF-1R genomic region, leading to the drug-
resistant condition of EGFR-mutant NSCLC cells [48].

MECHANISMS REVEALED AT CELL-LEVEL

Slowing down cell proliferation

Some investigations have found that cancer persistent cells 
proliferate slowly to respond to drug treatment in cancer therapy. 
Slow cell proliferation is linked to the aforementioned biological 
pathways, which include epigenetic alteration and transcriptional 
control. To survive in cancer therapy, cancer persistent cells enter 
a slow proliferation state by upregulating the Notch1 intracellular 
domain, which leads to activation of the histone H3K27me3 
demethylase, KDM6A/B. A comparable example can be found in 
the alteration of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine 
(5hmC) in colon cancer cells [49]. In several kinds of cancer, 
intracellular transcriptional regulation defines cancer persistent 
cells into sluggish proliferation. Such as the WNT signaling 

VDAC1[25]. Meanwhile, Kunta and colleagues discovered that 
remaining Chronic Myeloid Leukemia (CML) cells relied on 
mitochondrial energy metabolism in response to BCR-ABL1+CML 
stem cell treatment [26]. Furthermore, Zhu and Thompson 
discovered that cancer persistent cells mimics energy production 
more closely in slowly proliferating cells than in highly proliferating 
cancer cells [27].

EXTERNAL FACTORS OF CANCER 
PERSISTENT CELLS’ EMERGING

Target-drug therapeutics

Most cancer cells can show a partial or complete response to drug 
treatment in cancer patients in a variety of ways. However, some 
cells survived the subsequent continuous cancer therapies. Drug-
resistant cell growths frequently infiltrate surrounding tissue and 
can spread to distant places, resulting in cancer metastasis and 
recurrence. In the meantime, cancer persistent cells can activate a 
program in response to anti-cancer drug treatment in the form of a 
slowing proliferative persistent state.

Tumor microenvironment

The tumor microenvironment is a sophisticated tumor system 
that supplies tumor progression and growth while also regulating 
changes in cancer responsiveness to cancer therapies [28-31]. Some 
tumor intrinsic survival pathways are activated based on the tumor 
microenvironment, resulting in cancer persistent cell survival. 
HGF, a microenvironment factor derived from Cancer-Associated 
Fibroblasts (CAFs), for example, can reduce the response to a variety 
of targeted therapies by activating the MET signaling pathway [32]. 
Some previous studies have shown that only 0.02% of solitary 
disseminated cancer cells can initiate a macroscopic metastasis, 
which verified that the tumor microenvironment can impact cancer 
cells [33,34]. In other words, the solitary disseminated cancer cells 
are associated with rare cancer persistent cells

Characteristics of cancer persistent cells

Based on previous data, we present the general characteristics of 
cancer persistent cells underlying the DTP state. Cancer persistent 
cells have the following characteristics: the ability to survive drug 
therapy; distinct, undetectable, sluggish growth cells; immune 
evasion and metastasis; and relapse promotion. Meanwhile, the key 
molecular characteristics of cancer persistent cells include altering 
the DNA repair mechanism, boosting drug-tolerant gene mutation, 
controlling cell transcriptional and translational processes, and 
phenotypic plasticity in cell metabolism. 

Several studies have revealed that cancer persistent cells exhibit 
stem-like characteristics. After pharmacological treatment, cancer 
persistent cells revealed significant levels of the possible cancer stem 
cell marker ALDH in EGFR-mutant cell line models [35]. Some 
highly expressed potential cancer stem cell markers (CD133, CD24, 
SOX2, OLIG2, NFIA, JARID1B, and CD271) can be reported in 
cancer persistent cells from various types of cancers [36]. According 
to Ravindran et al., the stress-induced senescence-like phenotype 
is a biological hallmark of cancer persistent cells involved in 
cancer therapeutic resistance [37]. Moreover, in EGFR-mutant 
cancer therapy, some studies found that Epithelial-Mesenchymal 
Transition (EMT) markers were up-regulated in cancer persistent 
cells [38,39]. Overall, there is not a generally applicable and 
distinctive set biomarkers on the cancer persistent cells to facilitate 
further investigate their mechanisms.
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into potential therapeutic targets.

