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Abstract
Embryonic stem cells (ESCs) are pluripotent cells which are capable of differentiating into many cell types. 

A complex transcriptional network consisting of Oct4, Sox2 and Nanog maintains ESCs in undifferentiated state 
while being poised to be directed into different committed cell types. Recently, tremendous efforts have been made 
to elucidate the functions of cofactors in ESC identity and differentiation. More and more evidence has shown 
that cofactors are crucial for both pluripotency maintenance and differentiation capacity in ESCs. Cofactors do not 
bind to DNA directly. Rather, they are usually recruited to target sites by transcription factors or epigenetic marks. 
Transcriptional cofactors including coactivators or corepressors serve as critical components of the regulatory 
circuitry that ensures unique gene expression program in ESCs. In this review, we will highlight recent findings on 
the functions of transcriptional cofactors and the underlying molecular mechanism that maintains ESC identity.

Keywords: Cofactors; ESCs; ES cell identity; Coactivator; Corepres-
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Introduction
Embryonic stem cells (ESCs) are derived from the inner cell mass 

(ICM) of the blastocyst-stage embryos [1,2]. They are characterized 
by pluripotency and self-renewal. Hence, ESCs provide a good in vitro 
system for the study of early embryonic development and molecular 
pathways involved in pluripotency and differentiation. Additionally, 
by understanding how ESCs can be manipulated to differentiate 
into specific cell types, ESCs also have great promise in regenerative 
medicine and gene therapy [3,4].

A complex transcriptional regulation network consisting of Oct4, 
Sox2, Nanog and epigenetic modifications have been known to be 
crucial in maintaining ESC identity [5,6]. Genome-wide studies 
have discovered that master regulators Oct4, Sox2 and Nanog act 
in cooperation by co-occupying two sets of genes: genes involved in 
pluripotency and genes associated with development [6-10]. They 
maintain ESC identity by activating transcription of pluripotency-
associated genes via recruitment of co-activators such as p300, 
chromatin remodelling complexes and the transcriptional machinery 
[9,11,12], while repressing developmental regulators by engaging 
Polycomb (PcG) complexes as well as other co-repressor complexes, 
including NuRD, Sin3A and Pml complexes [11-15]. In addition, 
from protein-protein interactome studies, many transcriptional 
cofactors have been identified as binding partners of Oct4 and Nanog 
[11,12,16,17], highlighting the importance of transcriptional cofactors 
in the core transcriptional network in ESCs. Transcriptional cofactors 
do not have DNA sequence-specific binding abilities, and hence are 
usually recruited to target sites by transcription factors or epigenetic 
marks. Transcriptional cofactors can be co-activators or co-repressors, 
depending on their effect on transcription, and can act through a variety 
of mechanisms such as histone modification, nucleosome remodelling, 
or recruitment of transcriptional machinery. It has well been 
established that activators and repressors serve as critical components 
of the regulatory circuitry that ensures accurate transcription of a given 
gene according to the needs of a particular cell [18]. Since ESCs have a 
unique transcriptional network which maintains their undifferentiated 
state while keeping them poised to differentiate into all specific lineages, 
studying the roles of cofactors in ESC-specific transcription regulation 
is of great interest. Recently, tremendous efforts have been made to 
elucidate the functions of cofactors in ESC identity and differentiation. 

In this review, we will highlight recent findings on the functions of 
transcriptional cofactors and the underlying molecular mechanism 
that maintain ESC identity.

Coactivators
Histone acetyltransferase complexes

Many coactivators have histone acetyltransferase (HAT) activity 
to create decondensed chromatin structure, thus facilitating the 
recruitment of transcriptional machinery and other regulatory proteins 
to activate transcription [19]. The p300/CBP complex and Tip60-p400 
have been discovered as important factors in ES pluripotency and 
differentiation.  

