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Abstract

The T helper 17 cells (Th17 cells) are a type of T cells that plays an important role in the adaptive immune
system. Studies show that Th17/regulatory T cells (Treg) imbalance, as characterized by increased Th17 and
decreased Treg, plays a critical role in inflammation in various cardiovascular diseases including hypertension. The
study of Th17/Treg imbalance in hypertension may uncover important triggers and endogenous modulators of the
disease, and lead to new treatment strategies. This review outlines current insights into Th17/Treg frontiers
associated with hypertension and discusses the questions that remain in this field.
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Introduction
Recent data demonstrated that CD4+ T lymphocytes-mediated

immunity contributes to various cardiovascular diseases including
hypertension. CD4+ T lymphocytes, also called T helper cells (Th
cells), consist of Th1, Th2, Th17 and Treg cells. Among them, Th1 cells
mainly mediate host defense against intracellular pathogens by
expressing interleukin (IL)-2, interferon γ (IFN-γ), and tumour
necrosis factor β (TNF-β) [1]. Th2 cells primarily express IL-4, IL-5,
IL-6, and IL-13 in response to extracellular stimuli. An imbalance in
Th1/Th2 subsets is implicated in resistance and susceptibility to
infection, the pathogenesis of autoimmune diseases such as diabetes
[2]{Zhang, 2014 #995}, and the development of atherosclerosis [3,4].
Th17 cells represent a novel subset of Th cells that produces the
proinflammatory IL17 [5]. There are six isoforms of IL-17, classified as
A-F, among them IL17A is the most important and the most widely
studied [6,7]. Th17 cells protect against extracellular bacteria and
fungi. Treg cells suppress ongoing immune responses through the
secretion transforming growth factor β1 (TGF-β1) and IL-10.
Furthermore, Treg cells are central in mediating peripheral tolerance
and are involved in the maintenance of tolerance to self-antigens [8].

Importantly, the differentiation of Th17 and Treg is mutually
inhibitory [9]. For example, the differentiation of Th17 cells requires a
unique lineage-specific transcription factor, retinoid-related orphan
receptor γt (RORγt), while Treg cells employ forkhead box P3 (Foxp3)
as a key transcription factor. TGF-β1 is a critical factor in common for
Th17 and Treg cells, since it induces the expression of Foxp3 and
RORγt in T cell receptor (TCR)-stimulated naive CD4+ cells [10-12].
In the presence of pro-inflammatory cytokines IL-6 or IL-21, the TGF-
β1 induced-Foxp3 expression is reduced and RORγt expression is up-
regulated, leading to increased Th17/Treg ratio. In absence of IL-6 or
IL-21, however, TGF-β1 is unable to initiate Th17 differentiation in
vitro. TGF-β1 then promotes Treg differentiation that maintains
immune tolerance. In addition, Foxp3 also mediates RORγt inhibition,

resulting in decreased IL-17 and IL-23 expression [10-12]. There are
increasing evidence indicates that Th17, Treg and Th17/Treg balance
are involved in hypertension and target organ damage [13,14]. In this
review, we will discuss how Th17, Treg and Th17/Treg balance
contribute to blood pressure elevation and target organ damage.

Th17 Cells and Hypertension
There are emerging evidences that Th17 cells and IL17 are involved

in the maintenance of angiotensin II-induced hypertension, and
deoxycorticosterone acetate (DOCA)-salt-induced hypertension. For
example, it has been reported that hypertension was not sustained in
IL17-/- mice, reaching levels 30 mm Hg lower than in wild type mice
by 4 weeks of angiotensin II infusion, even the initial hypertensive
response to angiotensin II infusion was similar [15]. Vessels from
IL17-/- mice showed decreased superoxide production, and reduced
aortic T cell infiltration in response to angiotensin II stimulation [15].
It has been shown that IL-7 inhibited the activity of endothelial nitric
oxide synthase (eNOS) by promoting threonine 495 phosphorylation
in a Rho kinase-dependent manner in endothelial cells, thereby leading
to endothelial dysfunction and increased blood pressure [16]. Wu et al.
reported collagen deposition and aortic stiffening did not occur in
IL-17A-/- mice, and in vitro study indicated that IL-17 induced mRNA
expression of collagens I, III and V via activation of p38 MAP kinase
[17]. These results suggest that IL-17A acts as a causative cytokine in
aortic stiffening [17]. In addition, it has been reported that
mineralocorticoid receptor activation contributed to fibrosis partially
through Th17/Treg/IL-17-dependent inflammatory mechanism [18].
Furthermore, Krebs et al. showed that genetic disruption of the IL-23/
IL-17 axis attenuated glomerular injury and renal infiltration of γδ T
cells in DOCA + angiotensin II-induced albuminuria and hypertensive
renal damage [19]. However, Marko et al. reported that IL-23 antibody
and IL-17A antibody treatment did not reduce cardiac hypertrophy,
fibrosis, and electric remodeling despite mildly reduced inflammation
in angitoensin II-induced hypertensive mice [20]. These results suggest
that Th17 signaling pathway may not play a role in angiotensin II-
induced cardiac damage [20]. Therefore, further studies are needed to
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evaluate the involvement of Th17 signaling pathway in angiotensin II-
induced hypertension.