APPLICATION OF SINGLE-CELL MULTI-OMICS 
TO CANCER PERSISTENT CELLS

Introduction of single-cell multi-omics

Single-cell multi-omics is a powerful tool set for constructing a cell 
atlas and understanding human health and diseases. Tang et al., 
gave insight of single-cell transcriptomics to study the profiling 
of a large number of mouse cells in parallel in 2009. With the 
advancement of high-throughput sequencing technologies, multi-
modal single-cell omics technologies have made significant strides 
in data collecting and analysis at many molecular levels such as 
DNA, RNA, and protein. This discipline has rapidly expanded 
over the last decade, and numerous forms of single-cell sequencing 
have evolved, including single-cell genomics, transcriptomics, 
epigenomics, proteomics, and metabolomics [63]. When compared 
to traditional omics technologies, single-cell omics have the 
capacity to examine complex biological processes and illnesses 
at the single-cell level with greater resolution. Furthermore, the 
Human Cell Atlas (HCA) global consortium was formed with the 
goal of mapping every human cell in human tissues and organs 
utilizing single-cell high-throughput sequencing technologies. The 
usefulness of HCA provides researchers with a basic reference 
to human cell map information for producing a fundamental 
understanding of human tissues and investigating human illness 
cell metabolism. These domains can benefit from single-cell omics 
technologies, such as cell atlases and cellular taxonomy, model and 
non-model organisms, developmental trajectories, IPSC-derived 
cells, organoids, disease processes, human genetic variation, and 
therapeutic screening [64].

With the rapid advancement of sequencing data for single-cell 
omics, a plethora of data analysis methodologies and platforms 
for identifying cell types, defining cell states, inferring cell 
trajectories, and inducing cell spatial placement in tissues are 
being developed [65,66], such as Seurat [67], Scanpy [68], Scater 
[69], Monocle [70], Cell Ranger [71] and Cell2 location [72]. The 
gene expression profiles of each cell served as the foundation for 
various methodologies or platforms. As a result of the higher 
single-cell resolution, novel gene markers with limited expression 
levels or unusual cell types with low abundance can be detected 
when compared to bulk tissue analysis. Meanwhile, distinctive 
features and common gene alterations in certain cell types can be 
observed immediately. For example, finding novel T cell subtypes, 
annotating new distinct expression genes in particular cell types 
across tissues, and comprehending the cell states of stromal cells 
and epithelial cells.

Application of single-cell multi-omics technologies to 
cancer persistent cells

One of the most challenging obstacles to overcome in tumor 
therapy was drug resistance [73,74]. Using several single-cell 
sequencing technologies, researchers were able to identify rare cell 
populations and their traits linked with treatment resistance [75]. 
Notably, after targeted drug therapy, certain genes had a distinct 
expression pattern in specific cell types. Single-cell multi-omics 
is revolutionizing our understanding of cancer persistent cells 
and providing us with a powerful tool set for interpreting cancer 
persistent cell sequencing data in the following scenarios (Figure 2)

regulation in LGR5-positive basal cell carcinoma cells [50], the 
AP1 transcriptional activation in human melanoma Nerve Growth 
Factor Receptor (NGFR)-positive persistent cells [51], and the up-
regulation of the kinase receptor AXL in EGFR inhibitor-treated 
human NSCLC cells.

