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Abstract

Bacterial volatile organic compounds (VOCs) have been considered as sensitive and specific biomarkers for
bacterial detection in human specimens and culture media. The possibility of using VOCs markers as one of the
largest groups of bacterial metabolites would open a new frontier for developing more efficient techniques in the
diagnosis of bacterial infections. This review will discuss the current published theory and data regarding the use of
bacterial VOCs as markers in bacterial infections.

Keywords: Volatile Organic Compounds (VOCs); Bacterial
detection; Infectious diseases; Biomarker

Introduction
Many bacterial pathogens could lead to life-threatening infections.

Accurate and rapid diagnosis is essential for the successful
management of these infectious diseases. Traditional bacterial
identification methods are time-consuming, require specific
techniques and expertise. Other limitations of these techniques such as
unaffordability and unavailability of expensive microbiological
equipment and delay in the transport of human specimens such as
fecal samples in diarrhea patients to the appropriate laboratories
remain as main causes of delay in proceeding suitable curative actions
in some countries. Therefore, all mentioned reasons have led to
unavoidable delay in diagnosis and even death of infected patients [1].

Chemical analysis of bacterial culture includes analysis of bacterial
metabolites, bacterial cell wall compositions and fatty acids profiling,
have been introduced as bacterial differentiation and detection
methods [2,3]. Metabolomics is a fast developing ‘omics’ that analyzes
final metabolites of the cells by means of high throughput analytical
technologies such as gas chromatography-mass spectrometry and high
performance liquid chromatography-mass spectrometry [4]. Recent
advances in ionization technologies allow researchers to perform
sensitive qualitative and quantitative analysis of high molecular weight
compounds along with the conventional ability of low molecular
weight compound analysis in biological experiments [5]. This review
will discuss the current published theory and data regarding the use of
bacterial VOCs as markers in bacterial infections.

Bacterial volatile organic compounds
VOCs are carbon based molecules which are naturally volatile in

ambient temperature with a minimum evaporate pressure of 1 kPa
[6,7]. These organic compounds are producing as parts of plants,

humans, animals, mushrooms and microorganism’s metabolic
pathways. VOCs have been used for bacterial identification since 1964
when Geldreich and co-workers developed the Indole-Methyl red-
Voges–Proskauer and Citrate (IMVIC) test which was used for the
detection of coliform based on the production of indole, acetoin,
pyrovate and 2,3-butanediol in culture media [8]. Indole and 2-
aminoacetophenone are two examples of typical VOCs that have been
used as common markers for Escherichia coli and Pseudomonas
aeruginosa detection in culture media [9,10]. VOCs from bacterial
pathogen have been used to develop sensitive and accurate methods to
prove the absence or presence of pathogens as well as phenotyping
within bacterial species. Such information could be used to take the
best action regarding prevention or antibiotic treatment [11].

VOCs can be categorized in several groups including fatty acids,
aromatic compounds, nitrogen containing compounds and sulfur
volatile compounds [12]. Bacteria produce a wide range of VOCs as
their primary or secondary metabolites in different physicochemical
conditions. As it is summarized in Table 1, bacterial VOCs have been
reported as significant bacterial differentiation and detection markers
[1,13-21].

The VOCs profile of the bacterial communication depends on the
diversity of the bacterial composition as well as available carbon and
energy sources and physiochemical conditions in bacterial
microenvironment [22]. For example, volatile short chain fatty acids
(SCFAs) such as lactate, acetate, propionate and ethanol are produced
via primary bacterial fermentation from carbohydrates. These SCFAs
are in turn converted to VOCs such as butyrate, propionate, propanol
etc. [22]. It is expected that increasing in the abundance of butyrate
producing microorganism such as Bifidobacterium and
Faecalibacterium would result in an increase in the level of butyrate
concentration in VOCs analysis of human specimen which can be
used as a quantitative marker for bacterial presence [23].
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Pathogens Detected VOCs Method

P. aeruginosa

Ethanol, Acetone, 2-Butanone, 2-Pentanone, Isoprene, Aminoacetophenone, Dimethyl sulphide, Dimethyl
disulphide, Dimethyl trisulphide, Methyl thiocyanate, 3-Methyl-butanone, Acetophenone, Methylthioacetate and
Methyl thiobutanoate, Hydrogen cyanide [13]

