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Abstract

Objective: Genetic disorders involving the 15q11-q13 region in humans are complex and often exhibit a variety
of mutation types that can affect multiple genes in the region. Angelman syndrome and Prader-Willi syndrome are
neurodevelopmental disorders that are caused by mutations in this region. A variety of mutations, from point to large
deletions are exhibited in the patient population. Although the mutations that cause several of these disorders are
well understood and characterized the availability of in-vivo models that accurately reflect the high variation of
mutations in individual patients has not been feasible. This review examines how applying CRISPR technology can
result in more accurate models of 15q11-q13 disorders and other multiple gene disorders, including autism spectrum
disorders.

Background: Previous methods of creating disease models have been cost and labor intensive making it
impossible to accurately represent the variation in complex genetic disorders. The advancement of CRISPR
technology has drastically changed the ease of producing in-vivo models for diseases where the mutation varies in
individuals.

Methods: A review of relevant literature on Angelman syndrome, Prader-Willi syndrome, and CRISPR
technology, and the implications of applying CRISPR technology to the autism field.

Results: CRISPR technology has the potential to drastically impact the 15q11-q13 disorders and autism field in
the creation of more varied and accurate in-vivo models, which will advance our understanding of these diseases
and potentially lead to better treatments.

Keywords: CRISPR; Prader-Willi syndrome; Angelman syndrome;
Autism spectrum disorders; 15q11-q13; iPSC

Abbrevations:
CRISPR: Clustered Regularly Interspaced Short Palindromic

Repeat; TALE: Transcription Activator-Like Effector; ZF: Zinc Finger;
AS: Angelman Syndrome; PWS: Prader-Willi syndrome; ASD: Autism
Spectrum Disorder

Introduction
Disorders of the 15q11-q13 region have been difficult to model as

there exists a wide variation in mutation types that have caused these
disorders. Although the minimal mutation region is known for both
Angelman Syndrome (AS) and Prader-Willi syndrome (PWS) few
patients have these microdeletions, instead patients have a variety of
mutations including point mutations, large deletions of multiple
genes, imprint center control mutations and uniparental disomy [1,2].
This variation of mutations has been difficult to replicate in both
animal and cellular models, instead there has been a heavy reliance on
one predominant model being used for a majority of the studies [3,4].
A similar situation of multiple models being necessary for a disorder
can be found in autism spectrum disorders (ASD), a percentage of
individuals with 15q11-q13 disorders are also classified on the autism
spectrum. Over 100 candidate genes are implicated in ASD, of which a
combination of these genes may be mutated in a single individual [5].

Until recently the task of making multiple disease models with varied
and exact deletion sizes or multiple gene mutations was extremely
labor and cost intensive. The advent of CRISPR (clustered regularly
interspaced short palindromic repeats) has the ability to dramatically
reduce both time and cost in creating a vast variety of mutation sizes
and multiple gene mutations [6]. This review will focus on the
advantages the CRISPR technology offers in creating more varied and
accurate models for 15q11-q13 associated conditions of Angelman
Syndrome and Prader-Willi syndrome and the ability of the
technology to be applied beyond into the ASD field, or any genetic
disease.

Background
Angelman Syndrome and Prader-Willi syndrome are

neurodevelopmental disorders of which a subpopulation are often
placed on the autism spectrum [5,7-9]. Angelman syndrome affects
1:10,000 individuals and symptoms include ataxia, intellectual
disability, sleep disorders and in some cases seizures [2,10,11]. Prader-
Willi syndrome affects

1:10,000 individuals and symptoms include obesity, intellectual
impairment, sleep disorders and hyperphagia [2,12]. Both diseases
have been shown to occur with mutations ranging from a single point
mutation to large gene spanning deletions of 4MB, making the
application of a single model representative of each individual case
insufficient [1,13]. The causative gene in Angelman syndrome is
UBE3A, a ubiquitin ligase protein that adds ubiquitin as a post-
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translational modification to target proteins for degradation [14,15].
In Prader-Willi syndrome the causative mutation is in the SNORD 116
cluster, a group of small nucleolar RNAs that help with protein folding
[12,16,17]. Cellular iPSC models have been derived from a small
number of AS and PWS patients, but represent only a fraction of the
mutation variability in the patient population [18]. Patient derived
cells can be an excellent source of information, but the genetic
background of each patient is different making it difficult to study the
exact changes that occur based only on a combination of mutations or
the size of a specific deletion. Ideal cellular models would have an
identical genetic background and only a mutation variance. The
introduction of induced pluripotent stem cells (iPSCs) has made it
possible to create many cellular types with an identical genetic
background, in an effort to understand the effect of the mutations
across various cell types [19-21]. The ability to fully utilize isogenic
iPSC models was limited until recently by the time consuming
methods with which to introduce new mutations into an iPSC line [22,
23].