Cancer-associated cell communication

Cancer cells can develop a cancer cell community by combining 
their identities and states to control energy use economically and 
withstand pharmacological treatment [52-54]. Cancer persistent 
cells, similarly, have an ecosystem with cancer persistence metabolic 
status. Fibroblast and macrophage are the two most common 
cancer-associated cell types. Cancer-Associated Fibroblasts (CAFs) 
are stromal cells that play a significant role in tumor drug response. 
CAF stromal cells release Hepatocyte Growth Factor (HGF), 
which can activate the HGF receptor, MET, which can stimulate 
the downstream PI3K-AKT signaling pathway in numerous cancer 
types [55,56]. Furthermore, a recent article demonstrated that a 
subpopulation of CAFs can create a survival niche for cancer cells 
to improve persistence via interleukin (IL)-6 and IL-8 secretion 
regulated by CD10 and GPR77 expression [57]. Tumor-Associated 
Macrophages (TAMs) are also crucial in tumor response to 
medication treatment. Cancer cells reprogram tumor macrophages 
toward an anti-inflammatory M2-like phenotype, which is related 
to the release of growth factors, pro-angiogenic molecules, and 
immunosuppressive substances [58].

Cell metabolism remodeling

Cancer persistent cells typically survived in the new environment 
to boost the ability of drug persistence by altering their cell 
metabolism. Recent studies have reported that cancer persistent 
cells relied on the inhibition of mitochondrial respiratory for their 
energy production by upregulating in enzymes of mitochondrial 
oxidative-ATP-synthesis during drug treatment of different types 
of cancers [59-61]. The metabolic change toward mitochondrial 
oxidative respiration exposes cancer-resistant cells to more oxidative 
stress. Activation of Glutathione Peroxidase 4 (GPX4) is another 
mechanism of cancer persistent cell metabolism. GPX4 suppression 
can cause ferroptosis and oxidative cell death, which is common 
in several types of cancers. Moreover, Cancer persistent cells 
increase drug treatment survival by increasing ALDH activation 
to counteract the oxidative stress-related harmful consequences 
of membrane lipid peroxidation. Meanwhile, following cancer 
therapy, cancer persistent cells were found to have active fatty 
acid b-oxidation, which is a crucial energy production process, by 
upregulating the fatty acid transporter CD36 in the mitochondrial 
respiratory chain [62].

Overall, these studies highlight the multi-omics mechanisms of 
cancer persistent cells’ ability to survive in the tumor environment 
of drug treatment and the development of more effective therapies 
to delay tumor recurrence. The current therapeutic methods 
still have not integrate the multiple mechanisms of persistence 
to simultaneously address the proliferation characteristics, 
metabolism remodeling, and the complex cell-cell interactions 
within the tumor microenvironment to improve therapeutic 
outcome. To meet this end, it’s essential to apply single-cell multi-
omics to collect and analyze the data of cancer persistent cells. 
Furthermore, by analyzing the gene expression regulation, protein 
translation, spatial location information, and other-omics’ data 
within cancer persistent cells, we also can evaluate and gain insights 
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Identifying cancer persistent cells

Some specific cell types may be recognized due to the higher 
resolution of single-cell omics, particularly single-cell RNA 
sequencing, compared to bulk RNA sequencing studies. According 
to current research, the amount of cancer persistent cells is seldom 
compared to other common cell types. So far, we have relied on 
single-cell RNA sequencing to detect cancer persistent cells in 
tumor samples before and after therapy. It was useful for identifying 
potential subtypes of cancer persistent cells. For example, cycling 
and non-cycling cancer persistent cells. There has also been 
tremendous development in creating approaches for combining 
single-cell genomic and transcriptomic data from the same tumor 
samples to provide detailed information about cancer persistent 
cells [76]. Specifically, we can search them to identify cancer 
persistent cells associated with the ability of persistent to survive in 
drug treatment based on the detection of the differentially expressed 
gene, the clustering cell clusters of the tumor samples before and 
after therapy, and the signature genes as previously described by the 
paper. Based on known marker genes, cell cycle independence, and 
re-clustering information, we should be able to identify a subgroup 
of cancer persistent cells. In the meantime, single-cell genome and 
transcriptome parallel profiling has been widely used to detect 
cell-specific genetic variants associated with gene expression and 
variable behaviors of cancer persistent cells. Based on the single-
cell genome sequencing data, we can confirm that the initial cancer 
persistent cells emerge from a single-cell clonal proliferation after 
identifying the cancer persistent cell. Furthermore, using the single-
cell RNA-seq approach, we determined the relationship between 
transcriptional variance, genetic heterogeneity, and genome copy 
numbers.