GC-MS [13,15,17]

Acetonitrile, Ethanol, Acetone, Acetic acid, Ethylene glycol, 2-Pentanone, 4-Methylphenol, Indole and 2-
Aminoacetophenone [14] SIFT-MS [13,16]

2-Nonanone, 2-Undecanone, 2-Aminoacetophenone [15] SESI-MS [14]

Acetic acid, Acetone, Acetonitrile, Amonia, Butanone, DMS, DMDS, Ethanol, Hydrogen cyanide, Isoprene,
Methanol, Metanthiol [16]  

Clinical samples: 2-Nonanone, 2,4-Dimethyl-1-heptene, 2-Nonanone, 2,4-Dimethyl-, 1-Heptene, 1-Butanol-3-
methyl, Limonene [17]  

S. aureus Acetonitrile, Ethanol, Butanol, Acetone, Acetic acid, Ethylene glycol, Isopentanol, Pyrimidine, 2-Pentanone, 4-
Methylphenol, 2-Nonanone [14] SESI-MS

E. coli Acetonitrile, Ethanol, Indole [14] SESI-MS

S. typhimurium Acetonitrile, Ethanol, Butanol, Acetone, Acetic acid, Ethylene glycol, Isopentanol, Pyrimidine, 2-Pentanone, 4-
Methylphenol, Indole, 2-Nonanone [14] SESI-MS

M. avium

2-Ethylfuran, 2-Methylfuran, 3-Methylfuran, Furan, 2-Pentylfuran, 2-Heptanone, 3-Octanone, Acetone, Methyl
Isobutyl Ketone, 2-Butanone, 3-Methyl-Butanal, 2-Methylpropanal, Methacrolein, 2-Ethylbutanal, 2-Methyl-2-
Butenal, Hexanal, 4-Methylheptane, 4-Methyloctane, 2,4-Dimethylheptane, Butane, Pentane, Hexane, Heptane,
Octane, 2,4-Dimethyl-1-Heptene, 2-Methyl-1-Pentene, Isoprene, Methylacetat, Ethylacetate, 2-Ethoxy-2-
Methylpropane, 1-Methyl-1-H-Pyrrole, 2-Methylbutanenitril, Dimethyldisulfide, Benzene [18]

GC-MS

C. difficile Clinical samples: Acetic acid, Butanoic acid, 2-Furancarboxaldehyde, 5-Methyl-2-furancarboxaldehyde, Methyl
furancarboxylate, 2-Hydoxy benzaldehyde, 4-Methyl phenol, and 2-Methoxy phenol [1] GC-MS

C. jejuni

Clinical samples: Absence of hydrocarbons and terpenes besides presence of phenols and indoles [1]

GC-MSSix significant discriminator VOCs between C. jejuni positive and negative fecal samples: Hexanal, (E)-2-Octenal,
Pyrrole, Ethyl ethanoate, Methyl alcohol, 2-Heptanone [19]

H. pylori

Propane, Acetaldehyde, Ethanol, Methanethiol, 1-Butene, 2-Butene, Isobutane, 2-Methyl-1-propene, Acetonitrile,
Butane, Pentafluoroethane, Acetone, Carbon disulfide, 2-Propanol, Ethylether, Methyl acetate,
Dichlorofluoroethane, 2-Methylbutane, 2-Pentene, Pentane, Cyclopentane, 2-Methylpropanal, Trichloromethane, 2-
Butanone, 4-Methylpentane, 1-Pentano, Ethylcyclopropane, Dimethyl disulfide, 2-Ethoxy-2-methylpropane, 3-
Methylbutanal, Mercaptoacetone, Toluene, Cyclohexane, Hexane, Methylcyclopentane, Benzene, 3-Methylpentane,
2-Methylpentane, 2-Methyl-1-propanol, 2-Methyl-1-pentene, Ethyl acetate, Methylcyclohexane, Tetrahydro-2,2,4,4-
tetramethylfuran, Ethylbenzene, Styrene, 2,4-Dimethyl-1-heptene, Octane, 3,5-Dimethyloctane, 3-Ethyloctane,
Decane [20,21]