The mouse models of Angelman and Prader-Willi disease focus on
recapitulating the disease phenotypes, sometimes at the expense of an
accurate mutation representation. The most well characterized
Angelman syndrome mouse model has a deletion in the N- terminal
section of the protein, effectively deleting many of the known isoforms
of Ube3a [3]. This model does not reflect on a genetic level the large
deletions seen in 70% of the patients, the point mutations or
imprinting control region mutations seen in another 20% of the
patients [13]. In many Angelman patients multiple genes are deleted in
this region, attempts to mimic this large deletion have not been very
successful, resulting in poor viability or inexact targeting with
traditional homologous recombination technology [24-26]. Prader-
Willi syndrome models have also been similarly limited, with several
of the models only having a portion of the large deletion, though this
had been due in part to extremely early mortality in large deletion
models [4,26]. All of the current models were time and cost
consuming to create and are limited in their ability to represent the full
spectrum of variation of mutations in actual patients. This limitation
has been problematic for both understanding the disease mechanism
and range of symptoms and developing effective treatments. CRISPR
technology can help with establishing new and more varied models of
15q11-q13 disorders and the same technology could be applied to
ASD.

CRISPR is the latest generation in the genome engineering tools
that have been discovered and characterized in the last twenty years
[27]. CRISPR technology is a gene editing nuclease system, found in
many bacteria and archea [28]. The most well studied of the CRISPR
nucleases is Cas9 which is targeted to a specific site in the genome by a
guide RNA (gRNA) [6] The guide RNA (gRNA), specifies 18-21bp in
the DNA, making it possible to target a single unique site in the
genome [29]. Unlike the previous genome engineering tools, zinc
fingers and TALENs (transcription activator-like effector nucleases),
CRISPR does not require any specialized expertise to use, targets any
site in the genome with high efficiency, can be made to order, and has
minimal off target effects [30]. Recent studies have shown that the off-
target effects of CRISPR are minimal with as little as one off target site
that was cleaved [31,32]. This low off-target cut rate is especially
important when introducing a mutation for a disease model, to ensure
that only one mutation is introduced into the genome. CRISPR has
been used to successfully make several iPSC disease models and
mammalian models including the generation of a mouse model with
multiple specific mutations in a single generation [33-36]. Zinc fingers

exhibit a significant rate of off-target binding, making them less ideal
tools for disease model creation [37-39]. TALENS appear to be more
specific then ZFN, however they are complicated to create and unlike
the CRISPR system two TALENs are needed per desired mutation site,
requiring several plasmids/viral vectors for a multiple gene disorder
model [39-43]. CRISPR offers three distinct advantages when
compared to previous genome engineering tools, high accuracy, ease
of design and construction, the ability to fit multiple gRNAs on the
plasmid/viral vector with the Cas9 nuclease drastically increasing the
efficiency of creating a multiple gene disorder as only one plasmid/
vector is required for the cell or embryo [44,45].

Discussion
An ideal disease model has the gene causing mutation and no other

background mutations, in this way the disease phenotype observed is
due only to the single gene mutation. The previous generation of such
models was very low efficiency and often utilized a selectable marker,
adding an artificial element to the disease model, and potentially even
the protein [22,46]. Using patient derived cell lines would allow for a
representation of the variety of mutations, but there would be large
amount of background noise across the various models as each
individual patient’s genome is different with potentially other
mutations in different genes. For a cellular model iPSCs are the ideal
model in which to do a series of deletions of varying lengths and a
variety of mutations reflective of the patient population, minus the
genetic background noise of the population. Using iPSCs, isogenic
lines could be established from a wild-type individual so that in the
disease model iPSC derived tissues the only variance would be
mutations and the size of the mutation if applicable. An additional
benefit to utilizing iPSCs is their ability to be reprogramed into any
cell type, allowing for observation of the disease phenotype across
many cell types, which all share an identical genome. The CRISPR
system has been used with high efficiency and accuracy to generate
many iPSC cell models, including other neurological diseases
[35,47,48]. The creation of several models of various 15q11-q13 or
ASD mutations would be a simple extension of the current technology.
Large deletions could be done by having two gRNAs, which would
target appropriately spaced genetic sites, creating large deletions [49].
To reflect multiple gene disorders, the Cas9 nuclease can be used with
multiple gRNAs, to create a model in a single step experiment. The
CRISPR system has been shown to be highly efficient and accurate,
with minimal off target effects and induced mutation rates as high as
15% [32,50]. The created models could be screened for off-target
events by a whole genome sequence, which can be done in a time
efficient and cost effective manner, ensuring that the model has only
one insertion event [31,32,51].