Understanding cancer persistent cells

Cancer persistent cell state changes can be detected by single-cell 
transcriptome due to the high resolution provided in single cell 
level, including cell population reduction or increase, the fraction 
of gene expression changes at different time points, and up or 
down-regulated genes compared to other cell types. A subset of 
genes previously identified as cell type-specific markers may be 
true cell-type-specific cancer persistent cell signatures, requiring 
further validation through single-cell transcriptome analyses. 
Some gene regulation in tumor heterogeneity is indistinguishable 
from cancer persistent cells by bulk omics analysis. As a result, the 
comprehensive view of single-cell transcriptome provides a clearer 

map of gene information at single-cell resolution. Integrated 
epigenome and transcriptome analysis methods were created as 
single-cell epigenome and transcriptome profiling technology 
advanced. Between the DNA methylome and transcriptome from 
the same cell, additional descriptions of genomic-DNA mutations, 
epigenetic alteration, chromatin spatial conformation, essential 
regulatory function, and transcriptional status in cancer persistent 
cells may be detected. From acquired drug resistance xenograft 
models of breast cancer cells, chromatin state influences the 
expression of related drug resistance genes, and cancer persistent 
cells revealed shared chromatin features under single-cell CHIP 
sequencing [77]. Based on single-cell sequencing of the chromatin 
accessibility and transcriptional landscapes of 13 human primary 
blood cell types, Corces et al., discovered that the enhancer 
landscape and genetic elements lineage were associated with cancer 
pathologies for regulatory evolution in cancer cells [78]. Cancer 
persistent cells may be related to these evolving cancer cells. Recent 
years have demonstrated the utility of spatial omics technologies 
in the study of cancer biology [79,80]. The area is also tackling 
the challenge of single-cell spatial transcriptomics of large organs, 
which will be extremely important for understanding fundamental 
processes such as cancer persistent cell growth. The data can be 
used to develop a tumor metastasis and relapse prediction model 
that integrates with the mechanisms of cancer persistent cells in 
various tumor tissues. We can get an overview and general trends 
of the analysis landscape for cancer persistent cells using single-
cell spatial omics technology, including three-dimensional growth, 
developmental time evolution, interaction with other cells in the 
tumor microenvironment, evading the immune system and drug 
treatment, influencing tumor clonality in a primary and distant 
location. Furthermore, combining spatial and scRNA-seq data 
can increase spatial data accuracy by adjusting gene expression 
values in a reduced-dimension latent space, which can properly 
predict the real physical distance in spatial transcriptomics data. 
Overall, combining spatial and scRNA-seq data is a high-resolution 
technique for tracking cancer persistent cells in tissue across tumor 
heterogeneity research. In addition, once cancer persistent cells are 
discovered, single-cell omics can be used to reconstruct cell lineage 
pathways to better understand cancer biology, such as time points 
of cancer persistent cell division, concurrent changes in gene 
expression, transcriptional cancer persistent cell fate change, and 
cancer persistent cell proliferation. 

In summary, single-cell multi-omics data provides the resolution 
to definitively reveal the relationship in different omics integrated 
for describing the different level information of cancer persistent 
cells, which can further expand our understanding scope of 
cancer persistent cells, such as evolution, origination, functional, 
and gene expression changes. After identifying cancer persistent 
cells and their characteristics with exceptional accuracy, single-
cell multi-omics also provide an important perspective for 
thoroughly understanding the biological process in the cancer 
persistence cells. Furthermore, to better understand the dynamic 
adaptive mechanisms used by cancer persistent cells in cancer 
therapy, we will need to combine single-cell multi-omics methods, 
clonal lineage tracing, and imaging methods to provide a robust 
framework for defining cell fate transitions, intermediate states, 
and cell branching lineage trajectories.