p300/CBP complex: The coactivators CREB-binding protein 
(CBP) and p300 are closely related functional homologs, which act 
together in histone acetylation and non-histone acetylation [20].  The 
p300/CBP coactivator complex has been shown to be crucial in cell 
growth, transformation and development [20]. Interestingly, p300-
depleted ESCs show no defects in self-renewal [21], which may be 
credited to its functional redundancy with CBP. Silencing of both p300 
and CBP in ESCs would provide further insights into the functional 
roles of this complex. However, p300 can modulate Nanog expression, 
possibly through histone modifications at the regulatory region of 
Nanog [21]. On the other hand, forced expression of p300 promotes 
neural differentiation of ESCs [22], suggesting the involvement of p300/
CBP in differentiation. Indeed, multiple studies have revealed that p300/
CBP mediates the activation of lineage genes during the differentiation 
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of ESCs into neurons, skeletal muscles and cardiac myocytes [22-27]. 
A recent study proposed a model in which phosphorylation of p300 
drives the switch from Wnt/β-catenin/CBP-mediated transcription 
to Wnt/β-catenin/p300-mediated transcription, and initiates the 
differentiation of mouse ESCs [28]. Importantly, genome-wide mapping 
of p300 binding sites has shown that p300, usually associated with the 
H3K4me3 mark, is recruited to stem cell-specific enhancers by Oct4, 
Sox2 and Nanog. This suggests that p300 is an important component 
of the ESC transcription factor network [9]. Another study showed that 
p300 co-localizes and interacts with the chromatin remodeler CHD7, 
thus fine-tuning gene expression levels in ES cells [29].

Tip60-p400: Tip60-p400 is a multi-subunit remodeling complex 
possessing both histone acetyltransferase and chromatin-remodeling 
activities [30]. The complex consists of two core catalytic components, 
Tip60 and p400, and knocking out either of them causes embryonic 
death before implantation [31-33]. Tip60-p400 is found to interact with 
Oct4 [12], and knock-down of Tip60-p400 complex subunits affects 
ESC identity, with phenotypes including altered cell morphology, 
decreased proliferation rates, reduced alkaline phosphatase activity 
and defects in teratoma formation [34]. In addition, Tip60-p400 co-
localizes with histone H3K4me3 and largely shares targets with Nanog 
[34]. These raise the possibility that Tip600-p400 can maintain ESCs in 
an undifferentiated state by cooperation with H3K4me3 or Nanog [34]. 
Although histone acetylation is usually a mark for active transcription, 
the observation that Tip60-p400 acetylates histone H4 not only at 
active promoters, but also at many PcG complex-occupied genes 
in undifferentiated ESCs indicates an additional repressive activity 
of Tip60-p400 in transcription regulation through some unknown 
mechanisms [35]. Taken together, Tip60-p400 likely possesses dual 
regulatory functions to maintain the balance between pluripotency and 
differentiation in ESCs.

Yes-associated protein (Yap)

First discovered as an interacting partner of Yes tyrosine kinase 
[36], YAP was found to be involved in establishing trophectodermal fate 
during the pre-implantation blastocyst stage [37-38]. The importance 
of YAP in maintaining ESC identity was recently revealed when YAP 
over-expression inhibited ESC differentiation [39]. YAP was suggested 
to act downstream of Yes, which in turn was activated by LIF [40], and 
together with TEAD2, activates the expression of pluripotency genes, 
including the master regulators Oct4 and Nanog as well as their target 
genes [39,41]. While the exact mechanism by which YAP functions 
as a co-activator has yet to be elucidated, it appears that YAP-TEAD2 
complex can be integrated into the functional regulatory network in 
ESCs.

Oct4-associated DNA repair proteins

MutS homolog (MSH) 2 and MSH6 form heterodimers that bind 
DNA mismatches [42-45] and are part of the DNA mismatch repair 
mechanism [46]. In recent protein-protein interactome studies in ESCs, 
hMSH2 and hMSH6 were recognized as Oct4-interacting partners 
[11,12,17]. Though it is not clear if this interaction is a result of a yet 
unknown role of Oct4 in DNA repair, the hMSH2-hMSH6 dimer may 
function as a “sliding clamp” that disassembles histone octamers, in 
a method aided by histone acetylation [45]. Given that the hMSH2-
hMSH6 dimer binds DNA mismatches more efficiently than DNA 
without mismatches [42-45], it can be speculated that Oct4 may recruit 
the hMSH2-hMSH6 dimer to non-mismatched DNA for its nucleosome 
remodelling function and transcriptional regulation.