GC-MS

Table 1: Summarize of the reviewed studies on VOCs profile for different pathogens in this review paper

Pathogens in cystic fibrosis patients and VOCs
P. aeruginosa is a well-studied bacterium in terms of the bacterial in

vitro VOCs profile in the last four decades [10,13,15,16,24-26]. This
bacterium, which has been known as the main cause of cross lung
infection in 85.6% of cystic fibrosis patients, can decrease lung
function resulting in high patient morbidity and mortality [27-30]. A
wide variety of VOCs such as ethanol, acetone, 2-butanone, 2-
pentanone, isoprene, aminoacetophenone, dimethyl sulphide,
dimethyl disulphide, dimethyl trisulphide, methyl thiocyanate, 3-
methyl-butanone, acetophenone, methylthioacetate and methyl
thiobutanoate have been identified as metabolites of P. aeruginosa
[13]. A landmark study which analyzed the VOCs profile of 11 P.
aeruginosa strains demonstrated that all 11 strains could produce
typical methyl ketones, particularly 2-nonanone, 2-undecanone and 2-
aminoacetophenone in the headspace of bacterial culture [15].
Production of 1-undecene and the lack of oxygenated compounds
production in the headspace of Pseudomonas bacterial culture could

be used to differentiate between this bacterium from Serratia
liquefaciens and Enterobacter cloachae [31].

The VOCs profile of five bacterial species including P. aeruginosa,
Staphylococcus aureus, E. coli, Salmonella enterica serovar
typhimurium and Salmonella enterica serovar pullorum were
compared to assess the ability of their VOCs profiles to differentiate
between those bacteria. The first three principal component analysis of
VOCs profiles of the mentioned bacteria demonstrated a clear
discriminant use of the bacterium’s VOCs patterns for identification
[14]. VOCs analysis of S. aureus and P. aeruginosa in a mixed culture
showed the linear correlation between detected VOCs patterns of
those two bacteria with their proportion in the culture media.
Changing from S. aureus’s VOCs profile to P. aeruginosa’s VOCs
profile was observed when there was a decrease in the proportion of S.
aureus in mixed bacterial culture containing those two bacteria [14].

There were approximately 25%-35% common VOCs between in
vivo (exhaled breath samples of infected mice) and in vitro
experiments of individual P. aeruginosa PAO1, P. aeruginosa FRD1
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and S. aureus RN450 [32]. The results of this experiment not only
demonstrated the capability of differentiation between infected mice
from uninfected mice, but could also be used to differentiate between
mice infected by S. aureus and P. aeruginosa. Furthermore, it was
found that the mice that had been infected by P. aeruginosa strains
PAO1 and FRD1 could be distinguished from each other by using
identified VOCs [32]. Hydrogen cyanide (HCN), which has been
identified as a significant marker in the exhaled breath samples of
cystic fibrosis (CF) patients, could be used as a marker for P.
aeruginosa detection with 68% sensitivity and 100% specificity
[13,16,33]. Additionally, the exhaled breath VOCs profile of CF
patients with and without P. aeruginosa could be differentiated based
on C5–C16 hydrocarbons and N-methyl-2-methylpropylamine [34].

2-nonanone was another volatile compound that could be used as a
marker of P. aeruginosa detection in the headspace of bronchiectasis
and cystic fibrosis septum samples with 72% sensitivity and 88%
specificity [17]. However, this sensitivity increased by 19% for 2-
nonanone in combination with 17 other detected compounds. Methyl
thiocyanate was also another marker with the concentration of 2-21
ppbv in the exhaled breath of CF patients infected by P. aeruginosa as
well as in the headspace of P. aeruginosa bacterial culture [30].
Interestingly, finding the parallel correlation of hydrogen cyanide
concentration with methyl thiocyanate has revealed that hydrogen
cyanide production is required for methyl thiocyanate production by
36 strains of this bacterium in the headspace of bacterial culture [30].
Therefore, taken together the results from the mentioned studies P.
aeruginosa VOCs profile can be a sensitive and specific biomarkers for
its identification and detection in human specimen’s samples as well as
in pure and mixed bacterial culture.