PERSPECTIVE 

Cancer persistent cells can avoid therapeutic pressure by 
transforming into reversible drug-tolerant persistent cells, which 

Figure 2: The application of single-cell multi-omics technology on a 
cancer persistent cell.
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are likely to be the most difficult obstacle in improving the results 
of cancer patients receiving pharmacological treatment.

Since Sharma et al., first mentioned cancer persistent cells, we have 
observed the evolution and enhancement of researching cancer 
persistent cells utilizing various experimental and sequencing tools 
during the last ten years. Cancer persistent cells exhibit a variety 
of characteristics, such as decreasing proliferation, reprogramming 
cell metabolism, communicating with the environment, activation 
of alternative signaling pathways, changing cell identity, and so 
on [82,83]. Cancer persistent cells do not go dormant following 
medication treatment, and they can restart the cell cycle, proliferate, 
and facilitate tumor relapse via non-genetic pathways in cancer. 
A recent article found various mechanisms of cancer persistent 
cells in treatment resistance, including both innate and acquired 
resistance to clinical therapy. However, other mechanisms remain 
to be elucidated, such as escaping the immune microenvironment, 
cancer persistent cell status at various time points of cancer 
therapy, and cancer metastasis proliferation rate. As a result, 
there is no consensus solution for characterizing cancer persistent 
cell states. Shen et al., proposed four experimental criteria for 
evaluating cancer persistent cells. It included confirming the low 
proliferative rate of the surviving cells after treatment, confirming 
the lower sensitivity of cancer persistent cells to the anti-cancer 
agent in comparison to the treatment-naive parental cells, testing 
the reversibility of the process in terms of proliferation rate and 
sensitivity of the cells to the same treatment, and demonstrating 
that the surviving cells can give rise to genetic resistance after 
continuous anti-cancer treatment. These parameters can help us in 
studying cancer persistent cells while avoiding misunderstanding 
phenotypes of other cell types. Furthermore, with the advancement 
of single-cell omics, cancer persistent cells may be studied at single-
cell resolution using high-through sequencing technology. Based 
on these findings, we can learn more about the strategies of 
cancer persistent cells to fight cancer therapy. As a result of cancer 
heterogeneity, we have to develop an innovative mathematical 
model to address the complexity of cancer persistent cells to capture 
the magnitude and dynamics of intratumor heterogeneity using 
machine learning or deep learning technologies at the single-cell 
level for each human cancer. The complex model analysis system 
should include the following components for understanding the 
molecular mechanisms of therapeutic resistance and cancer relapse: 
Identifying the cancer persistent cells, annotating their functions, 
and providing cells’ spatial information.

DISCUSSION

Indeed, in the single-cell multi-omics era of biology research, we not 
only can detect and develop the cancer persistent cell atlas, but also 
identify other cell types across various tissues or organs. By comparing 
them, we gain a better understanding of cell-cell communication in 
the microenvironment, as well as a comprehensive understanding 
of the molecular characteristics of cellular processes in cancer 
therapy, using cancer persistent cells as a starting point, which may 
lead to new biomarkers, innovative therapies, and more informed 
therapeutic approaches to improve cancer patient outcomes. 
Meanwhile, it should be noted that developing a comprehensive 
and integrative map of cancer persistent cells will be fraught with 
difficulties, such as the characteristics of unusual cell types, the 
normalization of gene expression profiles in multi-omics across 
different tissues or organs, and the mapping across multimodality 
of single-cell muti-omics. Furthermore, other new technologies 
(such as gene editing, cancer stem cells, and imaging systems) can 

be combined with single-cell omics to generate critical multilayer 
reference maps of physiological and pathological changes associated 
with tumors to fully understand the dynamic adaptive mechanisms 
of cancer persistent cells.

Challenges and future directions

Most recent research used in vitro experiments to study the 
mechanism and phenotype of cancer persistent cells, and there were 
still significant challenges in fully revealing the complex ecosystem 
of cancer persistent cells in vivo when compared to the true clinical 
setting of multiple tumors in different tissues or organs.