A stem cell coactivator complex (SCC) formed by nucleotide 

excision repair (NER) proteins XPC, RAD23B and CETN2 were 
recently discovered as a coactivator which is directly recruited by Oct4 
and Sox2 [47]. SCC is located to the Nanog and Oct4 promoters as well 
as a majority of genomic regions that are occupied by Oct4 and Sox2. 
Depletion of SCC/XPC compromises both pluripotency in ES cells and 
somatic cell reprogramming [47]. This function does not require the 
DNA-binding ability normally required for the DNA repair activity 
[47]. In addition, multiple NER proteins, including XPC, XPA, and 
XPG, were found to be involved in mediating transcription, possibly 
by regulating histone modifications, such as histone H3K4 methylation 
and H3K9 and H3K14 acetylation that are marks of active transcription 
[48].

FACT complex 

The FACT (facilitates chromatin transcription) complex, first found 
to be essential for in vitro transcription [49], is involved in many aspects 
of transcriptional regulation and histone disassembly [50-53]. FACT 
consists of two subunits: SPT16 and SSRP1 [54]. SSRP1 was found to 
be essential for the formation of ICM in early embryogenesis [55]. Both 
SPT16 and SSRP1 can interact with Oct4 in ESCs [11,17]. SSRP1 also 
binds c-Myc [56], which is another factor that is important for ESC 
identity [57,58]. While the precise function of the FACT complex in ESCs 
and its role in pluripotency has yet to be determined experimentally, it 
can be speculated that Oct4 and c-Myc may engage the FACT complex, 
which in turn mediates the transcriptional regulation activities of Oct4 
and c-Myc. 

Corepressors
Sin3a/HDAC complex

Sin3a, which binds to class I HDACs HDAC1 and HDAC2, is 
associated with multiple repressors through its paired amphipathic helix 
(PAH) domains, thus recruiting HDAC activity to target promoters 
in transcription repression [59-63]. The Sin3a/HDAC complex is 
involved in maintaining cell proliferation potential, DNA repair, and 
termination of cell differentiation [64-66]. Sin3a-mediated repression 
has critical roles in diverse developmental pathways (as reviewed in 
[67]), and Sin3a knock-out mouse embryos die between E3.5 and E6.5 
due to impaired ICM and trophectoderm formation [64,65,68]. 

The Sin3a/HDAC complex is essential for the proliferation, 
viability, and genomic integrity of pluripotent ESCs [34,68]. However, 
the underlying mechanisms have not been studied in detail. In ESCs, 
Sin3a is found to be associated with cell cycle control and DNA 
damage response proteins, which might contribute to the cell cycle 
misregulation and apoptosis observed in Sin3a-null ESCs [68]. Besides, 
the Sin3a/HDAC complex can positively regulate Nanog expression, 
possibly through interactions with Sox2 or Nanog itself [15,69]. The fact 
that Sin3a stimulates Nanog expression might indicate a transcription 
activation role in ESC pluripotency regulation in the form of alternate 
co-repressor complexes [70].

NuRD complex

Nucleosome remodeling deacetylase (NuRD) complex couples 
ATP-dependent chromatin remodeling component Mi2β and class 
I histone deacetylase HDAC1 and HDAC2 to induce repressive 
chromatin structure [71]. Mbd3, a core component of NuRD complex, 
is essential for mouse early embryogenesis, and is required for the 
derivation of mature epiblast from the ICM, as well as the acquisition 
of the pluripotent ESC state [72,73]. Mbd3 is indispensable for stable 
formation of the NuRD complex - ESCs lacking Mbd3 are viable and 
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maintain expression of Pou5f1 and Nanog, but are unable to exit self-
renewal and fail to commit to developmental lineages during ESC 
differentiation [74]. Moreover, it is reported that Mbd3 represses pre-
implantation genes, such as Pramel6, and also trophectoderm-specific 
genes, such that loss of Mbd3 induces ESCs to differentiate towards 
trophectoderm lineage [15,75]. Thus Mbd3 is essential for the full 
differentiation competency of ESCs. Furthermore, a recent study has 
reported that Mbd3 is essential for transcriptional heterogeneity and 
the dynamic range of a set of pluripotency genes in ESCs [76]. 