Pulmonary pathogens and their VOCs profiles
Analysis of pulmonary pathogen’s VOCs showed significant value

in developing a fast and precise detection of pulmonary infection. The
headspace VOCs profiles of potential pulmonary infectious
microorganisms which include E. coli, P. aeruginosa, S. aureus and
Klebsiella pneumonia could be used to discriminate between bacterial
cultures and culture medium. Furthermore, statistical discriminant
analysis of VOCs patterns for the assessed microorganisms has proved
the use of 25 VOCs to distinguish between different bacterial cultures
from each other [35].

Mycobacterium avium subsp. paratuberculosis (MAP) is a leading
cause of Johne's disease (paratuberculosis) [18]. Five different MAP
strains including strains DSM 44133, JIII-386, JII-2421, JII-3197 and
JII-0817 could be distinguished from blank culture media by using
their VOCs profiles. 34 VOCs out of 100 substances were selected as
significant VOCs from all cultured bacterial strains. However, the
relative abundances of those 34 compounds were significantly
different between all five strains. In addition, furan compounds such
as furan, 2-pentylfuran, 2-methylfuran and 3-methylfuran showed the
highest concentration in the headspace of MAP bacterial culture in
comparison with aldehydes, hydrocarbons and nitrogen and sulfur
containing compounds [18].

Electronic-nose system that is made of multisensory array has been
considered in biomedical studies as a portable device for VOCs
detection from human samples such as exhaled breath and fecal
sample [36-40]. This device also has been used to define the in vitro
VOCs profile of Mycobacterium tuberculosis and by using this profile
researchers could differentiate this bacterium from four other bacterial
species including M. tuberculosis, M. avium, M. scrofulaceum and P.

aeruginosa [41]. In addition, the results of in situ studies of
tuberculosis (TB) patient’s septum showed the ability of using an
electronic nose to identify tuberculosis infections between healthy
samples and those with M. avium and P. aeruginosa infections [41].

Another gas sensing system based on 14 conducting polymers also
used for examination of 196 septum samples including 134 M.
tuberculosis positive culture samples and 79 M. tuberculosis negative
culture samples. The result of this study showed an 89% sensitivity and
91% specificity for M. tuberculosis diagnosis from M. tuberculosis, M.
avium, M. scrofulaceum and P. aeruginosa infections [42]. The results
of these two experiments revealed that 14 sensors conducting polymer
array were able to screen TB patients from healthy subjects and other
bacterial infections with a reasonable sensitivity and specificity [41,42].

Food-borne pathogens and their VOCs profiles
Finding the VOCs biomarkers for the identification of bacteria that

cause diarrhea was one of the first studies of using fecal VOCs analysis.
The study found a furan producing species without indole production
correlated to the VOC profile of Clostridium difficile in the fecal
samples of infectious diarrhea patients. In addition, the absence of
hydrocarbons and terpenes in fecal samples indicated the presence of a
Campylobacter jejuni infection in diarrheal sample from the patient
[1].

E. coli O157:H7 has been known as a main cause of acute
hemorrhagic diarrhea and abdominal cramps. This bacterium has
been identified as a human infection microorganism in 1982 in two
hemorrhagic colitis patients and after that it was entered to the clinical
research area for the public health concern [43,44]. Human infections
by this strain is appeared by symptom free carriage, non-bloody
diarrhoea, haemorrhagic colitis, haemolytic uraemic syndrome and
death [43].

VOC analysis was used to distinguish between E. coli O157:H7, S.
aureus and S. typhimurium in bacterial culture media. Six core peaks
were detected as a signature for E. coli detection. The identified
signature could be used to differentiate this bacterium from S. aureus
and S. typhimurium. These six peaks were assigned for eleven different
strains of E. coli and it was observed that detected peaks were
presented in all eleven strains and could be used as biomarkers to
detect this bacterium. Furthermore, E. coli O157:H7 and O145 could
be differentiated from other nine E. coli strains by using their VOCs
profiles [45]. In another experiment, the VOCs profile of S. aureus
showed significant differences from E. coli and Klebsiella pneuminiae
VOCs in terms of lacking 1-decanol and 1-dodecanol in E. coli and K.
pneuminiae within bacterial culture media [46].