Treg Cells and Hypertension
It has been demonstrated that decreased Treg cells were involved in

angiotensin II-induced hypertension, in DOCA-salt-induced
hypertension and in spontaneously hypertensive hypertension (SHR).
For example, Barhoumi et al. reported that angiotensin II caused a
significant decrease of Foxp3+ cells in the renal cortex. Furthermore,
they found that Treg cells injection inhibited angiotensin II-induced
hypertensive changes including increased systolic blood pressure,
vascular/cardiac NADPH oxidase activation, impaired vasodilatory
responses, increased vascular stiffness, increased expression of
mesenteric artery vascular cell adhesion molecules, and increased
aortic macrophage infiltration and T-cell infiltration [21]. In addition,
Kvakan et al. demonstrated that Treg transfer interfered ameliorated
cardiac hypertrophy and fibrosis, TNF-α expression, immune cell
infiltration in angiotensin II-induced hypertensive mice [22]. It has
been demonstrated that Treg transfer prevented hypertensive changes
in DOCA-salt-induced hypertension including increased blood
pressure, decreased vasodilation, vascular remodeling of resistance
arteries [23]. These changes may be related to the decreased NADPH
oxidase activity and superoxide production in aorta, kidney and heart
after Treg treatment [23]. Finally, Katsuk et al. reported that splenic
Treg infiltration was decreased with age in SHR before the onset of
hypertension. Importantly splenic sympathetic denervation in pre
hypertensive SHR attenuated the reduction in splenic Treg cells and
delayed the development of hypertension, suggesting that splenic
sympathetic nerve activation is involved in both the decrease in Treg
cells and the progression of hypertension in SHR [24].

It has been shown that IL-10 has protective functions in
hypertension [25]. For example, Didion reported that the infusion of
angiotensin II doubled superoxide production in carotid arteries of
IL-10-/- mice, but not in WT mice, and that angiotensin II-infused
IL-10-/- mice showed markedly impaired vasodilatation, while having
no effect in vessels of wild type mice [26]. These results indicated that
IL10-deficiency is involved in increased superoxide production and
oxidative stress in artery after the infusion of angiotensin II, leading to
vascular dysfunction. It has been shown that adoptive transfer of Treg
cells has been shown to lower angiotensin II- and aldosterone-induced
cardiac fibrosis, electrical remodeling, the effect on blood pressure of
Treg cells is not the same. Kvakan et al. demonstrated that Treg cell
transfer did not affect the development of hypertension, indicating that
the cardiac protection was blood pressure independent. However,
Barhoumi et al. showed that adoptive transfer of Treg cells prevented
Ang II-induced progressive increase of systolic blood pressure both in
tail-cuff measurement and in telemetry measurement. Taken together,
these studies suggest that Treg cells exert an anti-hypertensive role and
protect target organ damage in various hypertensive animal models.

Th17/Treg Imbalance and Hypertension
The balance between Th17 and Treg cells also play a role in the

development/prevention of hypertension since the differentiation of
Th17 and Treg are mutually inhibitory [27]. Xie showed that Th17/
Treg imbalance was involved in the formation and progression of
atherosclerosis [28]. Amador et al. demonstrated that there was an
activation of Th17 cells and down regulation of foxp3 mRNA in
peripheral tissues, heart, and kidneys in DOCA salt-treated rats [18].
Furthermore, treatment with spironolactone, a specific pharmacologic

antagonist of aldosterone, prevented Th17 cell activation and increased
numbers of Treg cells in DOCA salt rats, suggesting that
mineralocorticoid receptor activation alters the Th17/Treg pathway in
DOCA salt hypertension. Another study showed that excess dietary
sodium intake increased induction of proinflammatory Th17 cells and
impact autoimmunity by inhibiting the function of Treg cells [29].
Importantly, there are accumulating clinical data showing that anti-
hypertension treatment attenuated vascular changes in a Th17/Treg-
dependent manner. For example, an randomized, prospective, double-
blind, placebo-controlled trial study shows that there was a significant
synergistic effect of combination of telmisartan with rosuvastatin on
ameliorating carotid intima-media thickness (IMT) and Th17/Treg
functional imbalance, suggesting a role of Th17/Treg imbalance in
carotid IMT [30].

In summary, there are accumulating evidence showing that Th17,
Treg, and Th17/Treg imbalance are involved in the initiation and
development of increased blood pressure, target organ damage in
angiotensin II-induced hypertension, salt-sensitive hypertension, and
genetic hypertension. Studies on Th17/Treg may provide a new
direction for the prevention and treatment of target organ damage
associated with hypertension.
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