Moreover, Mbd3 also physically interacts with Brg1, a SWI/SNF 
component associated with active transcription, to antagonistically 
regulate a group of common target genes [77,78]. Mbd3-mediated 
deacetylation of histone H3K27 facilitates recruitment of PcG Complex 
2 (PRC2), which subsequently stimulates H3K27me3 and enables the 
silencing of specific genes in ESCs [76]. Considering that there is some 
evidence to show that the NuRD and PcG complexes interact, these two 
complexes may act together to reinforce a gene silencing effect [79,80]. 
It is noteworthy that Mbd3 is also enriched at hydroxymethylated genes 
and seems to mediate some effects of hydroxymethylation on gene 
expression in ES cells [78].  Collectively, Mbd3 collaborates with diverse 
epigenetic factors in gene regulation in ESCs.

In ESCs, NuRD complex subunits Mta1/2 and Gata2a/b, but not 
Mbd3, can form a repressive complex with Nanog and Oct4 known as 
NODE (Nanog and Oct4 associated deacetylase) [11,12,15]. NODE 
is recruited to Nanog and Oct4 target genes independently of Mbd3. 
Knock-down of NODE component Mta1 up-regulates endoderm 
lineage markers and induces differentiation, which is different from 
the observation upon Mbd3 depletion, yet similar to that of Nanog 
depletion. This indicates that in ESCs, NODE functions distinctly 
from the canonical Mbd3-containing NuRD complex. Furthermore, 
NuRD subunits Mta1/2, Mi2β and RbAP46 were identified as Sall4 
interacting proteins, and thus the NuRD complex is implicated in Sall4 
transcription repression [81].

CCR4-Not complex 

The CCR4-Not complex is a multi-subunit, multi-functional 
complex which can regulate gene expression mainly via ubiquitination 
and deadenylation [82]. The first indication of the role of the CCR4-Not 
complex in ESC identity was during a genome-wide screen for genes 
that perturbed ESC pluripotency upon RNAi-mediated knock-down. 
Cnot3, one of the subunits of the complex, was highlighted as being 
essential for ESC pluripotency [83]. This was confirmed upon further 
discovery that in addition to Cnot3, knock-down of Cnot1 and Cnot2 
also induced differentiation [84]. Interestingly, while the collective 
presence of Cnot1, 2 and 3 are required to prevent differentiation, 
knock-down of the other subunits of the CCR4-Not complex did not 
induce any changes, consistent with the observation that only Cnot1, 2 
and 3, and not any of the other subunits were down-regulated during 
differentiation of ESCs [84]. This may be explained by the fact that 
Cnot1 serves as the scaffold of the complex [85], and that Cnot2 may be 
required for the binding of Cnot3 to the rest of the CCR-Not complex 
[86], creating a functional interaction between these three components. 

Interestingly, knock-down of Cnot1, Cnot2 and Cnot3 resulted in 
trophectodermal differentiation of ESCs [84], resembling the phenotype 
for Oct4 knock-down [87,88]. Nevertheless, immunoprecipitation 
experiments indicated there were no binding interactions between 
Cnot1-3 and Oct4 [84], in agreement with the finding that Cnot3 is 
integrated into a transcriptional network that includes c-Myc and Zfx, 

but not Oct4, Nanog or Sox2 [83]. On a similar note, over-expression of 
Oct4 did not rescue knock-down of Cnot1, Cnot2 and Cnot3 and knock-
down of Oct4 or Sox2 did not cause any immediate change in expression 
levels of Cnot1, Cnot2 and Cnot3 [84]. This strengthened the idea that 
the CCR4-Not complex acts independent of the Oct4-Sox2-Nanog 
master regulators. Still, the phenotype observed upon knock-down 
of either of the Cnot subunits suggests that the complex may repress 
trophectodermal genes, in accordance with its role in transcriptional 
repression [89,90]. However, the repression of trophectodermal genes 
may be indirect, given ChIP-chip results showing that Cnot3 does not 
bind to promoter regions of trophectodermal genes [83]. Thus, it would 
be of interest to elucidate the mechanism and enzymatic activities by 
which the CCR4-Not complex regulates ESC identity. 