The CRISPR system has been used to efficiently generate a wide
variety of disease models in different model organisms, including
primates by inserting the Cas9 DNA, gRNA and donor DNA in the
embryo [33,52,53]. The 15q11-q13 region disorders and autism
spectrum diseases could benefit from this methodology as several
forms of autism are caused by multiple mutations in different genes
[5,54-56]. Occasionally, in humans the deletion region encompasses
genes that are not found in the same region on the mouse
chromosome. Until CRISPR, the concept of creating mutations across
multiple sites in the genome, on different chromosomes required
many generations of mice and different founder lines. The CRISPR
system allows for the generation of multiple gene mutations in a single
generation, by designing and injecting the multiple gRNAs into the
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desired embryo. Alternatively, if deletion of such a large region proved
lethal or unstable then multiple mutations could be made in the genes
of interest simultaneously, creating a model in a single generation
[26,33]. These models would also help elucidate the interplay between
multiple gene mutations that cause autism. This technology makes the
establishment of these varied models efficient and achievable in any
laboratory. Continued modifications of the CRISPR system have
reduced off-target mutations to almost background levels, ensuring
the model phenotypes accurately reflect the molecular underpinnings
of the desired disease [51,57-60].

In an effort to streamline the screening of viable disease treatments,
cell lines with specifically tagged proteins could be made with the
CRISPR system. These lines could be utilized in the same way the
current Ube3a-YFP lines have been utilized, as a high throughput
screening method for small molecule drugs that activate paternal
Ube3a, in an effort to find therapeutics for Angelman syndrome
[46,61]. This use of Ube3a-YFP was pivotal in identifying a class of
drugs, topoisomerases, which activated paternal Ube3a [61,62]. The
activation of paternal Ube3a lead to a better understanding of how
paternal Ube3a was silenced and if activation of paternal Ube3a could
compensate for screening efficiency and could even help elucidate
protein interactions. Before the optimization of CRISPR technology
the tagging of over 100 ASD candidate genes would have been a very
time consuming and labor intensive task, now it is a goal that could be
accomplished by a single laboratory [5]. A study done on a much
larger scale did a whole genome CRISPR knockout screening to
identify genes involved in cancer, this study targeted 18,080 genes with
64,751 gRNAs [63]. The scale on which this was done has made the
actual targeting of the gene not a limiting factor, the limiting factor in
the model creation could be the selecting of the cell clones, which
would be enhanced by the insertion of a selectable marker. The
creation of an entire library of isogenic iPSCs for 15q11-q13 mutations
and every ASD candidate gene is a realistic goal, with the optimization
of CRISPR technology. An establishment of this library will make
massive parallel drug screening possible, making the screening of
potential therapies rapid and straightforward.

Conclusion
Increased availability of varying deletion length models or multiple

gene mutation models will dramatically impact both the basic
understanding of 15q11-q13 and autism spectrum disorders,
enhancing the potential to find effective treatments for the diseases.
Increased availability of varied deletion size and multiple gene
mutation disease models with minimal genetic background noise in
isogenic iPSCs, tissues and animal models will increase understanding
of the underlying molecular mechanism, which may expand options of
potential therapies. It is possible that the deletion size, or having
multiple gene mutations could impact drug response and efficacy,
something that could be tested in created models. This strategy is by
no means an all-inclusive model, but the implementation of CRISPR
technology would allow for a more representative set of models to
advance the molecular and behavioral understanding of 15q11-q13
disorders and ASD, while increasing the ability to evaluate the efficacy
of potential therapies.
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