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Short Communication
Cyanobacteria are the most primitive and important prokaryotic

component of photoautotrophic microflora on the planet Earth. They
are ubiquitous in nature [1], maintaining the trophic energy dynamics
of aquatic and terrestrial ecosystems [2,3]. Probably, they appeared on
the Earth between 2.8-3.5 billion years ago during the Precambrian era
[4] and led to the evolution of existing aerobic life on the Earth’s
atmosphere due to their inherent capacity of photosynthesis mediated
oxygen evolution [5]. Adaptive diversification and inclusive survival of
cyanobacteria in a range of ecological niches has ensued a large and
diverse array of photosynthetic and other biomolecules, each with
specialized functions to compete them successfully on the planet.
These organisms have inherent capacity to fix atmospheric nitrogen
and are source of several natural products of high economic values [6].
They play an important role in the nutrient (e.g. nitrogen, carbon, and
oxygen) cycles and are being employed as a potential source of biofuels
or green energy.

During the past few decades, increase in solar ultraviolet (UV)
radiation due to anthropogenically released ozone depleting
substances has aroused severe concerns about its deleterious effects on
all sun-exposed organisms including cyanobacteria [7,8]. Being an
obligate photo-autotroph and crucial demand of photo-energy to
maintain the normal cellular physiology and biochemistry exposes
cyanobacteria to a wide range of fluctuating environments of intense
solar radiation with high UV (280-400 nm) fluxes in their natural
habitats. Herein, the recent advances on survival of cyanobacteria
against UV-induced oxidative stress have been briefly discussed.

UV radiation (particularly UV-B: 280-315 nm) may lead to
oxidative stress in cyanobacteria by upsetting the cellular redox status.
In photosynthetic organisms including cyanobacteria, ROS are
generated by means of photosynthetic electron transport chain [9]. In
contrast to algae and higher plants, cyanobacteria undergo a high
degree of O2 reduction by consuming about 50 % of the
photosynthetic electrons instead of only 15 % for plants [10]. It has
been found that UV-B radiation has great efficacy to produce the
reactive oxygen species (ROS) in cyanobacteria (Figure 1) [11].

Photo-induced oxidative stress may damage the cellular as well as
biochemical integrity of a cell [12]. The high-energy short wavelength
UV-B radiation may affect the biological systems either through direct
effects on cellular DNA and proteins or indirectly by the generation of
ROS [13,14]. It has been established that UV-A (315-400 nm)
radiation which is not absorbed directly by the DNA molecules, can
still damage it by producing a secondary DNA photoproducts via
indirect photosensitizing reactions [15]. UV-B radiation brings about
chemical modifications in DNA by the formation of purine/
pyrimidine dimers (Figure 2) and strand breaks leading to
mutagenesis and loss of normal cellular metabolic functions [16,17].

UV-induced oxidative stress may also induce DNA-DNA and DNA-
protein cross links, base modifications and translocations [18]. It has
been reported that DNA damage caused by UV radiation or ROS such
as OH- radical results in ATM mediated phosphorylation of BID
protein that induces cell-cycle arrest in S-phase [19,20]. Several
oxidation products of purine bases such as 8-oxo-7,8-dihydroguanyl
(8-oxoGua), 8-oxo-Ade, 6-diamino-4-hydroxy-5-formamidoguanine
(FapyGua), FapyAde, and oxazolone have been reported to form upon
exposure of DNA to UV-induced ROS [21-23]. UV-induced oxidative
stress may damage proteins by site specific modifications of amino
acid, aggregation of cross-linked reaction products, increased
susceptibility to proteolysis and fragmentation of the peptide chain
and oxidation of specific amino acids. ROS-mediated damage to
photosynthetic apparatus followed by inhibition of photosynthesis has
also been observed in cyanobacteria [16].

Figure 1: UV-induced generation of reactive oxygen species in the
cyanobacterium Anabaena sp. A- UV-B exposed cells, B- UV-B
control cells [11].

ROS are inevitably produced as intermediates of O2 reduction, or
by its energization. It has been shown that intense solar light beyond
the normal capacity of the photosynthetic electron flow may cause
production of other ROS along with 1O2 leading to inactivation of
photosystems. Moreover, ROS are mainly produced by PSI; however,
light-driven oxidation of water occurs in PS-II and under certain
conditions, PSII contributes to the overall production of ROS in the
thylakoid membrane of plants, algae and cyanobacteria [24]. It has
been stated that 1O2 produced by an energy input to oxygen (O2) from
photosensitized chlorophyll, is believed to inhibit the repair of
photosystem II (PSII). The singlet oxygen (1O2), superoxide anion
(O2-), hydroxyl radical (OH˙) and hydrogen peroxide (H2O2) are
potent free radicals. The ROS 1O2 and OH˙ produced by energy input
to oxygen, is believed to be highly reactive, and reacts with important
cellular molecules such as DNA, proteins, pigments, lipids and
enzymes leading to cell death. ROS reacts with fatty acids in the
membrane lipid bilayer, cause lipid peroxidation leading to membrane
leakage. Moreover, the general mechanisms of ROS-induced damage
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of biomolecules or dysfunction of cellular activities have been well
documented [9,25-27]. Overall, UV-induced oxidative stress may
affect the cellular morphology and vital processes such as cell growth
and differentiation, motility and orientation, pigmentation and
photosynthesis, N2/CO2 metabolism, enzyme activity as well as
alteration in the native structure of proteins and DNA of
cyanobacteria (Figure 3) [7,28-31].