Tri-partite motif-containing protein 28 (TRIM28)

TRIM28, also known as KAP1 or TIF1β, has been identified as a 
cofactor for KRAB domain-containing zinc finger proteins [91]. Its role 
in pluripotency was first hinted at when it was detected as a Nanog-
binding protein [16]. It was subsequently identified to be essential for 
pluripotency regulation through RNAi screens [34,83]. TRIM28 also 
interacts with Oct4 when phosphorylated at serine 824 [92], which 
was the form previously ascertained to modulate the decondensation 
of chromatin conformation during DNA damage [93]. This is likely to 
be due to the recruitment of ATP-dependent chromatin remodelling 
complexes, in particular the ESC-specific SWI/SNF complex esBAF. 
This was in turn associated with the expression of pluripotency genes as 
well as the increased efficiency of pluripotency induction [92]. 

In contrast to its role as a co-activator above, TRIM28 is essential 
as a co-repressor for the function of ZFP57 [94], which is required 
to maintain both maternal and paternal imprints in ESCs [95] 
and in embryos [96]. This involves the binding of ZFP57 to specific 
hexanucleotide sequence found at imprinting control regions [97], 
where it recruits TRIM28 via the KRAB domain [98]. TRIM28 
then acts to recruit DNA methyltransferases to maintain the DNA 
methylation patterns [98] and facilitates the establishment of 
higher order heterochromatin structure by engaging histone H3K9 
methyhltranferase SETDB1 and heterochromatin protein 1γ (HP1γ) 
to maintain transcriptional silence in an allele-specific manner [97,99]. 
It seems that association with the HP1 family of proteins is required 
for transcriptional repression facilitated by TRIM28 [100]. There also 
appears to be a role for histone deacetylation, from the observation that 
the NuRD complex plays a part in TRIM28 transcriptional repression 
[101].

TRIM28 is also a cofactor for ZFP809, another KRAB-containing 
zinc finger protein, and is similar to ZFP57 in its function in repressing 
the murine leukemia virus (MLV) in ESCs. ZFP809 binds to the 
primer binding site (PBS) that is required for the transcription of the 
retrovirus, and subsequently recruits TRIM28 through the KRAB 
domain [102,103]. Given the involvement of ESET in ZFP809-mediated 
silencing of retroviruses, the mechanism by which retroviruses are 
repressed may also involve the formation of heterochromatin [104]. 
Other than MLV, TRIM28 also represses other retroviruses, including 
those that harbour PBS sequences different from MLV, such as visna, 
spuma, and the Mason-Pfizer monkey virus [105], and endogenous 
retroviruses (ERVs) that are active in the mammalian genome [106]. 
However, the transcription factor that recruits TRIM28 in these other 
instances is not ZFP809 [105], but most likely some other unidentified 
KRAB domain-containing zinc finger proteins.
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Mediators
Mediators are multi-subunit complexes which generally act as 

coactivators in RNAPII transcription. Mediators interact with both 
DNA-binding transcription factors and RNAPII machinery and form 
chromatin loops between the enhancers and promoters of active genes 
[107,108]. Recent studies have identified some roles for mediators in the 
regulation of ES pluripotency. A RNAi screen for regulators necessary 
for ESC state identified 12 subunits of the Mediator complex, including 
Med6, Med7, Med10, Med12, Med14, Med15, Med17, Med21, Med24, 
Med27, Med28, Med30, which are required for Oct4 maintenance 
in ESCs [109]. ChIP-seq results indicated that mediators contribute 
to gene regulation in the Oct4-Sox2-Nanog core circuitry, given the 
evidence that they can associate with promoters of Pou5f1, Nanog and 
other actively transcribed genes at sites bound by crucial transcription 
factors of the circuitry [6,109].