Obtaining the united viewpoints for drug-tolerant persistent 

states: Obtaining any united viewpoints for the drug-tolerant 
persistent state in residual diseases of distinct tumor patients after 
therapy is tough due to tumor heterogeneity. Meanwhile, for many 
of these patients with tumor regression and cancer metastasis, 
cancer therapy responses are insufficient and require a long time of 
ongoing treatment, adding to the challenge of defining the cancer 
persistent cells condition. So, we need large enough clinic samples 
to obtain first-hand research information on cancer persistent cells.

The distinguishing features of cancer persistent cells: Cancer 
persistent cells are rare cells that allow a sub-population of cancer 
cells to survive and hide in the patient’s body during clinical 
advancement. Although a recent lineage tracing experimental 
method was reported to assist spot some uncommon cell types 
utilizing CRISPRa inducible reporters, there is no distinguishing 
feature to define this rare cell type in a cell mixture of a noisy 
environment. It remains a significant difficulty in extracting cancer 
persistent cells from future clinically relevant models, not just 
experimental models. As a result of using cancer therapy in the 
microenvironment, the number of cancer persistent cells varies 
depending on the kind of cancer. Attempts have been made to 
utilize mathematical models to calculate the size of cancer persistent 
cell population of growth trajectories using serial computed 
tomography scans for EGFR-mutant lung cancer patients receiving 
EGFR inhibitor treatment. However, the results showed that 
using pure cancer persistent cell evolution or a pure pre-existing 
resistance of cancer persistent cells does not adequately explain the 
clinical response and subsequent development of resistance from a 
T790M-mediated resistance including a heterogeneous population 
of T790M-positive and-negative subclones. So, identifying cancer 
persistent cells completely and precisely is an important step for 
getting the features integrated experimental technologies with new 
strategies. Such as flow cytometry, cell imaging, and cell spatial 
techniques.

The clear mechanism of cancer persistent cell: The difficulty to 
elucidate clear mechanisms of cancer persistent cells, including 
the origin of the cells, precludes developing effective anti-cancer 
treatments. According to recent research, developing persistence 
has numerous distinct pathways, such as combating the immune 
environment and modifying the metabolic and proliferation 
pathways. Although these studies open some intriguing areas 
of cancer persistent cells for future research, the mechanism of 
persistent cell state was not rigorously validated. Cancer persistent 
cells developed in immunotherapy and the role of cell-cell 
communication in TME have not been extensively studied and 
deserve more attention and research resources in the future.

Integrating the single-cell multi-omics for studying cancer 
persistent cells in different tissue: Single-cell omics approaches 
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can have a significant impact on cancer persistent cells. However, 
applying the approach to cancer persistent cells is constructing a 
strong annotation and interpretable model of cancer persistent cells 
by merging single-cell high-throughput genomic, transcriptomic, 
proteomic, and metabolic data. The first step in analyzing cancer 
persistent cells using single-cell omics is to isolate rare persistent 
cells from a heterogeneous tissue. One major challenge is that 
tissue-dissociation processes may partially alter gene expression 
and strip cell-surface proteins from cells, so new experimental 
methods or protocols need to be developed to minimize tissue 
transcriptional changes and capture true cancer persistent cells. 
Additionally, integrating single-cell multi-omics is a bioinformatics 
analytical challenge for diverse resolution of different tissues, 
the batch effect of different single-cell experimental platforms or 
species, and the sensitivity and accuracy of cancer persistent cells’ 
identification protocols. As a result, developing robust systematic 
and comprehensive statistical and computational analysis 
methodologies is crucial.

CONCLUSION

Until recently, cancer persistent cells had been the most difficult 
component to overcome in drug-tolerant cancer therapy. Cancer 
persistent cells may be considered a cell biomarker for cancer 
early screening and a prognostic marker under cancer therapy 
once the underlying mechanisms of cancer persistent cells are well 
understood. Overall, building a multidimensional and systematic 
single-cell atlas of cancer persistent cells based on single-cell omics 
and high-throughput sequencing could fundamentally improve 
understanding of persistence in both healthy and diseased 
conditions and facilitate the development of precise interventions 
for cancer therapy in the future.
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