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Microbes capable of interacting with insoluble electron 
acceptors and/or donors have broad implications, ranging from 
geomicrobiological processes, alternative energy production, 
bioproduction of commodity chemicals, and an understanding energy 
flow in anaerobic environments. Electromicrobiologists investigate 
bacteria capable of transferring electrons extracellularly to and/
or from insoluble surfaces, driving internal metabolic processes. 
Electromicrobiology is a cross-disciplinary field that covers the 
processes, mechanisms and applications of electric bacteria.

A wide range of microbes have been discovered that are capable 
of electrically interacting with their environment. Dissimilatory 
metal reducing bacteria are among the most studied, being capable 
of “breathing metals” in anaerobic environments. Derek Lovley 
isolated the first dissimilatory metal reducing microbe, Geobacter 
metallireducens, from sediment in the Potomac River in 1987 [1]. 
This microbe is capable of the complete oxidation of organic carbon 
to carbon dioxide, while utilising an insoluble electron acceptor to 
support growth. Geobacter species are able to reduce a wide range 
of mineral and metalloids, including iron, manganese and uranium. 
Utilising metal oxides in anaerobic environments for respiration; 
dissimilatory metal reduction plays an important role in carbon and 
geochemical cycles. An understanding of their function can be applied 
to the bioremediation of organic pollutants, heavy metals and radio 
nuclides in anaerobic environments [2].

An interesting aspect of the Geobacter species was the discovery, 
that they do not produce any electron shuttles, but directly transfer 
electrons extra cellularly to iron oxide [3]. Subsequent studies have 
demonstrated electrically conductive pili and the outer membrane 
c-type cytochrome OmcS, as the route of extracellular electron flow
between the microbes and the iron oxides [4,5]. Iron oxide particles are
normally much smaller than the bacterial cells, leading to the microbes
being planktonic in the environment, expressing flagella too in the
search for oxidised electron acceptor [6]. During this time, Geobacter
species are capable of utilising the extensive heme containing c-type
cytochromes as capacitors to hold excess electrons, until a suitable
electron acceptor can be found to allow the cytochromes to be
discharged [7].

The electricity breathing ability of these microbes can be collected 
from the environment as an electrical current, using a device called a 
Microbial Fuel Cell (MFC) [8-10]. Microbes utilise an electrode as an 
electron acceptor for anaerobic respiration. Initially designed for the 
harvesting of electrical current from organic compounds, difficulties 
in scalability above pilot scale has seen their application in power 
production, focused towards the powering of low power devices in 
aquatic environments [11-13]. Some of the more interesting current 
applications of MFC include applications where the harvesting of 
electrical current is not the primary focus, these include: acting as 
sensors for microbial metabolism in subsurface environments [14]; 
stimulating bioremediation of organic environments by providing 
an electrode as an electron acceptor [15]; and providing a means 
for balancing electron flow during the production of the microbial 
production of commodity chemicals [16].

Compared to metal reduction in the environment, an electrode 

can act as an infinite electron sink. This leads to both similarities 
and differences in the microbial behaviours utilising these insoluble 
electron acceptors. Geobacter species are extensively enriched within 
the electrode-associated communities of MFC, when a diverse range 
of environmental inoculum and organic carbon source are used [11]. 
Geobacter species seem to be the most adapted in utilising an electrode 
as an electron acceptor. They produce the highest current density of 
both pure and mixed cultures in a MFC; are able to directly interact 
with an electrode without the use of an electron shuttle, and produce 
relatively thick biofilms (>60 µm) [17]. This biofilm has the unusual 
property of being electrically conductive, allowing all cells within the 
biofilm to be metabolically active and capable of transferring electrons 
to the electrode, across distances greater than 50 cell lengths [18,19]. 
Geobacter species on the electrode surface utilise a network of pilin 
and the outer membrane cytochromes, more specifically OmcZ, to 
electrically connect to the electrode [20-22]. The ability to produce a 
conductive biofilm and act as a capacitor has seen an interest in utilizing 
these microbes in bioelectronics applications [23].

The range of applications has been further broadened with the 
discovery that microbes can also utilize an electrode as an electron 
donor. The molecular method for electron transfer from an electrode 
does not appear to share any molecular similarities with the electron 
transfer to an electrode or iron oxide. The electrically conductive 
pilin, the outer membrane cytochromes, OmcS and OmcZ, are not 
essential for the microbes to accept electrons from the electrode. The 
only protein current found to be essential is a separate outer membrane 
c-type cytochrome, whose current roll is unknown [24]. Being able
to provide energy to microbes, directly utilizing an electrode, has
significant potential in the bioremediation of a number of recalcitrant
contaminates, such as chlorinated compounds [15,25], toxic and
radioactive metals [26], and nitrate [27,28]. Microbes may also act as
catalysts on an electrode, for the conversion of an electrical current
to hydrogen and methane [29-31]. Electrons may also be utilised as
a reductant for the reduction of organic compounds to commodity
chemicals [32,33].

Some microbes can even utilise the reducing power of an electrode 
to fix carbon dioxide for the production of organic chemicals. Due 
to the similarities to photosynthesis, the microbial fixation of carbon 
dioxide utilising an electrode as a reduction process has been termed 
electrosynthesis [32]. Electrosynthesis has the potential to produce 
liquid transportation fuels and other useful organic commodities in 
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a more efficient and environmentally sustainable manner, than other 
biomass based biofuel production strategies. 

While it may be thought that the ability to interact with insoluble 
minerals, metals and metalloids in the environment gives the 
Geobacter species an advantage on an electrode, recent findings 
suggest the evolution of conductive biofilms may have evolved from 
syntrophic interactions with methanogenic microbes. Previously, 
it has been considered that syntrophic interactions in methane 
producing communities occurred mainly through hydrogen transfer 
between the partners, where by the electron-donating partner would 
produce hydrogen and the electron-accepting methanogen would 
utilise hydrogen as an electron source. Studies of electric bacteria have 
demonstrated that microbes in methanogenic communities are capable 
of directly transferring electrons through large aggregates to each other. 
Direct interspecies electron transfer can be the primary mechanism for 
electron transfer in methanogenic aggregates [34,35], although this is 
not always the case [36].

During direct interspecies electron transfer, Geobacter species 
produce an electrically conductive network capable of long-range 
transfer, more resembling the biofilm produced on an electrode, rather 
than when grown on iron oxides. These microbes within conductive 
anaerobic syntrophic networks are a new potential source of electric 
bacteria with beneficial characteristics.While great inroads have been 
made, our understanding of electric bacteria is still limited. Evaluation 
of the full potential of electric microbes in industrial, biomaterial and 
environmental applications is reliant on the growing field of electro 
microbiology.
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