Among these subunits, Med12 is essential for early mouse 
embryogenesis, since its absence causes embryonic arrest at E7.5, with 
the loss of canonical Wnt/β-catenin signaling [110]. Human MED12 
mutations cause Lujan–Fryns syndrome and Opitz–Kaveggia syndrome 
[111,112]. In ESCs, Med21 is found to be indispensable for ESC viability 
and homozygous disruption of Med21 is lethal in ESCs [113]. Med12 
knock-down ESCs display phenotypes and gene expression profiles 
similar to those resulting from Nanog depletion [114]. In addition, 
Med12 is a Nanog-associated protein and co-occupies Nanog target 
promoters. Therefore Med12 may facilitate Nanog trans-activation 
functions in gene regulation [114]. 

Med15 is essential for the Smad2/3 transcriptional response [115]. 
As a nuclear partner of TAZ, Med15 retains TAZ in the nucleus and 
helps to maintain TAZ-mediated nuclear accumulation of Smad and 
expression of pluripotency markers Pou5f1 and Nanog in hESCs [116].

CDK8, Cyclin C, Med12 and Med13 can form a sub-complex 
known as the CDK8 sub-module which negatively regulates mediators 
in the recruitment and activation of RNAPII [117]. The CDK8 sub-
module can also recruit G9a methyltransferase associated with RIP140 
repressive complex, jointly mediating gene inactivation [118]. Recently, 
an important role of CDK8 in ESCs was revealed, in which CDK8 serves 
as activator of several signaling pathways, such as the Wnt/β-catenin 
pathway, Notch pathway, and the TGFβ/BMP signaling pathway, 
which are key regulators in ESCs [119-122]. CDK8 also maintains ESC 
pluripotency through the regulation of Myc and Myc target genes [123].

Mediators can also regulate gene transcription through synergizing 
chromatin remodelers with chromosome conformation modification 
in ESCs. For instance, mediators are necessary for the recruitment of 
CHD1, a H3K4me3-associated chromatin remodeler, and therefore 
facilitates RNAPII transcription initiation of active genes in ESCs 
[124]. Furthermore, mediators and the Ada-Two-A-containing 
complex (ATAC) histone acetyltransferase can form a highly stable 
meta-coactivator complex (MECO), which regulates transcription of 
RNAPII-transcribed non-coding RNA (ncRNA) genes in ESCs [125].

In summary, there is compelling evidence showing that mediators 
are required for ESC pluripotency regulation. The underlying 
mechanisms include regulation of RNAPII, contributing to the 
ESC-specific transcription circuitries by mediating functions of 
core transcription factors like Nanog and Myc, facilitating signaling 
transductions and acting as chromatin remodeler partners.

Cohesin
The Cohesin complex is composed of four core subunits: Smc1a, 

Smc3, Stag2 and Rad21, and is primarily required for sister chromatid 
cohesion and chromosome compaction during meiosis and mitosis 
[126]. Studies in model organisms and evidence that cohesin is 
associated with developmental abnormalities have extended the role of 
cohesin to the regulation of gene expression [127,128]. 

How cohesin contributes to executive gene expression programs 
is not well understood. ChIP-seq results have shown that cohesin co-
occupies the same binding sites as CCCTC-binding factor (CTCF) 
in mammalian cells and may contribute to CTCF insulator function 
by stabilizing DNA loop formation [129-131]. Similarly, cohesin is 
required for estrogen-dependent transcription regulation in breast 
cancer cells and mediator-activated transcription in ESCs [109,132]. 

Previous studies have identified the important roles of cohesin in 
ESC pluripotency regulation. As shown in two different ESC identity 
RNAi screens, the level of Oct4 is highly sensitive to reduced levels of 
cohesin subunits and the cohesin loading factor, Nipbl, which loads 
cohesin onto DNA [83, 109]. As such, cohesin may bind to promoters 
of key pluripotency-related genes, including Pou5f1 and Nanog [109]. 
Furthermore, ChIP-seq results determined co-localization of cohesin 
with CTCF and mediators in their genomic regions in ESCs [109]. 
However, there are still nearly one-quarter of cohesin binding sites 
which are not occupied by either CTCF or mediators, implying that 
cohesin has other possible partners [109]. Based on what has been 
found, we may hypothesize that cohesin regulates ESC chromatin 
architecture through two possible mutually exclusive mechanisms: 
(i) cohesin can repress gene transcription via CTCF in the same way 
as in other mammalian cells, or (ii) cohesin can specially interact 
with mediators at the actively transcribed gene locus, stabilizing the 
enhancer-core promoter loops brought about by mediators. 