Campylobacter jejuni is a major prevalent food-borne pathogen
that causes gastroenteritis worldwide [47,48]. VOCs analysis of this
bacterium showed significant commonness of 2-hexanone, (E)-3-
hexen-2-one, hexanal, (E)-2-octenal and pyrrole in Campylobacter
positive fecal samples of chickens [19]. In addition, the authors
reported a significant differences in the abundance of hexanal, (E)-2-
octenal, pyrrole, ethyl ethanoate, methyl alcohol and 2-heptanone
between two groups of Campylobacter positive and negative chicken
fecal samples which can be used for biomarkers with 96% and 95%
sensitivity and specificity, respectively [19].
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Gastrointestinal pathogens and their VOCs profiles
After isolation and identification of Helicobacter pylori from

patient’s gastric mucosa in 1983, this bacterium has been known as a
major cause of gastric disorders such as chronic active gastritis and
peptic ulcer disease [49,50]. Isobutane, 2-butanone and ethyl acetate
were observed in breath samples of H. pylori positive subjects as well
as in the headspace of H. pylori bacterial culture media while these
compounds were not detected in exhaled breath of H. pylori negative
subjects [20]. Another example of gut microbiome related VOCs is the
changing the level of ethanol in the exhaled breath of obese mice that
have been changed in the composition of their intestinal microflora
[51].

VOCs profile analysis of H. pylori in the bacterial culture media and
the analysis of VOCs emitted from stomach cancer tissues showed
overlapping of 8 VOCs between cultured H. pylori and the VOCs of
cancer tissues. In addition, carbon disulfide, 1-propanol, 2-propanol,
2-butanone, 4-methylheptane, 4-methyloctane and 2-ethyl-1-hexanol
were recognized as cancer biomarkers in that study [21]. Detection of
carbon disulfide and1-propanol as common detected VOCs in
bacterial culture media and the emitted VOCs from cancerous tissues
suggested that increasing in the concentration of emitted these VOCs
from cancerous tissue might be as a results of presence of H. pylori in
conjugation with cancerous tissue [21].

Recent gut microbiome studies have revealed the significant roles of
gastrointestinal microbiota in promoting both health and disease in
humans including gastrointestinal disorders, chronic systemic
metabolic and inflammatory diseases [52]. One of the potential
function of intestinal microbiota to promote health or disease is their
important metabolic functions such as fermentation, vitamin synthesis
and energy storage via short chain fatty acids production [53,54].

Fecal metabolites profiling along with fecal microbiota profile
analysis have been employed to find the valuable markers for diagnosis
of some non-infectious disorders such as autism, colorectal cancer,
chronic gastrointestinal disease, celiac disease, nonalcoholic fatty liver
disease and necrotising enterocolitis [55-60]. For example, there was a
notable positive correlation between the presence of
Phascolarctobacterium and Acidiminobacter with concentration of
phenylalanine and glutamate. Furthermore, the modest correlation
with concentration of serine and threonine in fecal samples of
colorectal cancer patients was observed in that study [59]. High
concentration of ester, indole and alcohol derivates of short-chain fatty
acids in Crohn's disease patient’s fecal samples in comparison with the
concentration of mentioned VOCs of healthy volunteers, ulcerative
colitis, and ulcerative colitis fecal samples is another example of
significant value of fecal VOCs in bacterial related diseases diagnosis
[60]. Therefore, the results of fecal microbiota analysis and their VOCs
profile promote the idea of using qualitative and quantitative analysis
of fecal metabolites to evaluate fecal bacterial communication. The
generated data from this kind of analysis can be used for developing a
fast and sensitive diagnostic method.

Conclusion
VOCs have been extensively studied in recent years because of their

aptitude to be used in bacterial identification and differentiation. The
qualitative and quantitative characteristics of microbial VOCs pattern
allow researchers to identify bacterial VOCs as sensitive and specific
biomarkers for rapid bacterial detection even though more research
need to be done to improve biomarkers discovery. The application of

bacterial VOCs for developing none-invasive and rapid in situ
bacterial detection methods would have enormous promises in clinical
diagnosis of infections and real time monitoring of disease
development as well as the effect of treatment.
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