Figure 2: UV-B-induced formation of cyaclobutane thymine dimer
on DNA strand.

Figure 3: Effects of solar UV radiation on diverse photosynthetic
life including cyanobacteria, and subsequent adoption of different
defense mechanisms to counteract the harmful effects of short
wavelength solar energy (modified from [7]).

Moreover, in-spite of several detrimental effects of UV-induced
ROS and oxidative stress at cellular and biochemical levels as stated
above, how cyanobacteria are still surviving and growing well in their
natural habitats with high solar insolation? In fact, during the course
of evolution cyanobacteria have developed several defence
mechanisms such as avoidance (eg. migration and mat formation),
DNA repair and heat dissipation mechanisms, synthesis of UV-
absorbing/screening compounds and several antioxidant systems to

counteract the damaging effects of UV-induced oxidative stress
(Figure 3) [7,14,32].

A number of enzymatic (eg. ascorbate peroxidase, superoxide
dismutase, catalase, glutathione peroxidase, glutathione reductase) and
non-enzymatic (eg. carotenoids, ascorbic acid, α-tocopherols and
reduced glutathione) antioxidant defence mechanisms operated in
cyanobacteria to minimize the UV-induced oxidative damage caused
by ROS. The presence of antioxidant systems may exclusively regulate
the homeostasis of ROS formation in cells. Some other group of
secondary compounds such as polyamines with free radical scavenging
activity have also been reported in cyanobacteria [33].

Cyanobacteria are capable of protecting themselves from harmful
solar UV radiation by synthesizing some UV-absorbing/screening
secondary biomolecules, such as the mycosporine-like amino acids
(MAAs) and scytonemin (Scy) [34-38]. MAAs are intracellular, small,
colorless and water-soluble molecules consisting of cyclohexenone or
cyclohexenimine chromophores conjugated with the nitrogen
substituent of an amino acids or its imino alcohol. Strong UV
absorption maxima, high molar extinction coefficients, UV
inducibility, stability against different abiotic factors such as
temperature and UV radiation and potential antioxidant function
strongly favour the UV-photoprotective role of MAAs in
cyanobacteria. MAAs have capability to dissipate absorbed radiation
efficiently as heat without producing ROS [39]. Some of the common
MAAs found in cyanobacteria have been represented in (Figure 4). Scy
(λmax: 386 nm) is a yellow-brown lipid soluble pigment located in the
extracellular polysaccharide sheath of some cyanobacteria (Figure 5)
and protect them from UV radiation [40]. The synthesis of
extracellular polysaccharides (EPS) also plays an important role in
mitigation strategy against desiccation and harmful effects of UV
radiation [41,42].
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Figure 4: Chemical structure of some common MAAs reported in
cyanobacteria. A-Mycosporine-glycine (λmax 310 nm), B-
Asterina-330 (λmax 330 nm), C-Palythinol (λmax 332 nm), D-
Porphyra-334 (λmax 334 nm), E- Shinorine (λmax 334 nm) and F-
Mycosporine-2-glycine (λmax 334 nm).

Besides the role of UV-absorbing/screening compounds, the
energy-dissipation mechanisms also play a vital role in
photoprotection of cyanobacteria. It has been shown that under high
light condition, the photoprotective heat/energy-dissipation
mechanisms are activated that allow dissipation of excess energy in the
form of heat by means of different pathway [9,43].
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Figure 5: Extrcellular sheath pigment scytonemin and its UV-
absorption maximum at 386 nm in the cyanobacterium Lyngbya sp.

It has been reported that most of the cyanobacteria can dissipate
energy from phycobilisomes by means of photoactive soluble orange
carotenoid protein (OCP) [43].

A number of repair mechanisms such as photoreactivation, excision
repair such as base excision repair (BER) and nucleotide excision
repair (NER) and recombinational repair have been reported in several
organisms including cyanobacteria [14,44]. Photoreactivation (Figure
6) is the most efficient DNA repair mechanisms in cyanobacteria. The
enzyme DNA photolyase play a vital role in photoreversal of the most
cytotoxic and mutagenic DNA lesions such as cyclobutane thymine
dimers (T<>T) or 6-4PPs. The enzyme photolyase binds precisely to
the CPDs (for CPD photolyase) or 6-4PPs (for 6-4 photolyase) and
directly monomerizes the cyclobutane ring of the purine/pyrimidine
DNA lesion using the energy of visible/blue-light and protects the
genome from damaging effects of UV radiation [45,46].
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Figure 6: Photoreversal of thymine dimer in the presence of
photolyase [14].

Overall, oxidative-stress-induced changes in general physiology and
biochemistry may constitute ubiquitous threat to the accurate
maintenance of the cellular and genomic integrity and survival of
organisms; however, certain life forms such as cyanobacteria have
motivated and devised a number of biochemical defence mechanisms
to preserve their cellular machinery for competent endurance in
adverse environment of UV-induced oxidative stress.
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