Another study found that the loss of RAD21 affects pluripotency 
and induces differentiation of ESCs. RAD21 co-occupies binding sites 
bound by pluripotency-associated transcription factors independently 
of CTCF and is an integral component of the ESC transcriptional 
network, which is further demonstrated by the observation that the 
change of gene expression profile upon RAD21 knock-down resembles 
that upon Nanog depletion [133].

Moreover, cohesin subunits are interacting partners of Oct4 and 
Nanog-Smc1a is identified as an Oct4 interaction protein [12] and 
Nanog is found to bind to cohesin subunit Stag2 and cohesin complex 
regulatory protein Wapl, which is necessary for cohesin removal from 
the chromatin [16,133]. 

Although cohesin has important roles in maintaining ESC-specific 
chromatin architecture (via either mediators or CTCF) and mediates 
ESC-specific gene transcription activation or repression, the molecular 
mechanism remains to be further elucidated. Besides, considering 
that cohesin co-localizes with many key transcription factors in ESCs, 
together with the observed binding interactions of Oct4 with Smc1a 
and Nanog with Stag1 and Wapl, pluripotency transcription factors may 
mediate the placement of cohesin at CTCF-independent binding sites. 
For instance, Nanog may recruit cohesin to its binding sites through the 
interaction with Stag1 and/or Wapl [133]. Conversely, cohesin may also 
assist these core transcription factors in their functions.

Condensin
Similar to cohesin, condensin is also a structural maintenance of 
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Cofactor Gene Symbol Functions in ESCs Reference
Coactivators

FACT complex
SPT16

Oct4-associated protein [11,17]
Recruitment of TBP and TFIIB of transcription pre-initiation complex [50]

SSRP1 Oct4-associated protein, and also c-Myc binding partner [11,17,56]

Yes-YAP-Tead pathway YAP
Maintains ES identity,as OE inhibited ESC differentiation [39]
Activates pluripotency genes [41]

DNA repair proteins

MSH2/MSH6 
Oct4-associated proteins [11,12,17]
Acts as a "sliding clamp" that disassembles histone [45] 

XPC-RAD23B-CETN2
Located at Oct4 and Nanog promoters [47]
Required for ESC identity and somatic cell reprogramming [47]
Regulates of histone modification to mediate transcription [48]

Mediators

 

 

 

 

 

 

 

Med6

Required for Oct4 maintenance [109]

Med7
Med10
Med14
Med17
Med24
Med27
Med28
Med30

Med12
Required for Oct4 maintenance [109]
Nanog-associated protein, regulates Nanog and Nanog target genes [114]

Med15 Required for Oct4 and Nanog expression in hESCs [109,116]

Med21
Required for Oct4 maintenance [109]
Required for ESC survival [113]

CDK8 Regulates Myc and Myc target genes [123]
MECO Regulates transcription of ncRNA genes [125]

Cohesin and associated proteins

Smc1a
Oct4-associated protein, [12]
Required to maintain ESC identity and viability [133,137]

Smc3 Required to maintain ESC identity [133]
Stag2 Nanog-associated protein [133]

Rad21
Required to maintain ESC identity [133]
Regulates Nanog and Nanog target genes [16]

Nibpl Required for Oct4 maintenance [109]
Wapl Nanog-associated protein [16,133]

Condensin
Smc2 Required for ESC survival [34]
Smc4 Involved in interphase high-order chromatin organization [137]

Histone acetyltrans-ferases (HATs)
P300/CBP complex

Component of ESC transcription factor network and modulates Nanog expression [9,21]
Cooperates with CHD7 [29]
Involved in ES cell differentiation [22,28]

Tip60-p400
Oct4-associated protein [12]
Cooperates with Nanog or H3K4me3 [34]

Corepressors

CCR4-NOT complex

Cnot1 Prevents ESC differentiation, repression of trophectodermal genes  [84]
Cnot2

Cnot3
Essential for ESC pluripotency for inducing c-Myc and Zfx, independently of Oct4/Nanog/Sox2 [83,84]
Repression of trophectodermal genes [84]

KRAB-ZFP-Trim28 Trim28

Interacts with Nanog and Oct4, essential for ES pluripotency [16,34,83,92]
Chromatin de-condensation by recruitment of chromatin remodelling complexes [92]
Co-repressor to ZFP57 for maintenance of genomic imprinting, possibly by recruiting DNA 
methyltransferases and HP1 family [97-99]

Co-repressor to ZFP809, and other un-identified transcription factors, for repressing retrovirus 
expression [102-106]

Histone deacetyla-ses (HDACs)

Sin3a
Essential for proliferation, viability and genomic integrity of ESCs [34,68]
Interact with Sox2 and Nanog, and positively regulates Nanog [15,69]

NuRD complex

Essential for derivation of ESCs [73]
Represses lineage genes to maintain the full pluripotency of ES cells [15,73,75]
Forms a repressive ESC-specific NODE complex together with Oct4 and Nanog [15]
Interacts with other chromatin modifiers to mediate gene regulation [76-78]
Implicated in Sall4-mediated transcription repression [81]

Table 1: Known functions of cofactors in ES cells.
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Figure 1: Schematic model of transcriptional regulation by cofactors IN ESCs. 
(A) Transcriptional activation by coactivators, cohesin and mediators. Coactiva-
tors p300/CBP complex, Tip60-p400, SCC, YAP, FACT may recruit chromatin 
remodelers and histone modifiers to open up the chromatin structure. Mediators 
and cohesin facilitate DNA loop formation to bring the Distal Enhancer (DE) to 
proximity of the promoter, and the Pre-initiation Complex (PIC) is assembled to 
initiate transcription. (B) Transcriptional repression by corepressors and con-
densin. Condensin is required for proper chromatin conformation and epigen-
etic modifications in ES cells. Cohesin can stabilize the DNA loop formed by 
the insulator CTCF to avoid interactions between the DE and promoter. Core-
pressors CCR4-Not, Sin3a, NuRD, Trim28 can recruit HDACs to condensed 
chromatin and prevent transcription factors from binding to genomic DNA.  The 
RNA polymerase II activity will be suppressed.
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chromosomes (SMC) protein complex. It is required for chromosome 
compaction and meiotic condensation, chromosome segregation 
and removal of cohesin during cell division [134]. Studies in model 
organisms have suggested a role of condensin in gene regulation, 
possibly through repression of RNAPII transcription [135,136]. 

Condensin has a role in maintaining the specific interphase 
chromatin structure in ESCs, suggesting that condensin plays a role 
in transcription regulation. Indeed, knock-down of Smc2 and Smc4, 
which are core catalytic subunits of mammalian condensin complexes, 
causes ESC-specific apoptosis [34,137]. Enlarged nuclei, altered higher-
order chromatin conformation and epigenetic modification changes 
were also observed in the knocked-down ESCs, but not in somatic 
cells [137]. This suggests that ESCs require condensin for their unique 
chromosome folding, which is different from somatic cells. Thus, there 
is still much to discover about how condensin functions in transcription 
and chromosome regulation in ESCs.

Summary and Perspectives
In summary, cofactors including coactivators, corepressors, 

mediators, cohesin and condensin that that function through histone 
modification, chromatin remodeling or the recruitment of transcription 
machinery, are vital for the regulatory activity of transcription factors 
(Table 1, Figure 1). Transcription factors are in turn responsible 
for recruiting the cofactors to their target genes (Figure 1). Many of 
these cofactors are also present in differentiated cells and serve to play 

different roles when compared to their function in ESCs. This is likely 
due to the presence of cell type-specific factors that trigger the cell type-
specific roles of these cofactors in different context. Therefore, it would 
be worthwhile to further determine how the interactome of these 
proteins leads to their specific functions and how it integrates into their 
regulation of the transcriptional network in ESCs. In particular, more 
structural studies on cofactor complexes and combination of genome-
wide location analysis with computational biology will provide novel 
insights into cellular functions of cofactors in ES cells.
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